Mingfeng Wang
Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine
Wang, Mingfeng; Dong, Xin; Ba, Weiming; Mohammad, Abdelkhalick; Axinte, Dragos; Norton, Andy
Authors
Dr XIN DONG XIN.DONG@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Weiming Ba
Dr ABDELKHALICK MOHAMMAD Abd.Mohammad1@nottingham.ac.uk
ASSOCIATE PROFESSOR
Professor DRAGOS AXINTE dragos.axinte@nottingham.ac.uk
PROFESSOR OF MANUFACTURING ENGINEERING
Andy Norton
Abstract
In-situ aeroengine maintenance works are highly beneficial as it can significantly reduce the current maintenance cycle which is extensive and costly due to the disassembly requirement of engines from aircraft. However, navigating in/out via inspection ports and performing multi-axis movements with end-effectors in constrained environments (e.g. combustion chamber) is fairly challenging. A novel extra-slender (diameter-to-length ratio < 0.02) dual-stage continuum robot (16 degree-of-freedom) is proposed to navigate in and out confined environments and perform required configuration shapes for repair operations. Firstly, the robot design presents several innovative mechatronic solutions: (i) dual-stage tendon-driven structure with bevelled disks to perform required shapes and to provide selective stiffness for carrying high payloads; (ii) various rigid-compliant combined joints to enable different flexibility and stiffness in each stage; (iii) three commanding cables for each 2-DoF section to minimise the number of actuators with precise actuation. Secondly, a segment-scaled piecewise-constant-curvature-theory based kinematic model and a Kirchhoff-elastic-rod-theory based static model are established by considering the applied forces/moments (friction, actuation, gravity and external load), where the friction coefficient is modelled as a function of bending angle. Finally, experiments were carried out to validate the proposed static modelling and to evaluate the robot capabilities of performing the predefined shape and stiffness.
Citation
Wang, M., Dong, X., Ba, W., Mohammad, A., Axinte, D., & Norton, A. (2021). Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine. Robotics and Computer-Integrated Manufacturing, 67, Article 102054. https://doi.org/10.1016/j.rcim.2020.102054
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 10, 2020 |
Online Publication Date | Aug 25, 2020 |
Publication Date | 2021-02 |
Deposit Date | Jan 19, 2024 |
Journal | Robotics and Computer-Integrated Manufacturing |
Print ISSN | 0736-5845 |
Electronic ISSN | 1879-2537 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 67 |
Article Number | 102054 |
DOI | https://doi.org/10.1016/j.rcim.2020.102054 |
Public URL | https://nottingham-repository.worktribe.com/output/4882134 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0736584520302659?via%3Dihub |
You might also like
Modelling of modular soft robots: From a single to multiple building blocks
(2024)
Journal Article
Efficient and Scalable Inverse Kinematics for Continuum Robots
(2023)
Journal Article
A Robust Human–Robot Collaborative Control Approach Based on Model Predictive Control
(2023)
Journal Article
Continuum Robots: An Overview
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search