Fabio Carvalho
A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages
Carvalho, Fabio; Brown, Kerry A.; Waller, Martyn P.; Bunting, M. Jane; Boom, Arnoud; Leng, Melanie J.
Authors
Kerry A. Brown
Martyn P. Waller
M. Jane Bunting
Arnoud Boom
Professor MELANIE LENG Melanie.Leng@nottingham.ac.uk
PROFESSOR OF ISOTOPE GEOSCIENCES
Contributors
Walter Finsinger
Editor
Abstract
Methods of reconstructing changes in plant traits over long time scales are needed to understand the impact of changing environmental conditions on ecosystem processes and services. Although Holocene pollen have been extensively used to provide records of vegetation history, few studies have adopted a functional trait approach that is pertinent to changes in ecosystem processes. Here, for woody and herbaceous fen peatland communities, we use modern pollen and vegetation data combined with pollen records from Holocene deposits to reconstruct vegetation functional dynamics. The six traits chosen (measures of leaf area-to-mass ratio and leaf nutrient content) are known to modulate species’ fitness and to vary with changes in ecosystem processes. We fitted linear mixed effects models between community weighted mean (CWM) trait values of the modern pollen and vegetation to determine whether traits assigned to pollen types could be used to reconstruct traits found in the vegetation from pollen assemblages. We used relative pollen productivity (RPP) correction factors in an attempt to improve this relationship. For traits showing the best fit between modern pollen and vegetation, we applied the model to dated Holocene pollen sequences from Fenland and Romney Marsh in eastern and southern England and reconstructed temporal changes in trait composition. RPP adjustment did not improve the linear relationship between modern pollen and vegetation. Leaf nutrient traits (leaf C and N) were generally more predictable from pollen data than mass-area traits. We show that inferences about biomass accumulation and decomposition rates can be made using Holocene trait reconstructions. While it is possible to reconstruct community-level trends for some leaf traits from pollen assemblages preserved in sedimentary archives in wetlands, we show the importance of testing methods in modern systems first and encourage further development of this approach to address issues concerning the pollen-plant abundance relationship and pollen source area.
Citation
Carvalho, F., Brown, K. A., Waller, M. P., Bunting, M. J., Boom, A., & Leng, M. J. (2019). A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages. PLoS ONE, 14(5), Article e0216698. https://doi.org/10.1371/journal.pone.0216698
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 28, 2019 |
Online Publication Date | May 29, 2019 |
Publication Date | May 29, 2019 |
Deposit Date | May 31, 2019 |
Publicly Available Date | May 31, 2019 |
Journal | PLOS ONE |
Electronic ISSN | 1932-6203 |
Publisher | Public Library of Science |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 5 |
Article Number | e0216698 |
DOI | https://doi.org/10.1371/journal.pone.0216698 |
Keywords | General Biochemistry, Genetics and Molecular Biology; General Agricultural and Biological Sciences; General Medicine |
Public URL | https://nottingham-repository.worktribe.com/output/2116315 |
Publisher URL | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216698 |
Contract Date | May 31, 2019 |
Files
journal.pone.0216698
(2.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
South Georgia marine productivity over the past 15 ka and implications for glacial evolution
(2024)
Journal Article