Haozhe Liu
Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System
Liu, Haozhe; Bu, Feifei; Huang, Wenxin; Liu, Lu; Hu, Yuwen; Degano, Michele; Gerada, Chris
Authors
Feifei Bu
Wenxin Huang
Lu Liu
Yuwen Hu
Professor MICHELE DEGANO Michele.Degano@nottingham.ac.uk
PROFESSOR OF ADVANCED ELECTRICAL MACHINES
Professor CHRISTOPHER GERADA CHRIS.GERADA@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTRICAL MACHINES
Abstract
This paper presents an integrated control strategy for a starter/generator (S/G) system based on five-phase dual-stator winding induction machine (FPDWIM). The FPDWIM has a cage-type rotor and two sets of stator windings. One is a five-phase control winding (CW) and the other is a five-phase power winding (PW). In the starting mode, the FPDWIM works as a motor. The CW provides both active power and reactive power to drive the engine. In the generating mode, the CW mainly handles reactive power while the PW outputs active power. To achieve the integration of the starting and generating controls, indirect CW-flux-oriented control (ICWFOC) is proposed to operate in both starting and generating modes. In starting mode, the CW current and flux are controlled to output a constant starting torque; while in generating mode, both CW and PW DC bus voltages are regulated. In this way, the principles and structures of the control strategies in both modes are compatible, resulting in a simpler implementation and improved performance. With the proposed control strategy, the system can complete the starting-generating operation with a smoother transition process. Simulation and experimental results are compared to validate the proposed control strategy.
Citation
Liu, H., Bu, F., Huang, W., Liu, L., Hu, Y., Degano, M., & Gerada, C. (2020). Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System. IEEE Transactions on Industrial Electronics, 67(4), 2607-2617. https://doi.org/10.1109/TIE.2019.2912767
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 21, 2019 |
Online Publication Date | Apr 30, 2019 |
Publication Date | Apr 1, 2020 |
Deposit Date | Apr 17, 2019 |
Publicly Available Date | Apr 18, 2019 |
Journal | IEEE Transactions on Industrial Electronics |
Print ISSN | 0278-0046 |
Electronic ISSN | 1557-9948 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 67 |
Issue | 4 |
Pages | 2607-2617 |
DOI | https://doi.org/10.1109/TIE.2019.2912767 |
Keywords | Control and Systems Engineering; Electrical and Electronic Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/1823096 |
Publisher URL | https://ieeexplore.ieee.org/document/8703397 |
Additional Information | © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Contract Date | Apr 18, 2019 |
Files
Control Strategy For Five-Phase Dual-Stator Winding Induction StarterGenerator System
(754 Kb)
PDF
You might also like
Design and Evaluation of Matrix Rotor Induction Motor for High-Torque Low-Speed Applications
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search