
Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014



Abstract—Hyper-heuristic approaches aim to automate

heuristic design in order to solve multiple problems instead of

designing tailor-made methodologies for individual problems.

Hyper-heuristics accomplish this through a high level heuristic

(heuristic selection mechanism and an acceptance criterion).

This automates heuristic selection, deciding whether to accept

or reject the returned solution. The fact that different

problems or even instances, have different landscape

structures and complexity, the design of efficient high level

heuristics can have a dramatic impact on hyper-heuristic

performance. In this work, instead of using human knowledge

to design the high level heuristic, we propose a gene expression

programming algorithm to automatically generate, during the

instance solving process, the high level heuristic of the hyper-

heuristic framework. The generated heuristic takes

information (such as the quality of the generated solution and

the improvement made) from the current problem state as

input and decides which low level heuristic should be selected

and the acceptance or rejection of the resultant solution. The

benefit of this framework is the ability to generate, for each

instance, different high level heuristics during the problem

solving process. Furthermore, in order to maintain solution

diversity, we utilize a memory mechanism which contains a

population of both high quality and diverse solutions that is

updated during the problem solving process. The generality of

the proposed hyper-heuristic is validated against six well

known combinatorial optimization problem, with very

different landscapes, provided by the HyFlex software.

Empirical results comparing the proposed hyper-heuristic

with state of the art hyper-heuristics, conclude that the

proposed hyper-heuristic generalizes well across all domains

and achieves competitive, if not superior, results for several

instances on all domains.

Index Terms— Hyper-heuristics, Gene Expression

Programming, Timetabling, Vehicle Routing, Dynamic

Optimization

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimization
Research Group (DMO), Centre for Artificial Intelligent (CAIT),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,

Malaysia.
email:naserdolayme@yahoo.com, masri@ftsm.ukm.my.

Graham Kendall and Rong Qu are with the ASAP Research Group,

School of Computer Science, The University of Nottingham, Nottingham

NG8 1BB, UK.email:gxk@cs.nott.ac.uk, rxq@cs.nott.ac.uk. Graham

Kendall is also affiliated with the University of Nottingham Malaysia

Campus, 43500 Semenyih Selangor, Malaysia. Email:
Graham.Kendall@nottingham.edu.my.

I. INTRODUCTION

The growth in the complexity and constraints of

optimization problems that can be found in many real world

applications makes them not only an ongoing challenge but

also implies that they cannot be solved using exact methods

within tractable (or acceptable) computational time [1], [2].

Alternatively, meta-heuristic approaches, which offer no

guarantee of returning an optimal solution (or even near

optimal solutions), becomes not only a suitable option but

also the only available option, as they usually return

reasonably good solutions within a reasonable time.

Although the efficiency of meta-heuristic approaches has

been demonstrated over several real world applications,

their success is due to the use of domain-specific

knowledge [3], [4], [5]. As a consequence, to solve a given

problem by a meta-heuristic algorithm, practitioners usually

have to face the problem of configuring the selected meta-

heuristic such as selecting the appropriate problem specific

structures, most suitable operators and fine tuning the

parameters, which are non-trivial tasks [6], [7] .

Over the years, it has become evident that the decision of

which problem specific structures, operators and parameter

values to be included (or excluded) in a given meta-

heuristic algorithm has an impact on algorithm performance

[3], [8], [9], [10]. Thus, to obtain a good quality solution,

meta-heuristic approaches have to be expertly crafted by

incorporating problem-specific knowledge of the

underlying problem instance [3], [11]. Customization of a

meta-heuristic can be problem or even instance dependent

and consequently will decrease its generality. Moreover,

according to the No Free Lunch Theorem [12] no single

algorithm with a unique configuration is able to perform

well over all problem instances. As a consequence, when

new problems are considered, meta-heuristics need to be

(re)developed, which is usually not only time consuming

but also requires a deep understanding of both algorithm

behavior and the instance structure. Broadly speaking, at

the expense of generality, researchers and practitioners have

concentrated their effort on outperforming existing methods

on one, or a few instances, by tailoring a given algorithm to

the problem at hand.

