Omar S. Salih
Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy
Salih, Omar S.; Ou, Hengan; Sun, Wei
Abstract
The interactions among thermal history, plastic deformation and residual stresses in the friction stir welding (FSW) process under different welding parameters have been widely considered a crucial issue and still not fully understood. In the present study, a novel three-dimensional fully coupled thermo-mechanical finite element (FE) model based on coupled Eulerian-Lagrangian approach (CEL) has been developed to simulate the FSW process of aluminium alloy AA 6082-T6 and to analyse the thermo-mechanical interaction mechanisms under different welding conditions. The numerical model successfully simulates the plunge, dwell, and welding steps in FSW and captures the evolution of temperature, plastic deformation, and residual stresses in the welded joint. The obtained results were validated by experimental testing with observed cross-weld thermal history, optical macrography and residual stress measurement using the neutron diffraction technique. The results reveal that the tool rotation speed governs the temperature evolution; the peak temperature increased from 740 to 850 °K when the tool rotation speed rose from 800 to 1100 rpm. The rotational speed also affected the plastic deformation, material flow, and the volume of material being stirred during the welding process. Higher plastic deformation is formed in the stirring zone by increasing the tool angular velocity. This behaviour led to an increase in the stirring effect of the welding tool, reduction of the tunnel defect size and enhancing the quality of weldments. The distribution of residual stresses in different zones of the FSW joints has been found to have an M-shaped profile. A significant tensile residual stress is characterised in the edge of the nugget zone in both longitudinal and transverse directions, balanced by compressive stresses in the thermo-mechanically affected zone, heat-affected zone and base metal. The presented FE modelling provides a reliable insight into the effects of the welding parameters on the weld quality of FSW joints and process optimisation with minimised experimental trials.
Citation
Salih, O. S., Ou, H., & Sun, W. (2023). Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy. International Journal of Mechanical Sciences, 238, Article 107827. https://doi.org/10.1016/j.ijmecsci.2022.107827
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 7, 2022 |
Online Publication Date | Oct 8, 2022 |
Publication Date | Jan 15, 2023 |
Deposit Date | Oct 13, 2022 |
Publicly Available Date | Oct 14, 2022 |
Journal | International Journal of Mechanical Sciences |
Print ISSN | 0020-7403 |
Electronic ISSN | 0020-7403 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 238 |
Article Number | 107827 |
DOI | https://doi.org/10.1016/j.ijmecsci.2022.107827 |
Keywords | Mechanical Engineering; Mechanics of Materials; Condensed Matter Physics; General Materials Science; Civil and Structural Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/12327302 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S002074032200707X?via%3Dihub |
Additional Information | This article is maintained by: Elsevier; Article Title: Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy; Journal Title: International Journal of Mechanical Sciences; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.ijmecsci.2022.107827; Content Type: article; Copyright: © 2022 Published by Elsevier Ltd. |
Files
1-s2.0-S002074032200707X-main
(12.3 Mb)
PDF
Licence
https://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Friction and heat partition coefficients in incremental sheet forming process
(2024)
Journal Article
Experimental testing and numerical modelling of ductile fracture of PEEK in incremental sheet forming process
(2024)
Presentation / Conference Contribution
Spindle speed effect on the ISF processing of materials with different thermal conductivities
(2024)
Presentation / Conference Contribution
A new hybrid stretch forming and double-layer two-point incremental sheet forming process
(2024)
Journal Article
Heat-assisted friction stir incremental sheet forming of thermoplastics
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search