Skip to main content

Research Repository

Advanced Search

Outputs (8)

Review on onshore and offshore large-scale seasonal hydrogen storage for electricity generation: Focusing on improving compression, storage, and roundtrip efficiency (2024)
Journal Article
Adams, M. J., Wadge, M. D., Sheppard, D., Stuart, A., & Grant, D. M. (2024). Review on onshore and offshore large-scale seasonal hydrogen storage for electricity generation: Focusing on improving compression, storage, and roundtrip efficiency. International Journal of Hydrogen Energy, 73, 95-111. https://doi.org/10.1016/j.ijhydene.2024.05.421

This article presents a comprehensive review of the current landscape and prospects of large-scale hydrogen storage technologies, with a focus on both onshore and offshore applications, and flexibility. Highlighting the evolving technological advance... Read More about Review on onshore and offshore large-scale seasonal hydrogen storage for electricity generation: Focusing on improving compression, storage, and roundtrip efficiency.

Research and development of hydrogen carrier based solutions for hydrogen compression and storage (2022)
Journal Article
Dornheim, M., Baetcke, L., Akiba, E., Ares, J. R., Autrey, T., Barale, J., Baricco, M., Brooks, K., Chalkiadakis, N., Charbonnier, V., Christensen, S., Bellosta Von Colbe, J., Costamagna, M., Dematteis, E., Fernandez, J. F., Genett, T., Grant, D., Heo, T. W., Hirscher, M., Hurst, K., …Zoulias, E. (2022). Research and development of hydrogen carrier based solutions for hydrogen compression and storage. Progress in Energy, 4(4), Article 042005. https://doi.org/10.1088/2516-1083/ac7cb7

Industrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy... Read More about Research and development of hydrogen carrier based solutions for hydrogen compression and storage.

Hydride-based thermal energy storage (2022)
Journal Article
Adams, M., Buckley, C. E., Busch, M., Bunzel, R., Felderhoff, M., Heo, T. W., Humphries, T., Jensen, T. R., Klug, J., Klug, K. H., Møller, K. T., Paskevicius, M., Peil, S., Peinecke, K., Sheppard, D. A., Stuart, A. D., Urbanczyk, R., Wang, F., Walker, G. S., Wood, B. C., …Grant, D. M. (2022). Hydride-based thermal energy storage. Progress in Energy, 4(3), Article 032008. https://doi.org/10.1088/2516-1083/ac72ea

The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction... Read More about Hydride-based thermal energy storage.

Modelling a kinetic deviation of the magnesium hydrogenation reaction at conditions close to equilibrium (2019)
Journal Article
Adams, M., Grant, D. M., Stuart, A., & Walker, G. S. (2019). Modelling a kinetic deviation of the magnesium hydrogenation reaction at conditions close to equilibrium. International Journal of Hydrogen Energy, 44(55), 29123-29131. https://doi.org/10.1016/j.ijhydene.2019.04.036

A model has been derived for the magnesium hydrogenation reaction at conditions close to equilibrium. The reaction mechanism involves an adsorption element, where the model is an extension of the Langmuir adsorption model. The concept of site availab... Read More about Modelling a kinetic deviation of the magnesium hydrogenation reaction at conditions close to equilibrium.

Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives (2019)
Journal Article
Bellosta von Colbe, J., Ares, J.-R., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D. M., Guzik, M. N., Jacob, I., Jensen, E. H., Jensen, T., Jepsen, J., Klassen, T., Lototskyy, M. V., Manickam, K., Montone, A., Puszkiel, J., Sartori, S., Sheppard, D. A., …Dornheim, M. (2019). Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy, 44(15), 7780-7808. https://doi.org/10.1016/j.ijhydene.2019.01.104

Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed.... Read More about Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives.

Evolution of catalyst coated atomised magnesium spheres: an alternative thermal storage medium for concentrated solar power applications (2017)
Journal Article
Mistry, P. C., Grant, D. M., Stuart, A. D., Manickam, K., & Walker, G. S. (in press). Evolution of catalyst coated atomised magnesium spheres: an alternative thermal storage medium for concentrated solar power applications. International Journal of Hydrogen Energy, 42(47), https://doi.org/10.1016/j.ijhydene.2017.09.095

Elevated temperature cycling studies were performed on two commercial gas atomised Mg spherical powders (average diameter of 26 μm and 30 μm) with magnetron sputtered catalysts (chromium, iron, vanadium and stainless steel) applied to their surfaces.... Read More about Evolution of catalyst coated atomised magnesium spheres: an alternative thermal storage medium for concentrated solar power applications.

Metal hydride hydrogen compression: recent advances and future prospects (2016)
Journal Article
Yartys, V. A., Lototskyy, M., Linkov, V., Grant, D., Stuart, A., Eriksen, J., Denys, R., & Bowman, R. C. (2016). Metal hydride hydrogen compression: recent advances and future prospects. Applied Physics A, 122(4), Article 415. https://doi.org/10.1007/s00339-016-9863-7

Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when... Read More about Metal hydride hydrogen compression: recent advances and future prospects.

Numerical study on a two-stage metal hydride hydrogen compression system (2015)
Journal Article
Gkanas, E. I., Grant, D. M., Stuart, A. D., Eastwick, C., Book, D., Nayebossadri, S., Pickering, L., & Walker, G. S. (in press). Numerical study on a two-stage metal hydride hydrogen compression system. Journal of Alloys and Compounds, 645(Supp1), Article S18-S22. https://doi.org/10.1016/j.jallcom.2015.03.123

A multistage Metal Hydride Hydrogen Compression (MHHC) system uses a combination of hydride materials in order to increase the total compression ratio, whilst maximizing the hydrogenation rate from the supply pressure at each stage. By solving the co... Read More about Numerical study on a two-stage metal hydride hydrogen compression system.