Arguably, meta-heuristic configuration plays a crucial

role on the algorithm performance [5], [6]. Furthermore,

different problems require different configurations, and

even for different instances of the same problem using a

The Automatic Design of Hyper-heuristic Framework

with Gene Expression Programming for Combinatorial

Optimization problems

Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member,

IEEE

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

different configuration during the solving process could

improve algorithm performance [7]. When a search

becomes trapped in a local optima, adapting the algorithm,

on the fly, could help the algorithm to escape. Therefore,

one way to design an effective search methodology is to

take advantage of several operators as well as different

parameter values by combining them in one framework or

adjusting them during the solving process [13]. Automated

heuristic design has proven to be an efficient and effective

way in enhancing the search methodology by adjusting

algorithm operators or parameter values in on-line fashion

[7], [13]. These methodologies should work well, not only

across different instances of the same problem, but also

across several problem domains. Hyper-heuristics [3],

parameter tuning [7], reactive search [14], adaptive

memetic algorithms [9] and multi-method [15] are some of

examples of automated heuristic design. Recently proposed

frameworks in the automatic heuristic design concern the

self-adaptation of search methodologies by coadapting

algorithm configuration through coevolutionary process

such as coadapted memeplexes [16], a theoretic model of

symbiotic evolution [17] and the coevolving memetic

algorithms [18].

This work focuses on the hyper-heuristic framework.

Hyper-heuristics are search methodologies that explore the

search space of a given set of heuristics, or heuristic

components in order to select the most appropriate

heuristic. Hyper-heuristics can also be utilized to evolve

new heuristic by combining basic component of existing

heuristics. These features distinguish hyper-heuristics from

meta-heuristic methods, as they operate directly on the

solution space. The key motivation behind hyper-heuristics

is to raise the level of generality and to combine the

strength of several heuristics or heuristic components into

one framework [3].

A traditional hyper-heuristic framework has two levels.

The higher level heuristic manages which low level

heuristic to call (heuristic selection mechanism) and then

decides whether to accept the resultant solution (the

acceptance criterion). The lower level contains a set of

problem specific heuristics which are different for each

problem domain. Since each instance has certain

characteristics and landscape complexity, high level

heuristic components have a dramatic impact on the hyper-

heuristic performance and that is why there is considerable

research interest in devolving either new heuristic selection

mechanisms or different acceptance criteria [3], [4]. The

design of a good high level heuristic would increase the

ability of the hyper-heuristic in selecting the correct

heuristic at any particular point, and a good acceptance

criterion can guide the search process toward promising

regions [19], [20].

Although the high level heuristic of a heuristic to choose

heuristic hyper-heuristic framework, has been properly

designed, one can argue that most of them have one (or a

few) sensitive parameters and they have been manually

designed by human experts [19]. In addition, a manually

designed high level heuristic needs considerable expertise

and experience, and they only represent a small fraction of

the overall search space. Furthermore, as far as we are

aware, previous hyper-heuristic frameworks that have been

proposed in the scientific literature [4], [19] are single

solution based method. Reliance on a single solution may

restrict their ability in dealing with huge and heavily

constrained search spaces [10].

Therefore, we address the challenges of designing the

high level heuristic components and of using a population

of solutions in a hyper-heuristic framework by proposing

the following (see Fig. 1):

i) Instead of manually designing the high level

heuristic of a perturbative heuristic to choose

heuristics in a hyper-heuristic framework, we

propose an automatic programming generation

framework to automatically design the heuristic

selection mechanism and the acceptance criteria by

using gene expression programming [21] (denoted as

GEP-HH). The proposed gene expression

programming framework, see Fig. 1, is implemented

as an on-line heuristic or rule generation method,

which evolves a population of individuals. Each

individual represents a set of rules that is decoded

into a selection mechanism and acceptance criteria to

be used by the hyper-heuristic framework. The

quality of the generated rule is evaluated by inserting

it into the hyper-heuristic framework and using it on

a given problem instance for a certain number of

iterations. We use the idea of controlling the

population size in an evolutionary algorithm to

measure the performance of the generated heuristic

[22]. We utilize gene expression programming

algorithm to automate the design of the high level

heuristic of the hyper-heuristic framework instead of

genetic programming, due to its ability in avoiding

code bloat and the fact that it generates a solution

that is syntactically correct [21].

