Yue Yang
Controlling of compliant grinding for low-rigidity components
Yang, Yue; Li, Haonan; Liao, Zhirong; Axinte, Dragos; Zhu, Wule; Beaucamp, Anthony
Authors
Haonan Li
Dr ZHIRONG LIAO ZHIRONG.LIAO@NOTTINGHAM.AC.UK
ASSOCIATE PROFESSOR
Professor DRAGOS AXINTE dragos.axinte@nottingham.ac.uk
PROFESSOR OF MANUFACTURING ENGINEERING
Wule Zhu
Anthony Beaucamp
Abstract
© 2020 Elsevier Ltd The machining of low-rigidity components (e.g. thin-walled) with compliant tools presents accuracy challenges as both sides in contact are being deformed. The controlling method presented in this paper enables, for the first time, to obtain the desired and uniform material removal rate by controlling the nominal tool offset when two bodies (workpiece and tool) are compliant in grinding. A contact deformation model is proposed to predict the relation between the nominal and actual tool offsets. The function of nominal tool offsets and material removal rates is obtained based on the calibration tests. Spot grinding tests have been performed for the validation of the calculated material removal rates, normal grinding forces and spot sizes, presenting position-dependent characteristics. The controlling method has been tested for the case of continuous grinding the whole area of a circular aluminium thin wall. The surfaces ground under the time-variant tool offsets (proposed approach) reach the desired removal depth with an average error of ≤10% and achieve 11.2 μm–24.2 μm (P–V) accuracy in the elastic domain, compared with the error of 76.8%~113.7% and accuracy of 42.6 μm–50.1 μm (P–V) in the circumstance of constant tool offsets (conventional approach).
Citation
Yang, Y., Li, H., Liao, Z., Axinte, D., Zhu, W., & Beaucamp, A. (2020). Controlling of compliant grinding for low-rigidity components. International Journal of Machine Tools and Manufacture, 152, Article 103543. https://doi.org/10.1016/j.ijmachtools.2020.103543
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 4, 2020 |
Online Publication Date | Mar 6, 2020 |
Publication Date | May 1, 2020 |
Deposit Date | Apr 16, 2020 |
Publicly Available Date | Mar 7, 2021 |
Journal | International Journal of Machine Tools and Manufacture |
Print ISSN | 0890-6955 |
Electronic ISSN | 1879-2170 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 152 |
Article Number | 103543 |
DOI | https://doi.org/10.1016/j.ijmachtools.2020.103543 |
Keywords | Mechanical Engineering; Industrial and Manufacturing Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/4251500 |
Publisher URL | https://www.sciencedirect.com/science/article/abs/pii/S0890695519314099?via%3Dihub |
Files
Controlling of compliant grinding for low-rigidity components
(2.3 Mb)
PDF
You might also like
Investigation on a class of 2D profile amplified stroke dielectric elastomer actuators
(2024)
Journal Article
Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces
(2024)
Journal Article
Modelling of modular soft robots: From a single to multiple building blocks
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search