Skip to main content

Research Repository

Advanced Search

Outputs (2)

2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios (2022)
Journal Article
Wang, M., Buticchi, G., Li, J., Gu, C., Gerada, D., Degano, M., Xu, L., Li, Y., Zhang, H., & Gerada, C. (2023). 2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios. IEEE Transactions on Transportation Electrification, 9(2), 2048-2058. https://doi.org/10.1109/TTE.2022.3210909

In high performance drive systems, wide bandwidth and reference tracking accuracy of current control loop are fundamental requirements. The conventional PI controller provides robustness against the machine parameter mismatching and zero steady-state... Read More about 2-DOF Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios.

Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios (2022)
Journal Article
Wang, M., Buticchi, G., Li, J., Gu, C., Gerada, D., Degano, M., Xu, L., Li, Y., Zhang, H., & Geradab, C. (2022). Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(2), https://doi.org/10.1109/jestpe.2022.3179184

Implementation of proportional-integral (PI) controllers in synchronous reference frame (SRF) is a well-established current control solution for electric drives. It is a general and effective method in digital control as long as the ratio of Sampling... Read More about Decoupled Discrete Current Control for AC Drives at Low Sampling-to-Fundamental Frequency Ratios.