Fig. 1. The proposed gene expression programming based hyper-

heuristic (GEP-HH) framework.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

ii) We utilize a memory mechanism, which contain a set

of both high quality and diverse solutions, see Fig. 1,

which is updated as the search progresses in order to

enhance the ability of the perturbative heuristic to

choose heuristics when dealing with heavily

constrained problems in a huge search space, and

also to diversify the search.

To our knowledge, the high level heuristic components of

the currently existing hyper-heuristic frameworks are all

manually designed and they are also single based solution

methods. Hence, the proposed framework represents a

paradigm shift in using an automatic program generation

method in automating the design of hyper-heuristics or

meta-heuristic components, as well as using a population of

solutions instead of a single solution within the set of low

level heuristics. This could reduce the human expertise

required in manually customizing the high level heuristic of

the hyper-heuristic framework and could also enhance the

performance of the hyper-heuristic framework. Our

research questions are:

“Can we use a gene expression programming algorithm

framework to generate high level heuristic components

(heuristic selection mechanism and the acceptance

criteria) of the hyper-heuristic framework? Does the use

of a population of solutions, instead of a single solution,

within the hyper-heuristic framework enhance the

performance of the hyper-heuristics? “

Thus, our objectives are:

- To propose an on-line gene expression programming

(GEP-HH) framework to automatically generate the high

level heuristic components (heuristic selection

mechanism and the acceptance criteria) of the hyper-

heuristic framework.

- To propose a population based hyper-heuristic framework

by incorporating a memory mechanism which contains a

set of solutions updated during problem solving progress

in order to effectively diversify the search.

- To test the generality and the performance of the

proposed hyper-heuristic framework over six different

problem domains, of very different natures and compare

the results with the state of the art hyper-heuristics.

We demonstrate the generality and the consistency of the

proposed hyper-heuristic framework using the HyFlex

(Hyper-heuristics Flexible Framework) software [23],

which provides access to six problem domains with very

different landscape structures and complexity. The domains

are: boolean satisfiability (MAX-SAT), one dimensional

bin packing, permutation flow shop, personnel scheduling,

traveling salesman and vehicle routing. This work is among

the first attempts to apply a hyper-heuristic framework to

tackle all these challenging problems. Although it is

entirely appropriate to have a bespoke method that can

produce the best known results for one (perhaps more)

instance, having a methodology which is generally

applicable to more than one problems domain would be

more beneficial. Our ultimate goal is not to propose a

hyper-heuristic framework that can outperform the best

known methods but rather propose a methodology that

generalizes well over different problem domains. However,

the results demonstrate that the proposed hyper-heuristic is

able to update the best known results for some instances.

II. THE MOTIVATION BEHIND AUTOMATED HEURISTIC

DESIGNING

As we have mentioned earlier, given an optimization

problem and a solution method, researchers or practitioners

have to address the problem of which problem specific

structures, operators and parameter values to be used within

the given solution method in order to achieve good quality

results. Although algorithm configuration is intuitively

appealing, usually it is very difficult, if not impossible, to

manually search through all possible configurations such as

adding or removing specific operators or adjusting the

parameter values [24]. Therefore, exploring such an

interactive and large search space using other search

methods (i.e. GEP, GP or other meta-heuristic algorithms)

might yield a better performance compared to manually

designing an algorithm [6] and this is actually what the

automated heuristic design usually does.

Recently, automatic program generation methods, such as

genetic programming (GP), have paved the way for a

paradigm of optimizing or evolving the components of

search methodologies. For example, GP has been employed

in [25] to evolve the cooling schedule in simulated

annealing to solve quadratic assignment problems. Whilst,

in [26] GP has been utilized to generate constructive

heuristics for the hyper-heuristic framework. It is also used

in [27] to evolve the equation that controls the movement of

particles in particle optimization algorithms. In [28] GP has

been used to evolve the pheromone updating strategy for an

ant colony algorithm. Recently a grammatical evolution

(GE) algorithm has been utilized in [29] to evolve low level

heuristics for the bin packing problem. Whilst, GE is used

in [30] to automatically combine the high level heuristic

components of the hyper-heuristic framework. Please note

that the main difference between the proposed gene

expression framework and the framework introduced in

[30] is that the framework proposed in this paper generates

a set of rules to select the most suitable low level heuristic

and then either accepts or rejects the generated solution,

whilst the framework in [30] combines existing meta-

heuristic acceptance criteria with neighborhood structures.

Furthermore, the utilized terminal and function sets are

fundamentally different.

However, despite the success of GP based hyper-

heuristics, the same hyper-heuristic cannot be used to

generate heuristics for other domains such as exam

timetabling or vehicle routing. That is, the function and

terminal sets that have been defined for one domain cannot

be used on other domains. In this work we propose an

automatic program generation framework to automatically

generate the high level heuristic of the hyper-heuristic

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

framework. The novelty of our proposed framework is that

it can tackle many optimization problems using the same

set of functions and terminals. This feature distinguishes

our framework from existing GP based hyper-heuristics. In

practice, evolving or optimizing algorithm components will

not only alleviate user intervention in finding the most

effective configuration, but also facilitate algorithm

configurations.

Thus, if the automatic program generation methods can

optimize meta-heuristic components [25], [28] and evolve

the constructive heuristic of the hyper-heuristic framework

[26], then using the automatic program generation method

(GEP in this work) to automatically design the high level

heuristic of the hyper-heuristic framework in an on-line

manner may produce an effective hyper-heuristic

framework.

III. RELATED WORK

Hyper-heuristics are one of the automated heuristic design

methodologies motivated by the fact that different

heuristics impose different strength and weakness. Thus it

makes sense to merge them into one framework. A recent

definition of a hyper-heuristics framework is “an automated

methodology for selecting or generating heuristics to solve

hard computational search problems” [3]. Over the years,

hyper-heuristic frameworks have demonstrated success in

solving various classes of real world applications. A generic

hyper-heuristic framework is composed of two levels

known as high level and low level heuristics [3] (see Fig.

2). The high level heuristic is problem independent and has

no domain knowledge. Its role is to manage the selection or

generation of which heuristic are to be applied at each

decision point. The low level heuristic corresponds to a pool

of heuristics or heuristic components.

Hyper-Heuristics

High Level Heuristics

Heuristic to choose

heuristics

Heuristic to generate

heuristics

 Low Level Heuristics

LLH1 LLH2

LLH3 LLHn

-Problem representation

-Problem instances

-Evaluation function

-Single Solution

Problem Domain

Heuristics Repository

Apply heuristic

Domain-independent information acquisition and processing: change in a candidate

solution quality, number of low level heuristics, measuring the performance of the applied

heuristics, statistics, etc.

Domain Barrier

Fig. 2. A generic hyper-heuristic framework [3]

Recently, hyper-heuristic frameworks have been classified

[3] based on the nature of the heuristic search space and the

source of feedback during learning (see Fig. 3). The source

of feedback can be either on-line, if the hyper-heuristic

framework uses the feedback obtained during the problem

solving in decision making, or off-line, if the hyper-

heuristic framework uses information gathered during the

training phase in order to be used when solving other or

unseen instances. The nature of the heuristic search space is

also classified into two subclasses known as heuristics to

choose heuristics and heuristics to generate heuristics. In

either case, this is often further classified based on the

employed low level heuristics into: constructive heuristics,

which starts from scratch and keeps extending a partial

solution step by step until a complete solution is generated,

or perturbative heuristics, which starts with a complete

solution and iteratively refines it to improve its quality.

Nature of the

search space
Heuristics

selection

Heuristics

generation

Low level

heuristics
Constructive Constructive Purtrbative Purtrbative

Hyper-heuristics
Source of feedback

during learning

On-line

No learning

Off-line

Fig. 3. Classifications of hyper-heuristic approaches, according to two
dimensions: (i) the nature of the heuristic search space and (ii) the source

of feedback during learning [3].

