Maximilian Dax
Real-Time Gravitational Wave Science with Neural Posterior Estimation
Dax, Maximilian; Green, Stephen R.; Gair, Jonathan; Macke, Jakob H.; Buonanno, Alessandra; Schölkopf, Bernhard
Authors
Dr Stephen Green STEPHEN.GREEN2@NOTTINGHAM.AC.UK
NOTTINGHAM RESEARCH FELLOW
Jonathan Gair
Jakob H. Macke
Alessandra Buonanno
Bernhard Schölkopf
Abstract
We demonstrate unprecedented accuracy for rapid gravitational wave parameter estimation with deep learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze eight gravitational wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and find very close quantitative agreement with standard inference codes, but with inference times reduced from 𝑂(day) to 20 s per event. Our networks are trained using simulated data, including an estimate of the detector noise characteristics near the event. This encodes the signal and noise models within millions of neural-network parameters and enables inference for any observed data consistent with the training distribution, accounting for noise nonstationarity from event to event. Our algorithm—called “DINGO”—sets a new standard in fast and accurate inference of physical parameters of detected gravitational wave events, which should enable real-time data analysis without sacrificing accuracy.
Citation
Dax, M., Green, S. R., Gair, J., Macke, J. H., Buonanno, A., & Schölkopf, B. (2021). Real-Time Gravitational Wave Science with Neural Posterior Estimation. Physical Review Letters, 127(24), Article 241103. https://doi.org/10.1103/physrevlett.127.241103
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 17, 2021 |
Online Publication Date | Dec 8, 2021 |
Publication Date | Dec 8, 2021 |
Deposit Date | Mar 31, 2025 |
Publicly Available Date | Apr 4, 2025 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 127 |
Issue | 24 |
Article Number | 241103 |
DOI | https://doi.org/10.1103/physrevlett.127.241103 |
Public URL | https://nottingham-repository.worktribe.com/output/21645896 |
Publisher URL | https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.241103 |
Files
PhysRevLett.127.241103
(726 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Gravitational wave populations and cosmology with neural posterior estimation
(2024)
Journal Article
Flow Matching for Scalable Simulation-Based Inference
(2023)
Presentation / Conference Contribution
Relativistic Perturbation Theory for Black-Hole Boson Clouds
(2024)
Journal Article
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
(2023)
Journal Article
Real-time inference for binary neutron star mergers using machine learning
(2025)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search