John de Bono
Simulating multifaceted interactions between kaolinite platelets
de Bono, John; McDowell, Glenn
Abstract
It is well known that kaolinite platelets readily aggregate into ‘stacks’, having face-to-face contact. The traditional view of kaolin has been that the platelet faces are negatively charged and the edges are positively charged in an acidic environment, but that some attraction between faces may exist at some close range of approach. Particle-scale simulations in this paper show that this is insufficient to explain aggregation during sedimentation. Recently it has been established that the silica and alumina faces of kaolinite platelets have opposite charges in acidic conditions, and taking these findings into account, discrete element simulations are presented which replicate and explain the face-to-face aggregation that occurs during sedimentation. The results demonstrate the importance of correctly modelling the interactions between the various surfaces of individual platelets in any particle-based model.
Citation
de Bono, J., & McDowell, G. (2023). Simulating multifaceted interactions between kaolinite platelets. Powder Technology, 413, Article 118062. https://doi.org/10.1016/j.powtec.2022.118062
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 30, 2022 |
Online Publication Date | Nov 8, 2022 |
Publication Date | Jan 1, 2023 |
Deposit Date | Nov 18, 2022 |
Publicly Available Date | Nov 18, 2022 |
Journal | Powder Technology |
Print ISSN | 0032-5910 |
Electronic ISSN | 1873-328X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 413 |
Article Number | 118062 |
DOI | https://doi.org/10.1016/j.powtec.2022.118062 |
Keywords | General Chemical Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/13752515 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0032591022009433 |
Files
1-s2.0-S0032591022009433-main
(5.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Modelling the mechanical behaviour of clay using particle-scale simulations
(2024)
Journal Article
A particle-scale analysis of unload-reload hysteresis for normally consolidated kaolin
(2023)
Journal Article
Particle-scale simulations of the compression and shearing of kaolin clay
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search