Skip to main content

Research Repository

Advanced Search

Outputs (3)

OpenSimRoot: widening the scope and application of root architectural models (2017)
Journal Article
Postma, J. A., Kuppe, C., Owen, M. R., Mellor, N. L., Griffiths, M., Bennett, M. J., Lynch, J. P., & Watt, M. (2017). OpenSimRoot: widening the scope and application of root architectural models. New Phytologist, 215(3), 1274-1286. https://doi.org/10.1111/nph.14641

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust OpenSimRoot is an open-source, functional–structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the b... Read More about OpenSimRoot: widening the scope and application of root architectural models.

Theoretical approaches to understanding root vascular patterning: a consensus between recent models (2016)
Journal Article
Mellor, N., Adibi, M., El-Showk, S., De Rybel, B., King, J., Mähönen, A. P., Weijers, D., & Bishopp, A. (in press). Theoretical approaches to understanding root vascular patterning: a consensus between recent models. Journal of Experimental Botany, https://doi.org/10.1093/jxb/erw410

The root vascular tissues provide an excellent system for studying organ patterning, as the specification of these tissues signals a transition from radial symmetry to bisymmetric patterns. The patterning process is controlled by the combined action... Read More about Theoretical approaches to understanding root vascular patterning: a consensus between recent models.

Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis (2016)
Journal Article
Mellor, N. L., Band, L. R., Pěnčík, A., Novak, O., Rashed, A., Holman, T., Wilson, M. H., Voss, U., Bishopp, A., King, J. R., Ljung, K., Bennett, M. J., & Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. https://doi.org/10.1073/pnas.1604458113

Auxin is a key hormone regulating plant growth and development. We combine experiments and mathematical modeling to reveal how auxin levels are maintained via feedback regulation of genes encoding key metabolic enzymes. We describe how regulation of... Read More about Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.