Joe Pitt-Francis
Chaste: A test-driven approach to software development for biological modelling
Pitt-Francis, Joe; Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Fletcher, Alexander G.; Mirams, Gary R.; Murray, Philip; Osborne, James M.; Walter, Alex; Chapman, S. Jon; Garny, Alan; van Leeuwen, Ingeborg M.M.; Maini, Philip K.; Rodr�guez, Blanca; Waters, Sarah L.; Whiteley, Jonathan P.; Byrne, Helen M.; Gavaghan, David J.
Authors
Pras Pathmanathan
Miguel O. Bernabeu
Rafel Bordas
Jonathan Cooper
Alexander G. Fletcher
Professor GARY MIRAMS GARY.MIRAMS@NOTTINGHAM.AC.UK
PROFESSOR OF MATHEMATICAL BIOLOGY
Philip Murray
James M. Osborne
Alex Walter
S. Jon Chapman
Alan Garny
Ingeborg M.M. van Leeuwen
Philip K. Maini
Blanca Rodr�guez
Sarah L. Waters
Jonathan P. Whiteley
Helen M. Byrne
David J. Gavaghan
Abstract
Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summary: Program title: Chaste. Catalogue identifier: AEFD_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFD_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: LGPL 2.1. No. of lines in distributed program, including test data, etc.: 5 407 321. No. of bytes in distributed program, including test data, etc.: 42 004 554. Distribution format: tar.gz. Programming language: C++. Operating system: Unix. Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:< 90 Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces. Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac electrophysiology and intestinal crypt dynamics. Solution method: Coupled multi-physics with PDE, ODE and discrete mechanics simulation. Running time: The largest cardiac simulation described in the manuscript takes about 6 hours to run on a single 3 GHz core. See results section (Section 6) of the manuscript for discussion on parallel scaling. © 2009 Elsevier B.V. All rights reserved.
Citation
Pitt-Francis, J., Pathmanathan, P., Bernabeu, M. O., Bordas, R., Cooper, J., Fletcher, A. G., Mirams, G. R., Murray, P., Osborne, J. M., Walter, A., Chapman, S. J., Garny, A., van Leeuwen, I. M., Maini, P. K., Rodríguez, B., Waters, S. L., Whiteley, J. P., Byrne, H. M., & Gavaghan, D. J. (2009). Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications, 180(12), 2452-2471. https://doi.org/10.1016/j.cpc.2009.07.019
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 1, 2009 |
Online Publication Date | Aug 26, 2009 |
Publication Date | Dec 1, 2009 |
Deposit Date | Jan 14, 2020 |
Journal | Computer Physics Communications |
Print ISSN | 0010-4655 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 180 |
Issue | 12 |
Pages | 2452-2471 |
DOI | https://doi.org/10.1016/j.cpc.2009.07.019 |
Public URL | https://nottingham-repository.worktribe.com/output/3217767 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0010465509002604 |
You might also like
Ten simple rules for training scientists to make better software
(2024)
Journal Article
Geometrically-derived action potential markers for model development: a principled approach?
(2024)
Preprint / Working Paper
Optimising experimental designs for model selection of ion channel drug binding mechanisms
(2024)
Preprint / Working Paper
Evaluating the predictive accuracy of ion channel models using data from multiple experimental designs
(2024)
Preprint / Working Paper
A range of voltage-clamp protocol designs for rapid capture of hERG kinetics
(2024)
Preprint / Working Paper
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search