Skip to main content

Research Repository

Advanced Search

Outputs (26)

Enflurane Additive for Sodium Negative Electrodes (2022)
Journal Article
Akkisetty, B., Dimogiannis, K., Searle, J., Rogers, D., Newton, G. N., & Johnson, L. R. (2022). Enflurane Additive for Sodium Negative Electrodes. ACS Applied Materials and Interfaces, 14(32), 36551-36556. https://doi.org/10.1021/acsami.2c06502

Development of sodium anodes, both hard carbon (HC) and metallic, is dependent on the discovery of electrolyte formations and additives able to stabilize the interphase and support Na+ transport. Halogen salt additives are known to lower the energy b... Read More about Enflurane Additive for Sodium Negative Electrodes.

Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge (2022)
Journal Article
Jovanov, Z. P., Lutz, L., Lozano, J. G., Holc, C., Gao, X., Grimaud, A., Tarascon, J., Chen, Y., Johnson, L. R., & Bruce, P. G. (2022). Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge. Batteries & Supercaps, Article e202200055. https://doi.org/10.1002/batt.202200055

The sodium-air battery offers a sustainable, high-energy alternative to lithium-ion batteries. Discharge in the cell containing glyme-based electrolytes can lead to formation of large cubic NaO2 particles via a solution-precipitation mechanism. While... Read More about Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodium-Oxygen Battery Discharge.

Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery (2022)
Journal Article
Dong, S., Yang, S., Chen, Y., Kuss, C., Cui, G., Johnson, L. R., Gao, X., & Bruce, P. G. (2022). Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 6(1), 185-192. https://doi.org/10.1016/j.joule.2021.12.012

Investigation of lithium-oxygen cells on discharge using a mixture of 16O16O and 18O18O gases, showed that O–O bond cleavage occurs during disproportionation of LiO2 to O2 and Li2O2, detected by the presence of isotopic 16O18O. The formation of singl... Read More about Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery.

Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes (2022)
Journal Article
Jordan, J. W., Cameron, J. M., Lowe, G. A., Rance, G. A., Fung, K. L. Y., Johnson, L. R., Walsh, D. A., Khlobystov, A. N., & Newton, G. N. (2022). Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angewandte Chemie International Edition, 61(8), Article e202115619. https://doi.org/10.1002/anie.202115619

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-... Read More about Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes.

Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes (2022)
Journal Article
Jordan, J. W., Cameron, J. M., Lowe, G. A., Rance, G. A., Fung, K. L. Y., Johnson, L. R., Walsh, D. A., Khlobystov, A. N., & Newton, G. N. (2022). Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angewandte Chemie, 134(8), Article e202115619. https://doi.org/10.1002/ange.202115619

We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-... Read More about Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes.

Electrochemistry of redox-active molecules confined within narrow carbon nanotubes (2021)
Journal Article
Jordan, J. W., Townsend, W. J. V., Johnson, L. R., Walsh, D. A., Newton, G. N., & Khlobystov, A. N. (2021). Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chemical Society Reviews, 50(19), 10895-10916. https://doi.org/10.1039/d1cs00478f

Confinement of molecules within nanocontainers can be a powerful tool for controlling the states of guest-molecules, tuning properties of host-nanocontainers and triggering the emergence of synergistic properties within the host–guest systems. Among... Read More about Electrochemistry of redox-active molecules confined within narrow carbon nanotubes.

Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes (2021)
Journal Article
Holc, C., Dimogiannis, K., Hopkinson, E., & Johnson, L. R. (2021). Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes. ACS Applied Materials and Interfaces, 13(25), 29708-29713. https://doi.org/10.1021/acsami.1c06130

Magnesium (Mg) batteries are a potential beyond lithium-ion technology but currently suffer from poor cycling performance, partly due to the interphase formed when magnesium electrodes react with electrolytes. The use of magnesium bis(trifluoromethan... Read More about Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes.

Molecular redox species for next-generation batteries (2021)
Journal Article
Cameron, J. M., Holc, C., Kibler, A. J., Peake, C. L., Walsh, D. A., Newton, G. N., & Johnson, L. R. (2021). Molecular redox species for next-generation batteries. Chemical Society Reviews, 50(10), 5863-5883. https://doi.org/10.1039/d0cs01507e

This Tutorial Review describes how the development of dissolved redox-active molecules is beginning to unlock the potential of three of the most promising ‘next-generation’ battery technologies – lithium–air, lithium–sulfur and redox-flow batteries.... Read More about Molecular redox species for next-generation batteries.

2021 roadmap on lithium sulfur batteries (2021)
Journal Article
Robinson, J. B., Xi, K., Kumar, R. V., Ferrari, A. C., Au, H., Titirici, M.-M., Parra-Puerto, A., Kucernak, A., Fitch, S. D. S., Garcia-Araez, N., Brown, Z. L., Pasta, M., Furness, L., Kibler, A. J., Walsh, D. A., Johnson, L. R., Holc, C., Newton, G. N., Champness, N. R., Markoulidis, F., …Shearing, P. R. (2021). 2021 roadmap on lithium sulfur batteries. Journal of Physics: Energy, 3(3), Article 031501. https://doi.org/10.1088/2515-7655/abdb9a

Batteries that extend performance beyond the intrinsic limits of Li-ion batteries are among the most important developments required to continue the revolution promised by electrochemical devices. Of these next-generation batteries, lithium sulfur (L... Read More about 2021 roadmap on lithium sulfur batteries.