Skip to main content

Research Repository

Advanced Search

Outputs (4)

Imaging the photophysics of organic semiconductors using polarisation-resolved and near-field optical spectroscopies (2025)
Journal Article
Kerfoot, J., James, T., Taniguchi, T., Watanabe, K., Beton, P. H., Rance, G. A., & George, M. W. (2025). Imaging the photophysics of organic semiconductors using polarisation-resolved and near-field optical spectroscopies. Optics Communications, Article 131945. https://doi.org/10.1016/j.optcom.2025.131945

Imaging techniques that enable the structure of organic semiconductors to be determined across length scales are essential for optimisation of their luminescence properties. In this study, we prepare well-ordered monolayer films of perylene-3,4,9,10-... Read More about Imaging the photophysics of organic semiconductors using polarisation-resolved and near-field optical spectroscopies.

Subnanometer-Wide Indium Selenide Nanoribbons (2023)
Journal Article
Cull, W. J., Skowron, S. T., Hayter, R., Stoppiello, C. T., Rance, G. A., Biskupek, J., Kudrynskyi, Z. R., Kovalyuk, Z. D., Allen, C. S., Slater, T. J. A., Kaiser, U., Patanè, A., & Khlobystov, A. N. (2023). Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 17(6), 6062-6072. https://doi.org/10.1021/acsnano.3c00670

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In th... Read More about Subnanometer-Wide Indium Selenide Nanoribbons.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., Kudrynskyi, Z., Balanov, A. G., Greenaway, M. T., Wildman, R. D., Hague, R., Tuck, C., Fromhold, T. M., & Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

A low-friction graphene nanoplatelets film from suspension high velocity oxy-fuel thermal spray (2019)
Journal Article
Venturi, F., Rance, G. A., Thomas, J., & Hussain, T. (2019). A low-friction graphene nanoplatelets film from suspension high velocity oxy-fuel thermal spray. AIP Advances, 9(2), 025216. https://doi.org/10.1063/1.5089021

The addition of graphene-based nanomaterials is known to improve the tribology properties of materials by lowering the coefficient of friction and reducing wear. The covering of small areas with thin graphene-based films is routinely carried out; how... Read More about A low-friction graphene nanoplatelets film from suspension high velocity oxy-fuel thermal spray.