Skip to main content

Research Repository

Advanced Search

Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector

Tahir Erdinc, M.; Kutlu, Cagri; Unal, Saban; Aydin, Orhan; Su, Yuehong; Riffat, Saffa

Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector Thumbnail


Authors

M. Tahir Erdinc

Saban Unal

Orhan Aydin



Abstract

Dual-source heat pump unit can utilize the evaporation of the refrigerant at two different pressures. By adopting an ejector, high-pressure refrigerant stream can be used to lift compressor inlet pressure which results in a higher coefficient of performance (COP). This study proposes a renewable energy sourced and high-efficiency heat pump system which can be easily building integrated to offer a renewable heating solution. The system is devised on the complementation of dual thermal sources; one is air and the other one is solar, to maximize the utilization of ambient energy for highly efficient operation of heat pump. Using the advantage of the relatively lower operating temperature in the solar collector line, the thermal efficiency of the collector would be sufficient in winter. Adaptation of photovoltaics in the collector as a PV/T unit, will benefit the system from the produced electricity for further reduction of the demand from the grid. Along with the use of PV/T collector, the system can be potentially carbon neutral for larger collector areas. In this study, the performance improvement potential of a dual-sourced heat pump unit with an ejector as a booster is investigated for different locations in Turkey which presents different solar and weather profiles. The optimum collector evaporation temperatures are determined, and COP improvement potentials are discussed for different conditions. For a heating supply of 5 kW, the COP of the system can be improved by 22.6 % under 400 W/m2 and 10 °C ambient using 15 m2 PV/T collector. Including the electricity generated from the PV, reduction of the electricity demand from the grid can reach to 75 % for the same conditions.

Citation

Tahir Erdinc, M., Kutlu, C., Unal, S., Aydin, O., Su, Y., & Riffat, S. (2023). Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector. Thermal Science and Engineering Progress, 37, Article 101534. https://doi.org/10.1016/j.tsep.2022.101534

Journal Article Type Article
Acceptance Date Oct 30, 2022
Online Publication Date Nov 4, 2022
Publication Date Jan 1, 2023
Deposit Date Nov 10, 2022
Publicly Available Date Nov 10, 2022
Journal Thermal Science and Engineering Progress
Electronic ISSN 2451-9049
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 37
Article Number 101534
DOI https://doi.org/10.1016/j.tsep.2022.101534
Keywords Fluid Flow and Transfer Processes
Public URL https://nottingham-repository.worktribe.com/output/13460737
Publisher URL https://www.sciencedirect.com/science/article/pii/S2451904922003407