Skip to main content

Research Repository

Advanced Search

Outputs (37)

Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide (2017)
Journal Article
Zhang, H., Luo, X., Shi, K., Wu, T., He, F., Zhou, S., Chen, G. Z., & Peng, C. (2017). Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide. ChemSusChem, 10(17), 3352-3357. https://doi.org/10.1002/cssc.201700950

A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel productio... Read More about Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO2 Capture (2017)
Journal Article
Liu, X., Sun, Y., Liu, J., Sun, C., Liu, H., Xue, Q., Smith, E., & Snape, C. (2017). Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO2 Capture. ACS Applied Materials and Interfaces, 9(32), 26826-26839. https://doi.org/10.1021/acsami.7b06665

© 2017 American Chemical Society. Novel hierarchically structured microporous biocarbons with exceptionally high capacities for CO2 capture have been synthesized from the abundant agricultural waste of rice husk (RH), using a facile methodology that... Read More about Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO2 Capture.

Wet and dry flexural high cycle fatigue behaviour of fully bioresorbable glass fibre composites: In-situ polymerisation versus laminate stacking (2017)
Journal Article
Chen, M., Lu, J., Felfel, R. M., Parsons, A. J., Irvine, D. J., Rudd, C. D., & Ahmed, I. (2017). Wet and dry flexural high cycle fatigue behaviour of fully bioresorbable glass fibre composites: In-situ polymerisation versus laminate stacking. Composites Science and Technology, 150, 1-15. https://doi.org/10.1016/j.compscitech.2017.07.006

Fully bioresorbable phosphate based glass fibre reinforced polycaprolactone (PCL/PGF) composites are potentially excellent candidates to address current issues experienced with use of metal implants for hard tissue repair, such as stress shielding ef... Read More about Wet and dry flexural high cycle fatigue behaviour of fully bioresorbable glass fibre composites: In-situ polymerisation versus laminate stacking.

3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release (2017)
Journal Article
Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R. D., Ashcroft, I., Gellert, P. R., & Roberts, C. J. (2017). 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled Release, 261, 207-215. https://doi.org/10.1016/j.jconrel.2017.06.025

A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet pri... Read More about 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.

Mechanisms and Designs of Asymmetrical Electrochemical Capacitors (2017)
Journal Article
Akinwolemiwa, B., Wei, C., & Chen, G. Z. (2017). Mechanisms and Designs of Asymmetrical Electrochemical Capacitors. Electrochimica Acta, 247, 344-357. https://doi.org/10.1016/j.electacta.2017.06.088

© 2017 Elsevier Ltd Different charge storage mechanisms in electrochemical energy storage devices are reviewed, including non-Faradaic capacitive, Faradaic capacitive, Faradaic non-capacitive, and their combinations. Specifically, Faradaic capacitive... Read More about Mechanisms and Designs of Asymmetrical Electrochemical Capacitors.

Improving spatial predictability of petroleum resources within the Central Tertiary Basin, Spitsbergen: a geochemical and petrographic study of coals from the eastern and western coalfields (2017)
Journal Article
Uguna, J. O., Carr, A. D., Marshall, C., Large, D., Meredith, W., Jochmann, M., Snape, C. E., Vane, C. H., Jensen, M. A., & Olaussen, S. (2017). Improving spatial predictability of petroleum resources within the Central Tertiary Basin, Spitsbergen: a geochemical and petrographic study of coals from the eastern and western coalfields. International Journal of Coal Geology, 179, 278-294. https://doi.org/10.1016/j.coal.2017.06.007

Central Tertiary Basin (CTB) coals from a variety of palaeogeographic conditions within the Longyear and Verkhnij seams, were sampled to assess the relationship between the petroleum present, the remaining generation potential and coal geochemistry i... Read More about Improving spatial predictability of petroleum resources within the Central Tertiary Basin, Spitsbergen: a geochemical and petrographic study of coals from the eastern and western coalfields.

Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates (2017)
Journal Article
Campbell, J., & Tokay, B. (2017). Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates. Microporous and Mesoporous Materials, 251, https://doi.org/10.1016/j.micromeso.2017.05.058

Mg-MOF-74 is a metal organic framework with the highest CO2 adsorption capacity of any porous material. Therefore, it has been suggested for CO2 separations as both an adsorbent and incorporated into membranes. Design of the Mg-MOF-74 crystal morphol... Read More about Controlling the size and shape of Mg-MOF-74 crystals to optimise film synthesis on alumina substrates.

Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing (2017)
Journal Article
Batchelor, A., Buttress, A., Jones, D., Katrib, J., Way, D., Chenje, T., Stoll, D., Dodds, C., & Kingman, S. (2017). Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing. Minerals Engineering, 111, 5-24. https://doi.org/10.1016/j.mineng.2017.05.003

© 2017 A pilot scale microwave treatment system capable of treating 10–150t/h of material at 10–200kW was designed, constructed and commissioned in order to understand the engineering challenges of microwave-induced fracture of ores at scale and gene... Read More about Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing.

Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in the SiO2-CaO-MgO-Al2O3 molten slag at 1723 K (2017)
Journal Article
Gao, Y., Yang, C., Zhang, C., Qin, Q., & Chen, G. Z. (2017). Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in the SiO2-CaO-MgO-Al2O3 molten slag at 1723 K. Physical Chemistry Chemical Physics, 19(24), 15876-15890. https://doi.org/10.1039/C7CP01945A

Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges convention... Read More about Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in the SiO2-CaO-MgO-Al2O3 molten slag at 1723 K.

Synthesis and applications of MOF-derived porous nanostructures (2017)
Journal Article
Yap, M. H., Fow, K. L., & Chen, G. Z. (2017). Synthesis and applications of MOF-derived porous nanostructures. Green Energy and Environment, 2(3), 218-245. https://doi.org/10.1016/j.gee.2017.05.003

Metal organic frameworks (MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excelle... Read More about Synthesis and applications of MOF-derived porous nanostructures.