Christian Brecher
Design of an aircraft generator with radial force control [version 3; peer review: 2 approved]
Brecher, Christian; Neus, Stephan; Gärtner, Marcus; Eckel, Hans-Martin; Hoppert, Maik; James, Barry; Gerada, Chris; Degano, Michele; Ilkhani, Mohammad Reza; Di Nardo, Mauro
Authors
Stephan Neus
Marcus Gärtner
Hans-Martin Eckel
Maik Hoppert
Barry James
Professor CHRISTOPHER GERADA CHRIS.GERADA@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTRICAL MACHINES
Professor MICHELE DEGANO Michele.Degano@nottingham.ac.uk
PROFESSOR OF ADVANCED ELECTRICAL MACHINES
Dr MOHAMMAD REZA ILKHANI MOHAMMAD.ILKHANI@NOTTINGHAM.AC.UK
SENIOR RESEARCH FELLOW
Mauro Di Nardo
Abstract
With the increasing electrical energy demands in aviation propulsion systems, the increase in the onboard generators’ power density is inevitable. During the flight, forces coming from the gearbox or gyroscopic forces generated by flight manoeuvres like take-off and landing can act on the generators’ bearings, which can lead to wear and fatigue in the bearings. Utilizing the radial force control concept in the electrical machine can relieve loads from the bearings that not only minimize the bearing losses but also increase bearing life. The objective of the MAGLEV project (Measurement and Analysis of Generator bearing Loads and Efficiency with Validation) is to study, demonstrate, and test a new class of high-speed generators with radial force control.
In this paper, design steps of this type of generator and its test rig are presented and the measurement methodology used for radial force control is explained. The concept is developed in an electrical machine and is validated on a test rig by measuring required parameters like shaft displacement, vibrations and bearing temperature. Additionally, the friction moment of each generator’s bearings is measured and validated in a separate test rig under comparable conditions to the bearing loads in the generator. Therefore, a novel approach to determine precisely the bearing friction in a radial load unit, rotatably supported by an additional needle bearing is used, which shows a good agreement with the calculated friction. Furthermore, new calculation methods for the operating behavior of cylindrical roller bearings with clearance are presented, which are utilized in the generator test rig.
Citation
Brecher, C., Neus, S., Gärtner, M., Eckel, H.-M., Hoppert, M., James, B., Gerada, C., Degano, M., Ilkhani, M. R., & Di Nardo, M. (2023). Design of an aircraft generator with radial force control [version 3; peer review: 2 approved]. Open Research Europe, Article 73. https://doi.org/10.12688/openreseurope.14684.2
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 17, 2023 |
Online Publication Date | Apr 17, 2023 |
Publication Date | Apr 17, 2023 |
Deposit Date | Nov 26, 2024 |
Publicly Available Date | Nov 27, 2024 |
Journal | Open Research Europe |
Electronic ISSN | 2732-5121 |
Publisher | F1000Research |
Peer Reviewed | Peer Reviewed |
Article Number | 73 |
DOI | https://doi.org/10.12688/openreseurope.14684.2 |
Keywords | Ocean Engineering; Safety, Risk, Reliability and Quality |
Public URL | https://nottingham-repository.worktribe.com/output/11756091 |
Publisher URL | https://open-research-europe.ec.europa.eu/articles/2-73 |
Files
Design of an aircraft generator with radial force control [version 3; peer review: 2 approved]
(5.5 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
The Friction of Radially Loaded Hybrid Spindle Bearings under High Speeds
(2023)
Journal Article
Design of an aircraft generator with radial force control.
(2023)
Journal Article
Surface Permanent Magnet Synchronous Machines: High Speed Design and Limits
(2022)
Journal Article
Practical Implementation and Associated Challenges of Integrated Torque Limiter
(2022)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search