Skip to main content

Research Repository

Advanced Search

Outputs (14)

Quantum Chemical Characterization of Rotamerism in Thio-Michael Additions for Targeted Covalent Inhibitors (2024)
Journal Article
Chaudhuri, S., M. Rogers, D., J. Hayes, C., Inzani, K., & D. Hirst, J. (2024). Quantum Chemical Characterization of Rotamerism in Thio-Michael Additions for Targeted Covalent Inhibitors. Journal of Chemical Information and Modeling, 64(19), 7687-7697. https://doi.org/10.1021/acs.jcim.4c01379

Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy and is a severe condition with no treatment currently available. Recently, small-molecule ligands have been developed as targeted covalent inhibitors that have some s... Read More about Quantum Chemical Characterization of Rotamerism in Thio-Michael Additions for Targeted Covalent Inhibitors.

An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins (2024)
Journal Article
Rogers, D. M., Do, H., & Hirst, J. D. (2024). An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins. Journal of Physical Chemistry B, 128(30), 7350-7361. https://doi.org/10.1021/acs.jpcb.4c02582

We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to ob... Read More about An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins.

Modeling interactions between rubidium atom and magnetometer cell wall molecules (2024)
Journal Article
David, G., Wibowo-Teale, A. M., & Rogers, D. M. (2024). Modeling interactions between rubidium atom and magnetometer cell wall molecules. Journal of Chemical Physics, 161(1), Article 014301. https://doi.org/10.1063/5.0201903

Magnetometer cell wall coat molecules play an important role in preserving the lifetime of pumped alkali metal atoms for use in magnetometers that are capable of measuring very small magnetic fields. The goal of this study is to help rationalize the... Read More about Modeling interactions between rubidium atom and magnetometer cell wall molecules.

A facile one step route that introduces functionality to polymer powders for laser sintering (2024)
Journal Article
Krumins, E., Crawford, L. A., Rogers, D. M., Machado, F., Taresco, V., East, M., Irving, S. H., Fowler, H. R., Jiang, L., Starr, N., Parmenter, C. D., Kortsen, K., Cuzzucoli Crucitti, V., Avery, S. V., Tuck, C. J., & Howdle, S. M. (2024). A facile one step route that introduces functionality to polymer powders for laser sintering. Nature Communications, 15(1), Article 3137. https://doi.org/10.1038/s41467-024-47376-4

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the... Read More about A facile one step route that introduces functionality to polymer powders for laser sintering.

Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets (2023)
Journal Article
Douaki, A., Stuber, A., Hengsteler, J., Momotenko, D., Rogers, D. M., Rocchia, W., Hirst, J. D., Nakatsuka, N., & Garoli, D. (2023). Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets. Chemical Communications, 59(99), 14713-14716. https://doi.org/10.1039/d3cc04334g

Aptamer-based sensing of small molecules such as dopamine and serotonin in the brain, requires characterization of the specific aptamer sequences in solutions mimicking the in vivo environment with physiological ionic concentrations. In particular, d... Read More about Theoretical analysis of divalent cation effects on aptamer recognition of neurotransmitter targets.

Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde (2023)
Journal Article
Pinto, J., Weilhard, A., Norman, L. T., Lodge, R. W., Rogers, D. M., Gual, A., Cano, I., Khlobystov, A. N., Licence, P., & Alves Fernandes, J. (2023). Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science and Technology, https://doi.org/10.1039/d3cy00289f

In this work, we demonstrate that the synergistic effect of PdAu nanoparticles (NPs) in hydrogenation reactions is not only related to high activity but also to their stability when compared to Pd mono-metallic NPs. To demonstrate this, a series of m... Read More about Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde.

Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation (2023)
Journal Article
Griffiths, R. C., Smith, F. R., Li, D., Wyatt, J., Rogers, D. M., Long, J. E., Cusin, L. M. L., Tighe, P. J., Layfield, R., Hirst, J. D., Muller, M. M., & Mitchell, N. (2023). Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation. Chemistry - A European Journal, 29(16), Article e202202503. https://doi.org/10.1002/chem.202202503

The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, t... Read More about Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation.

Electronic circular dichroism of proteins computed using a diabatisation scheme (2022)
Journal Article
Rogers, D. M., Do, H., & Hirst, J. D. (2023). Electronic circular dichroism of proteins computed using a diabatisation scheme. Molecular Physics, 121(7-8), Article e2133748. https://doi.org/10.1080/00268976.2022.2133748

Circular dichroism (CD) spectroscopy is a powerful technique employed to study the structure of biomolecules. More accurate calculation of CD from first principles will aid both computational and experimental studies of protein structure and dynamics... Read More about Electronic circular dichroism of proteins computed using a diabatisation scheme.

Free energy perturbation calculations of tetrahydroquinolines complexed to the first bromodomain of BRD4 (2022)
Journal Article
Silva, A. F., Guest, E. E., Falcone, B. N., Pickett, S. D., Rogers, D. M., & Hirst, J. D. (2023). Free energy perturbation calculations of tetrahydroquinolines complexed to the first bromodomain of BRD4. Molecular Physics, 121(9-10), Article e2124201. https://doi.org/10.1080/00268976.2022.2124201

Alchemical free energy perturbation (FEP) theory is widely used nowadays to calculate protein–ligand binding energies, often in support of drug discovery endeavours. We assess the accuracy and sensitivity of absolute FEP binding energies with respect... Read More about Free energy perturbation calculations of tetrahydroquinolines complexed to the first bromodomain of BRD4.

Enflurane Additive for Sodium Negative Electrodes (2022)
Journal Article
Akkisetty, B., Dimogiannis, K., Searle, J., Rogers, D., Newton, G. N., & Johnson, L. R. (2022). Enflurane Additive for Sodium Negative Electrodes. ACS Applied Materials and Interfaces, 14(32), 36551-36556. https://doi.org/10.1021/acsami.2c06502

Development of sodium anodes, both hard carbon (HC) and metallic, is dependent on the discovery of electrolyte formations and additives able to stabilize the interphase and support Na+ transport. Halogen salt additives are known to lower the energy b... Read More about Enflurane Additive for Sodium Negative Electrodes.