Skip to main content

Research Repository

Advanced Search

Outputs (5)

The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status (2023)
Journal Article
Yu, C., Mawodza, T., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Whalley, R., Hawkesford, M. J., Cooper, H., Zhang, X., Zhou, H., & Mooney, S. J. (2024). The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status. Rhizosphere, 29, Article 100838. https://doi.org/10.1016/j.rhisph.2023.100838

Soil structure is a crucial soil physical property that determines a soil's ability to support the growth and development of plants. Soil compaction modifies soil structure by reducing pore space between soil particles thereby leading to a denser soi... Read More about The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status.

Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype (2023)
Journal Article
Mawodza, T., Zhou, H., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Riche, A. B., Whalley, W. R., Hawkesford, M. J., Cooper, H. V., & Mooney, S. J. (2023). Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype. Rhizosphere, 27, Article 100770. https://doi.org/10.1016/j.rhisph.2023.100770

Despite extensive research over the last century concerning the application of nitrogen fertilizer to support the production of wheat (Triticum aestivum L.), our understanding on how this impacts on root growth in subsoils is limited. In this study,... Read More about Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype.

Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation (2021)
Journal Article
George, P. B., Fidler, D. B., Van Nostrand, J. D., Atkinson, J. A., Mooney, S. J., Creer, S., Griffiths, R. I., McDonald, J. E., Robinson, D. A., & Jones, D. L. (2021). Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation. Frontiers in Microbiology, 12, 1-16. https://doi.org/10.3389/fmicb.2021.735022

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the tr... Read More about Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation.

Field phenotyping for the future (2018)
Journal Article
Atkinson, J. A., Jackson, R. J., Bentley, A. R., Ober, E., & Wells, D. M. (in press). Field phenotyping for the future. Annual Plant Reviews Online, 1(3), 719-736. https://doi.org/10.1002/9781119312994.apr0651

Global agricultural production has to double by 2050 to meet the demands of an increasing population and the challenges of a changing climate. Plant phenomics (the characterisation of the full set of phenotypes of a given species) has been proposed a... Read More about Field phenotyping for the future.

Branching out in roots: uncovering form, function, and regulation (2014)
Journal Article
Atkinson, J. A., Rasmussen, A., Traini, R., Voss, U., Sturrock, C., Mooney, S. J., Wells, D. M., & Bennett, M. J. (2014). Branching out in roots: uncovering form, function, and regulation. Plant Physiology, 166(2), 538-550. https://doi.org/10.1104/pp.114.245423

Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postemb... Read More about Branching out in roots: uncovering form, function, and regulation.