High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields
(2025)
Journal Article
P Pound, M., Anthony Gordon Stuart, L., M Wells, D., A Atkinson, J., Castle-Green, S., & Walker, J. (in press). High-fidelity Wheat Plant Reconstruction using 3D Gaussian Splatting and Neural Radiance Fields. GigaScience, https://doi.org/10.1093/gigascience/giaf022
Outputs (32)
Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent mannerPearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.
We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.
A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat (2024)
Journal Article
Tsang, I., Thomelin, P., Ober, E. S., Rawsthorne, S., Atkinson, J. A., Wells, D. M., Percival-Alwyn, L., Leigh, F. J., & Cockram, J. (2024). A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat. Frontiers in Plant Science, 15, Article 1490502. https://doi.org/10.3389/fpls.2024.1490502Background: Root hairs are single-celled projections on root surfaces, critical for water and nutrient uptake. Here, we describe the first short root hair mutant in wheat (Triticum aestivum L.), identified in a mutagenized population and termed here... Read More about A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat.
Root Hairs: An under-explored target for sustainable cereal crop production (2024)
Journal Article
Tsang, I., Atkinson, J. A., Rawsthorne, S., Cockram, J., & Leigh, F. (2024). Root Hairs: An under-explored target for sustainable cereal crop production. Journal of Experimental Botany, 75(18), 5484–5500. https://doi.org/10.1093/jxb/erae275To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has repr... Read More about Root Hairs: An under-explored target for sustainable cereal crop production.
Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, 12, Article RP86169. https://doi.org/10.7554/elife.86169.3Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.
Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, https://doi.org/10.7554/eLife.86169Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.
The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status (2023)
Journal Article
Yu, C., Mawodza, T., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Whalley, R., Hawkesford, M. J., Cooper, H., Zhang, X., Zhou, H., & Mooney, S. J. (2024). The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status. Rhizosphere, 29, Article 100838. https://doi.org/10.1016/j.rhisph.2023.100838Soil structure is a crucial soil physical property that determines a soil's ability to support the growth and development of plants. Soil compaction modifies soil structure by reducing pore space between soil particles thereby leading to a denser soi... Read More about The effects of soil compaction on wheat seedling root growth are specific to soil texture and soil moisture status.
Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet (2023)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl milletSeedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet.
Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype (2023)
Journal Article
Mawodza, T., Zhou, H., Atkinson, B. S., Atkinson, J. A., Sturrock, C. J., Riche, A. B., Whalley, W. R., Hawkesford, M. J., Cooper, H. V., & Mooney, S. J. (2023). Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype. Rhizosphere, 27, Article 100770. https://doi.org/10.1016/j.rhisph.2023.100770Despite extensive research over the last century concerning the application of nitrogen fertilizer to support the production of wheat (Triticum aestivum L.), our understanding on how this impacts on root growth in subsoils is limited. In this study,... Read More about Soil structure has a greater effect on the rooting of wheat (Triticum aestivum L.) than nitrogen fertilisation rate or genotype.
Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice (2023)
Journal Article
Robson, J. K., Ferguson, J. N., McAusland, L., Atkinson, J. A., Tranchant-Dubreuil, C., Cubry, P., Sabot, F., Wells, D. M., Price, A. H., Wilson, Z. A., & Murchie, E. H. (2023). Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. Journal of Experimental Botany, 74(17), 5181-5197. https://doi.org/10.1093/jxb/erad239Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic ra... Read More about Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice.