Skip to main content

Research Repository

Advanced Search

A Population-based PBPK Model for the Prediction of Time-Variant Bile Salt Disposition within GI Luminal Fluids (2020)
Journal Article
Stamatopoulos, K., Pathak, S., Marciani, L., & Turner, D. (2020). A Population-based PBPK Model for the Prediction of Time-Variant Bile Salt Disposition within GI Luminal Fluids. Molecular Pharmaceutics, 17(4), 1310-1323. https://doi.org/10.1021/acs.molpharmaceut.0c00019

In vivo studies have shown cyclic bile salt (BS) outputs during fasting whereas higher amounts have been observed in fed states. This leads to fluctuations of intestinal BS concentrations ([BS]) that can affect the rate and extent of absorption of li... Read More about A Population-based PBPK Model for the Prediction of Time-Variant Bile Salt Disposition within GI Luminal Fluids.

Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments (2019)
Journal Article
Phan, H., Minut, R. I., McCrorie, P., Vasey, C., Larder, R. R., Krumins, E., …Pearce, A. K. (2019). Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments. Journal of Polymer Science Part A: Polymer Chemistry, 57(17), 1801-1810. https://doi.org/10.1002/pola.29451

The production of well-defined and reproducible poly-meric nanoparticles (NPs), in terms of size and stability in biological environments, is undoubtedly a fundamental challenge in the formulation of novel and more effective nanomedicines. The adopti... Read More about Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments.



;