Skip to main content

Research Repository

Advanced Search

Outputs (20)

Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies (2024)
Journal Article
Wang, F., Cooper, N., He, Y., Hopton, B., Johnson, D., Zhao, P., Tuck, C. J., Hague, R., Fromhold, T. M., Wildman, R., Turyanska, L., & Hackermueller, L. (2025). Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies. Quantum Science and Technology, 10(1), Article 015019. https://doi.org/10.1088/2058-9565/ad8678

Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digit... Read More about Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies.

Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR (2024)
Journal Article
Austin, J. S., Xiao, W., Wang, F., Cottam, N. D., Rivers, G., Ward, E. B., …James, T. S. (2024). Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. Journal of Materials Chemistry C, https://doi.org/10.1039/D4TC01917B

Colloidal low-dimensional photo-sensitive nanomaterials have attracted significant interest for optoelectronic device applications where inkjet printing offers a high accuracy and low waste route for their deposition on silicon-based, as well as flex... Read More about Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR.

Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., …Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., James, T. S., Beton, P. H., Trindade, G. F., Zhou, Y., Tuck, C. J., Hague, R., Makarovsky, O., & Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/D2NR06429D

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors (2022)
Journal Article
Cottam, N. D., Austin, J. S., Zhang, C., Patanè, A., Escoffier, W., Goiran, M., …Makarovsky, O. (2023). Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors. Advanced Electronic Materials, 9(2), Article 2200995. https://doi.org/10.1002/aelm.202200995

Stable all-inorganic CsPbX3 perovskite nanocrystals (PNCs) with high optical yield can be used in combination with graphene as photon sensors with high responsivity (up to 106 A W−1) in the VIS-UV range. The performance of these perovskite/graphene f... Read More about Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors.

CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes (2021)
Journal Article
Ma, Z., Li, X., Zhang, C., Turyanska, L., Lin, S., Xi, X., …Zhao, L. (2021). CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes. ACS Applied Nano Materials, 4(8), 8383-8389. https://doi.org/10.1021/acsanm.1c01604

The modulation bandwidth of white light emitting diodes (LEDs) is an important factor in visible light communication (VLC) system, which is mainly limited by the down-conversion materials. The broad spectrum and long lifetime of conventional light co... Read More about CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes.

Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals (2021)
Journal Article
Cottam, N. D., Zhang, C., Wildman, J. L., Patanè, A., Turyanska, L., & Makarovsky, O. (2021). Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 9(13), Article 2100104. https://doi.org/10.1002/adom.202100104

Inorganic perovskite nanocrystals (NCs) have demonstrated a number of unique optical and electronic properties for optoelectronic applications. However, the physical properties of these nanostructures, such as the dynamics of charge carriers on diffe... Read More about Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells (2019)
Journal Article
Quilles Junior, J. C., Bradshaw, T. D., Turyanska, L., Carlos, F. D. R. R., Montanari, A., Leitão, A., …Bradshaw, T. D. (2019). Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells. RSC Advances, 9(63), 36699-36706. https://doi.org/10.1039/c9ra07161j

Cysteine proteases play a key role in tumorigenesis causing protein degradation and promoting invasive tumour growth. Cathepsin L is overexpressed in cancer cells and could provide a specific target for delivery of anticancer agents. We encapsulated... Read More about Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells.