Skip to main content

Research Repository

Advanced Search

Outputs (27)

Long‐term zero‐tillage enhances the protection of soil carbon in tropical agriculture (2021)
Journal Article
Cooper, H. V., Sjögersten, S., Lark, R. M., Girkin, N. T., Vane, C. H., Calonego, J. C., Rosolem, C., & Mooney, S. J. (2021). Long‐term zero‐tillage enhances the protection of soil carbon in tropical agriculture. European Journal of Soil Science, 72(6), 2477-2492. https://doi.org/10.1111/ejss.13111

Contrasting tillage strategies not only affect the stability and formation of soil aggregates but also modify the concentration and thermostability of soil organic matter associated with soil aggregates. Understanding the thermostability and carbon r... Read More about Long‐term zero‐tillage enhances the protection of soil carbon in tropical agriculture.

A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics (2021)
Journal Article
Evans, C. D., Callaghan, N., Jaya, A., Grinham, A., Sjogersten, S., Page, S. E., Harrison, M., Kusin, K., Kho, L. K., Ledger, M., Evers, S., Mitchell, Z., Williamson, J., Radbourne, A., & Jovani-Sancho, A. J. (2021). A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics. Frontiers in Environmental Science, 9, Article 630752. https://doi.org/10.3389/fenvs.2021.630752

Peatlands are highly dynamic systems, able to accumulate carbon over millennia under natural conditions, but susceptible to rapid subsidence and carbon loss when drained. Short-term, seasonal and long-term peat surface elevation changes are closely l... Read More about A Novel Low-Cost, High-Resolution Camera System for Measuring Peat Subsidence and Water Table Dynamics.

To till or not to till in a temperate ecosystem? Implications for climate change mitigation (2021)
Journal Article
Cooper, H. V., Sjögersten, S., Lark, R. M., & Mooney, S. J. (2021). To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environmental Research Letters, 16(5), Article 054022. https://doi.org/10.1088/1748-9326/abe74e

The management of agricultural soils affect the composition and scale of their greenhouse gas (GHG) emissions. There is conflicting evidence on the effect of zero-tillage on carbon storage and GHG emissions. Here we assess the effects of zero-tillage... Read More about To till or not to till in a temperate ecosystem? Implications for climate change mitigation.

Expert assessment of future vulnerability of the global peatland carbon sink (2020)
Journal Article
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B., Yu, Z., …Wu, J. (2020). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, https://doi.org/10.1038/s41558-020-00944-0

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models th... Read More about Expert assessment of future vulnerability of the global peatland carbon sink.

Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions (2020)
Journal Article
Alskaf, K., Mooney, S. J., Sparkes, D. L., Wilson, P., & Sjögersten, S. (2021). Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 206, Article 104803. https://doi.org/10.1016/j.still.2020.104803

© 2020 Elsevier B.V. Reducing tillage intensity and plant residue retention have the potential to mitigate climate change by reducing soil greenhouse gas emissions. Few comparative studies have explored the effects of different tillage practices and... Read More about Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions.

Peat Properties, Dominant Vegetation Type and Microbial Community Structure in a Tropical Peatland (2020)
Journal Article
Girkin, N. T., Lopes dos Santos, R. A., Vane, C. H., Ostle, N., Turner, B. L., & Sjögersten, S. (2020). Peat Properties, Dominant Vegetation Type and Microbial Community Structure in a Tropical Peatland. Wetlands, 40, 1367–1377. https://doi.org/10.1007/s13157-020-01287-4

Tropical peatlands are an important carbon store and source of greenhouse gases, but the microbial component, particularly community structure, remains poorly understood. While microbial communities vary between tropical peatland land uses, and with... Read More about Peat Properties, Dominant Vegetation Type and Microbial Community Structure in a Tropical Peatland.

Author Correction: Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation (Nature Communications, (2020), 11, 1, (407), 10.1038/s41467-020-14298-w) (2020)
Journal Article
Cooper, H. V., Evers, S., Aplin, P., Crout, N., Bin Dahalan, M. P., & Sjogersten, S. (2020). Author Correction: Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation (Nature Communications, (2020), 11, 1, (407), 10.1038/s41467-020-14298-w). Nature Communications, 11, Article 1717. https://doi.org/10.1038/s41467-020-15178-z

The original version of this article contained an error in Fig. 2a, in which additional tick marks were added to the y-axis. This has been corrected in both the PDF and HTML versions of the article.

Root oxygen mitigates methane fluxes in tropical peatlands (2020)
Journal Article
Girkin, N., Vane, C. H., Turner, B., Ostle, N., & Sjögersten, S. (2020). Root oxygen mitigates methane fluxes in tropical peatlands. Environmental Research Letters, 15(6), Article 064013. https://doi.org/10.1088/1748-9326/ab8495

© 2020 The Author(s). Published by IOP Publishing Ltd. Tropical peatlands are a globally important source of methane, a potent greenhouse gas. Vegetation is critical in regulating fluxes, providing a conduit for emissions and regular carbon inputs. H... Read More about Root oxygen mitigates methane fluxes in tropical peatlands.

Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat (2019)
Journal Article
Girkin, N. T., Dhandapani, S., Evers, S., Ostle, N., Turner, B. L., & Sjӧgersten, S. (2020). Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry, 147(1), 87-97. https://doi.org/10.1007/s10533-019-00632-y

Tropical peatlands are a significant carbon store and contribute to global carbon dioxide (CO2) and methane (CH4) emissions. Tropical peatlands are threatened by both land use and climate change, including the alteration of regional precipitation pat... Read More about Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat.

Methane emissions from tree stems in neotropical peatlands (2019)
Journal Article
Sjögersten, S., Siegenthaler, A., Lopez, O. R., Aplin, P., Turner, B., & Gauci, V. (2020). Methane emissions from tree stems in neotropical peatlands. New Phytologist, 225(2), 769-781. https://doi.org/10.1111/nph.16178

Neotropical peatlands emit large amounts of methane (CH4) from the soil surface, but fluxes from tree stems in these ecosystems are unknown. In this study we investigated CH4 emissions from five tree species in two forest types common to neotropical... Read More about Methane emissions from tree stems in neotropical peatlands.