Skip to main content

Research Repository

Advanced Search

Outputs (5)

Nonoptimal component placement of the human connectome supports variable brain dynamics (2022)
Journal Article
Hayward, C. J., Huo, S., Chen, X., & Kaiser, M. (2023). Nonoptimal component placement of the human connectome supports variable brain dynamics. Network Neuroscience, 7(1), 254-268. https://doi.org/10.1162/netn_a_00282

Neural systems are shaped by multiple constraints, balancing region communication with the cost of establishing and maintaining physical connections. It has been suggested that the lengths of neural projections be minimized, reducing their spatial an... Read More about Nonoptimal component placement of the human connectome supports variable brain dynamics.

Time-limited self-sustaining rhythms and state transitions in brain networks (2022)
Journal Article
Huo, S., Zou, Y., Kaiser, M., & Liu, Z. (2022). Time-limited self-sustaining rhythms and state transitions in brain networks. Physical Review Research, 4(2), Article 023076. https://doi.org/10.1103/PhysRevResearch.4.023076

Resting-state networks usually show time-limited self-sustaining oscillatory patterns (TLSOPs) with the characteristic features of multiscaled rhythms and frequent switching between different rhythms, but the underlying mechanisms remain unclear. To... Read More about Time-limited self-sustaining rhythms and state transitions in brain networks.

Dynamic reconfiguration of macaque brain networks during natural vision (2021)
Journal Article
Ortiz-Rios, M., Balezeau, F., Haag, M., Schmid, M. C., & Kaiser, M. (2021). Dynamic reconfiguration of macaque brain networks during natural vision. NeuroImage, 244, Article 118615. https://doi.org/10.1016/j.neuroimage.2021.118615

Natural vision engages a wide range of higher-level regions that integrate visual information over the large-scale brain network. How interareal connectivity reconfigures during the processing of ongoing natural visual scenes and how these dynamic fu... Read More about Dynamic reconfiguration of macaque brain networks during natural vision.

BioDynaMo: a modular platform for high-performance agent-based simulation (2021)
Journal Article
Breitwieser, L., Hesam, A., de Montigny, J., Vavourakis, V., Iosif, A., Jennings, J., Kaiser, M., Manca, M., Di Meglio, A., & Al-Ars, Z. (2022). BioDynaMo: a modular platform for high-performance agent-based simulation. Bioinformatics, 38(2), 453-460. https://doi.org/10.1093/bioinformatics/btab649

Motivation

Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulation platforms do not always take full advantage of modern hardware and often have a field-specific software design.

Resul... Read More about BioDynaMo: a modular platform for high-performance agent-based simulation.

Connectivity within regions characterizes epilepsy duration and treatment outcome (2021)
Journal Article
Chen, X., Wang, Y., Kopetzky, S. J., Butz‐Ostendorf, M., & Kaiser, M. (2021). Connectivity within regions characterizes epilepsy duration and treatment outcome. Human Brain Mapping, 42(12), 3777-3791. https://doi.org/10.1002/hbm.25464

Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in particular at early disease stages, remains a challenge. Currently, the whole-brain structural connectomes are analyzed based on coarse parcellations (up to 1,000 nodes... Read More about Connectivity within regions characterizes epilepsy duration and treatment outcome.