Skip to main content

Research Repository

Advanced Search

Outputs (55)

Type II singularities on complete non-compact Yamabe flow (2020)
Journal Article
Choi, B., Daskalopoulos, P., & King, J. (2021). Type II singularities on complete non-compact Yamabe flow. Journal für die reine und angewandte Mathematik, 2021(772), 83-119. https://doi.org/10.1515/crelle-2020-0032

This work concerns with the existence and detailed asymptotic analysis of Type II singularities for solutions to complete non-compact confor-mally flat Yamabe flow with cylindrical behavior at infinity. We provide the specific blow-up rate of the max... Read More about Type II singularities on complete non-compact Yamabe flow.

Type II Singularities on complete non-compact Yamabe flow (2020)
Journal Article
Choi, B., Daskalopoulos, P., & King, J. (2021). Type II Singularities on complete non-compact Yamabe flow. Journal für die reine und angewandte Mathematik, 2021(772), 83-119. https://doi.org/10.1515/crelle-2020-0032

This work concerns with the existence and detailed asymptotic analysis of Type II singularities for solutions to complete non-compact confor-mally flat Yamabe flow with cylindrical behavior at infinity. We provide the specific blow-up rate of the max... Read More about Type II Singularities on complete non-compact Yamabe flow.

Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay (2020)
Journal Article
Dalwadi, M. P., Orol, D., Walter, F., Minton, N. P., King, J. R., & Kovács, K. (2020). Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay. Journal of Mathematical Biology, 81(2), 649-690. https://doi.org/10.1007/s00285-020-01524-8

We investigate how to characterize the kinetic parameters of an aminotransaminase using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises for two reasons. First, one of the products of the auxiliary enzyme is a substrat... Read More about Using singular perturbation theory to determine kinetic parameters in a non-standard coupled enzyme assay.

Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions (2020)
Journal Article
Grigoriou, S., Kugler, P., Kulcinskaja, E., Walter, F., King, J., Hill, P., Wendisch, V. F., & O'Reilly, E. (2020). Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions. Green Chemistry, 22(13), 4128-4132. https://doi.org/10.1039/d0gc01432j

The development of biocatalytic routes for the synthesis of chiral amines starting from achiral building blocks is highly desirable. Here, we report a self-sufficient whole-cell system for the conversion of a model ketone to the corresponding cyclic... Read More about Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions.

Mathematical model to determine the effect of a sub-glycocalyx space (2020)
Journal Article
Dalwadi, M. P., Dalwadi, M. P., King, J. R., Dyson, R. J., & Arkill, K. P. (2020). Mathematical model to determine the effect of a sub-glycocalyx space. Physical Review Fluids, 5(4), Article 043103. https://doi.org/10.1103/physrevfluids.5.043103

We consider the drainage of blood plasma across the capillary wall, focusing on the flow through the endothelial glycocalyx layer that coats the luminal surface of vascular endothelial cells. We investigate how the presence of a sub-glycocalyx space... Read More about Mathematical model to determine the effect of a sub-glycocalyx space.

Moving boundary problems for quasi-steady conduction limited melting (2019)
Journal Article
Morrow, L. C., King, J. R., Moroney, T. J., & Mccue, S. (2019). Moving boundary problems for quasi-steady conduction limited melting. SIAM Journal on Applied Mathematics, 79(5), 2107-2131. https://doi.org/10.1137/18M123445X

The problem of melting a crystal dendrite is modelled as a quasi-steady Stefan 5 problem. By employing the Baiocchi transform, asymptotic results are derived in the limit that 6 the crystal melts completely, extending previous results that hold for a... Read More about Moving boundary problems for quasi-steady conduction limited melting.

Mathematical modelling of contact dermatitis from nickel and chromium (2019)
Journal Article
Ward, J. P., Franks, S. J., Tindall, M. J., King, J. R., Curtis, A., & Evans, G. S. (2019). Mathematical modelling of contact dermatitis from nickel and chromium. Journal of Mathematical Biology, 79(2), 595-630. https://doi.org/10.1007/s00285-019-01371-2

Dermal exposure to metal allergens can lead to irritant and allergic contact dermatitis (ACD). In this paper we present a mathematical model of the absorption of metal ions, hexavalent chromium and nickel, into the viable epidermis and compare the lo... Read More about Mathematical modelling of contact dermatitis from nickel and chromium.

Gsmodutils: a python based framework for test-driven genome scale metabolic model development (2019)
Journal Article
Gilbert, J., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., Hodgman, C., Minton, N., & Twycross, J. (2019). Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 35(18), 3397-3403. https://doi.org/10.1093/bioinformatics/btz088

© 2019 The Author(s) 2019. Published by Oxford University Press. Motivation: Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-stat... Read More about Gsmodutils: a python based framework for test-driven genome scale metabolic model development.

A tractable mathematical model for tissue growth (2019)
Journal Article
Eyles, J., King, J. R., & Styles, V. (2019). A tractable mathematical model for tissue growth. Interfaces and Free Boundaries, 21(4), 463-493. https://doi.org/10.4171/IFB/428

© European Mathematical Society 2019 Using formal asymptotic methods we derive a free boundary problem representing one of the simplest mathematical descriptions of the growth and death of a tumour or other biological tissue. The mathematical model t... Read More about A tractable mathematical model for tissue growth.

Gsmodutils: A python based framework for test-driven genome scale metabolic model development (2018)
Other
Gilbert, J. P., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., Hodgman, C., Minton, N., & Twycross, J. (2018). Gsmodutils: A python based framework for test-driven genome scale metabolic model development

Motivation Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-state behaviour. Constraints based models of this form can include tho... Read More about Gsmodutils: A python based framework for test-driven genome scale metabolic model development.