Ya Dan
Comprehensive evaluation of integrating radiative sky cooling with compound parabolic concentrator for cooling flux amplifying
Dan, Ya; Hu, Mingke; Wang, Qiliang; Su, Yuehong; Riffat, Saffa
Authors
Mingke Hu
Dr QILIANG WANG Qiliang.Wang1@nottingham.ac.uk
MARIE SKLODOWSKA-CURIE POSTDOCTORAL FELLOW
Professor YUEHONG SU YUEHONG.SU@NOTTINGHAM.AC.UK
PROFESSOR OF THERMAL SCIENCE AND BUILDING TECHNOLOGY
Professor SAFFA RIFFAT saffa.riffat@nottingham.ac.uk
PROFESSOR OF SUSTAINABLE ENERGY SYSTEMS
Abstract
The low cooling density of RC technology makes it challenging to meet the cooling requirements of buildings, particularly during the day with intense solar radiation. To address this challenge, a novel RC module coupled with a compound parabolic concentrator (CPC-RC module) was proposed. In this paper, a universal modelling approach is used to characterize the cooling performance of CPC-RC module, showing 18.1% higher than that of flat module during nighttime. However, the CPC's solar concentrating characteristic impacts the RC emitter's daytime performance. To tackle this issue, exploring the optimal tilt angle of CPC-RC module on typical days to eliminate the influence of solar concentrating property is needed. The results indicate that on 21st June, average cooling power of 121.29 W/m2 is achieved when the module is tilted 25° to the anti-sunward side, 15.7% higher than the module placed horizontally. Additionally, this paper shows that the cooling performance of CPC-RC module with non-ideal emitter is still higher than that of flat one, demonstrating CPC's ability to mitigate the rigorous spectral requirements for emitters. This CPC-RC module offers good cooling effect and shows its great potential for integration into buildings, offering a new research direction for the wider application of RC technology.
Citation
Dan, Y., Hu, M., Wang, Q., Su, Y., & Riffat, S. (2024). Comprehensive evaluation of integrating radiative sky cooling with compound parabolic concentrator for cooling flux amplifying. Energy, 312, Article 133673. https://doi.org/10.1016/j.energy.2024.133673
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 30, 2024 |
Online Publication Date | Oct 31, 2024 |
Publication Date | Dec 15, 2024 |
Deposit Date | Dec 3, 2024 |
Publicly Available Date | Nov 1, 2025 |
Journal | Energy |
Print ISSN | 0360-5442 |
Electronic ISSN | 1873-6785 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 312 |
Article Number | 133673 |
DOI | https://doi.org/10.1016/j.energy.2024.133673 |
Public URL | https://nottingham-repository.worktribe.com/output/42811944 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0360544224034510?via%3Dihub |
Files
This file is under embargo until Nov 1, 2025 due to copyright restrictions.
You might also like
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search