Duccio Rocchini
rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back
Rocchini, Duccio; Thouverai, Elisa; Marcantonio, Matteo; Iannacito, Martina; Da Re, Daniele; Torresani, Michele; Bacaro, Giovanni; Bazzichetto, Manuele; Bernardi, Alessandra; Foody, Giles M.; Furrer, Reinhard; Kleijn, David; Larsen, Stefano; Lenoir, Jonathan; Malavasi, Marco; Marchetto, Elisa; Messori, Filippo; Montaghi, Alessandro; Moudr�, V�t?zslav; Naimi, Babak; Ricotta, Carlo; Rossini, Micol; Santi, Francesco; Santos, Maria J.; Schaepman, Michael E.; Schneider, Fabian D.; Schuh, Leila; Silvestri, Sonia; ?�mov�, Petra; Skidmore, Andrew K.; Tattoni, Clara; Tordoni, Enrico; Vicario, Saverio; Zannini, Piero; Wegmann, Martin
Authors
Elisa Thouverai
Matteo Marcantonio
Martina Iannacito
Daniele Da Re
Michele Torresani
Giovanni Bacaro
Manuele Bazzichetto
Alessandra Bernardi
Professor GILES FOODY giles.foody@nottingham.ac.uk
PROFESSOR OF GEOGRAPHICAL INFORMATION
Reinhard Furrer
David Kleijn
Stefano Larsen
Jonathan Lenoir
Marco Malavasi
Elisa Marchetto
Filippo Messori
Alessandro Montaghi
V�t?zslav Moudr�
Babak Naimi
Carlo Ricotta
Micol Rossini
Francesco Santi
Maria J. Santos
Michael E. Schaepman
Fabian D. Schneider
Leila Schuh
Sonia Silvestri
Petra ?�mov�
Andrew K. Skidmore
Clara Tattoni
Enrico Tordoni
Saverio Vicario
Piero Zannini
Martin Wegmann
Contributors
Sarah Goslee
Editor
Abstract
Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow. In this paper, we present a new R package—rasterdiv—to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns. The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms.
Citation
Rocchini, D., Thouverai, E., Marcantonio, M., Iannacito, M., Da Re, D., Torresani, M., Bacaro, G., Bazzichetto, M., Bernardi, A., Foody, G. M., Furrer, R., Kleijn, D., Larsen, S., Lenoir, J., Malavasi, M., Marchetto, E., Messori, F., Montaghi, A., Moudrý, V., Naimi, B., …Wegmann, M. (2021). rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back. Methods in Ecology and Evolution, 12(6), 1093-1102. https://doi.org/10.1111/2041-210X.13583
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 8, 2021 |
Online Publication Date | May 3, 2021 |
Publication Date | 2021-06 |
Deposit Date | May 9, 2021 |
Publicly Available Date | May 24, 2021 |
Journal | Methods in Ecology and Evolution |
Electronic ISSN | 2041-210X |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 12 |
Issue | 6 |
Pages | 1093-1102 |
DOI | https://doi.org/10.1111/2041-210X.13583 |
Keywords | Ecological Modelling; Ecology, Evolution, Behavior and Systematics |
Public URL | https://nottingham-repository.worktribe.com/output/5521610 |
Publisher URL | https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13583 |
Files
rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back
(2.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Spatial–Temporal Analysis of Greenness and Its Relationship with Poverty in China
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search