Skip to main content

Research Repository

Advanced Search

Outputs (5)

Modelling the impact of wastewater flows and management practices on antimicrobial resistance in dairy farms (2024)
Journal Article
Todman, H., Helliwell, R., King, L., Blanchard, A., Gray-Hammerton, C. J., Hooton, S. P., Baker, M., Margerison, J., Wilson, P., Dodd, C. E. R., Morris, C., Raman, S., Hudson, C., Kreft, J.-U., Hobman, J. L., Kypraios, T., & Stekel, D. J. (2024). Modelling the impact of wastewater flows and management practices on antimicrobial resistance in dairy farms. npj Antimicrobials & Resistance, 2(1), Article 13. https://doi.org/10.1038/s44259-024-00029-4

Dairy slurry is a major source of environmental contamination with antimicrobial resistant genes and bacteria. We developed mathematical models and conducted on-farm research to explore the impact of wastewater flows and management practices on antim... Read More about Modelling the impact of wastewater flows and management practices on antimicrobial resistance in dairy farms.

Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control (2022)
Journal Article
Baker, M., Williams, A. D., Hooton, S. P., Helliwell, R., King, E., Dodsworth, T., María Baena-Nogueras, R., Warry, A., Ortori, C. A., Todman, H., Gray-Hammerton, C. J., C. W. Pritchard, A., Iles, E., Cook, R., Emes, R. D., Jones, M. A., Kypraios, T., West, H., Barrett, D. A., Ramsden, S. J., …Stekel, D. J. (2022). Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control. Environment International, 169, Article 107516. https://doi.org/10.1016/j.envint.2022.107516

Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial res... Read More about Antimicrobial resistance in dairy slurry tanks: a critical point for measurement and control.

Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming (2022)
Journal Article
Peng, Z., Maciel-Guerra, A., Baker, M., Zhang, X., Hu, Y., Wang, W., Rong, J., Zhang, J., Xue, N., Barrow, P., Renney, D., Stekel, D., Williams, P., Liu, L., Chen, J., Li, F., & Dottorini, T. (2022). Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLoS Computational Biology, 18(3), Article e1010018. https://doi.org/10.1371/journal.pcbi.1010018

Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs... Read More about Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming.

A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer (2020)
Journal Article
Arya, S., Todman, H., Baker, M., Hooton, S., Millard, A., Kreft, J. U., Hobman, J. L., & Stekel, D. J. (2020). A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer. FEMS Microbiology Ecology, 96(7), https://doi.org/10.1093/femsec/fiaa100

© FEMS 2020. Antimicrobial resistance is a major global challenge. Of particular concern are mobilizable elements that can transfer resistance genes between bacteria, leading to pathogens with new combinations of resistance. To date, mathematical mod... Read More about A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer.

Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate (2016)
Journal Article
Baker, M., Hobman, J. L., Dodd, C. E., Ramsden, S. J., & Stekel, D. J. (2016). Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiology Ecology, 92(4), Article fiw040. https://doi.org/10.1093/femsec/fiw040

Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobi... Read More about Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate.