Skip to main content

Research Repository

Advanced Search

An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities

Standen, Penelope; Brown, David J; Taheri, Mohammad; Galvez Trigo, Maria J; Boulton, Helen; Burton, Andrew; Hallewell, Madeline J; Lathe, James G; Shopland, Nicholas; Blanco Gonzalez, Maria A; Kwiatkowska, Gosia M; Milli, Elena; Cobello, Stefano; Mazzucato, Annaleda; Traversi, Marco; Hortal, Enrique

An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities Thumbnail


Authors

Penelope Standen

David J Brown

Mohammad Taheri

Maria J Galvez Trigo

Helen Boulton

Andrew Burton

Madeline J Hallewell

James G Lathe

Nicholas Shopland

Maria A Blanco Gonzalez

Gosia M Kwiatkowska

Elena Milli

Stefano Cobello

Annaleda Mazzucato

Marco Traversi

Enrique Hortal



Abstract

Artificial intelligence tools for education (AIEd) have been used to automate the provision of learning support to mainstream learners. One of the most innovative approaches in this field is the use of data and machine learning for the detection of a student’s affective state, to move them out of negative states that inhibit learning, into positive states such as engagement. In spite of their obvious potential to provide the personalisation that would give extra support for learners with intellectual disabilities, little work on AIEd systems that utilise affect recognition currently addresses this group. Our system used multimodal sensor data and machine learning to first identify three affective states linked to learning (engagement, frustration, boredom) and second determine the presentation of learning content so that the learner is maintained in an optimal affective state and rate of learning is maximised. To evaluate this adaptive learning system, 67 participants aged between 6 and 18years acting as their own control took part in a series of sessions using the system. Sessions alternated between using the system with both affect detection and learning achievement to drive the selection of learning content (intervention) and using learning achievement alone (control) to drive the selection of learning content. Lack of boredom was the state with the strongest link to achievement, with both frustration and engagement positively related to achievement. There was significantly more engagement and less boredom in intervention than control sessions, but no significant difference in achievement. These results suggest that engagement does increase when activities are tailored to the personal needs and emotional state of the learner and that the system was promoting affective states that in turn promote learning. However, longer exposure is necessary to determine the effect on learning.

Citation

Standen, P., Brown, D. J., Taheri, M., Galvez Trigo, M. J., Boulton, H., Burton, A., Hallewell, M. J., Lathe, J. G., Shopland, N., Blanco Gonzalez, M. A., Kwiatkowska, G. M., Milli, E., Cobello, S., Mazzucato, A., Traversi, M., & Hortal, E. (2020). An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities. British Journal of Educational Technology, 51(5), 1748-1765. https://doi.org/10.1111/bjet.13010

Journal Article Type Article
Acceptance Date Jun 30, 2020
Online Publication Date Jul 29, 2020
Publication Date Jul 29, 2020
Deposit Date Jul 27, 2020
Publicly Available Date Jul 29, 2020
Journal British Journal of Educational Technology
Print ISSN 0007-1013
Electronic ISSN 1467-8535
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 51
Issue 5
Pages 1748-1765
DOI https://doi.org/10.1111/bjet.13010
Keywords affective tutoring; engagement; intellectual disabilities; special educational needs; learning achievement
Public URL https://nottingham-repository.worktribe.com/output/4746073
Publisher URL https://bera-journals.onlinelibrary.wiley.com/doi/full/10.1111/bjet.13010
Additional Information Received: 2019-12-17; Accepted: 2020-06-30; Published: 2020-07-29

Files





Downloadable Citations