A. Heuristics to choose heuristics

Most of hyper-heuristic frameworks published are

heuristics to choose heuristics. These operate on a set of

human designed heuristics called low level heuristics [19].

The set of low level heuristics can be either constructive or

perturbative. The role of the hyper-heuristic framework is

to intelligently select, from a given set of low level

heuristics, which heuristic to apply at a given time. The

motivation behind heuristics to choose heuristics is that the

strength of several heuristics can be included in one

framework. A traditionally perturbative heuristic based

hyper-heuristic framework has two components, known as

the heuristic selection mechanism and the acceptance

criteria. The role of the selection mechanism is to select the

low level heuristic from the given set, whilst, the

acceptance criteria is to decide whether to accept or reject

the resultant solution after applying the selected low level

heuristic. Both components play an important role and have

significant impact on hyper-heuristic performance [19],

[20]. Examples of heuristic selection mechanisms are tabu

search [31], genetic algorithm [32], iterated local search and

variable neighborhood [33]. Examples of acceptance

criteria that have been used within hyper-heuristics are

simulated annealing, great deluge and tabu search [19].

More details of these hyper-heuristics can be found in

recent surveys [19], [4].

The cross-domain heuristic search (CHeSC) competition

has been recently introduced, which provides a common

software interface for investigating different (high level)

hyper-heuristics and provides access to six problem

domains where the low level heuristics are provided as part

of the supplied framework [23]. The algorithm designer

only needs to provide the higher level component (heuristic

selection and acceptance criterion). The adaptive hyper-

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

heuristic (AdapHH) proposed in [34] was the competition

winner. Their heuristic selection mechanism uses an

adaptive dynamic heuristic set or relay hybridization and an

adaptive acceptance criterion. Further details about the

competition, including further results, are available in [23].

Recently, Chen [35] introduced an algorithm

development environment (ADEP) to address meta-

heuristic design and configuration problems through an

integrated framework that allows both manual and

automated configuration of a variety meta-heuristic

approaches. The main difference between [35] and

proposed GEP-HH framework is that the proposed GEP-

HH framework generates meta-heuristic components

instead of combining and/or configuring existing ones.

Although several types of heuristic selection mechanisms

and acceptance criteria exist, no heuristic selection

mechanisms or acceptance criteria so far presented are the

best, or the most suitable, across all domains [19]. In

practice, all of them face generalization issues. This is

because the choice of which heuristic to apply does not

depend only on the problem instances but also on the

current stage of the solving process, since at each decision

point the problem instance landscape is acquiescent to at

least one low level heuristic. Most of the current heuristic

selection mechanisms use simple rules to select the low

level heuristic based on their past performance [19].

However, to quickly respond to instance landscape changes,

a sophisticated heuristic selection mechanism may be

needed. Furthermore, some low level heuristics perform

well only at the beginning of the search process while

others could be good at the end of solving process [19],

[13]. For example, the application of a certain local search

based low level heuristic would be unuseful if the solution

is already trapped in a local optima. As a result, there is a

need for a high level heuristic that is more general than

those currently available, that can use the problem state in

selecting the appropriate low level heuristic, and can cope

with several problem domains or even different instances of

the same problem.

In this work, we address this challenge by proposing a

gene expression programming framework to generate, for

each instance, the heuristic selection mechanism and the

acceptance criteria for the perturbative heuristic to choose

heuristic. What makes our proposed framework different

from others is that, at every iteration, the generated

selection mechanism and acceptance criteria favor different

criteria or information in selecting the low level heuristic

and the acceptance of the generated solution. For example,

the heuristic selection mechanism generated at iteration i

may favor the selection of the low level heuristic that has

very good performance during the previous application,

whilst, the heuristic selection mechanism generated at

iteration i+1 may favor the selection of the low level

heuristic that has been more frequently applied than those

of very good performance.

B. Heuristics to generate heuristics

In contrast to the heuristics to choose heuristics hyper-

heuristic, where the hyper-heuristic starts with a set of low

level heuristics provided manually, in a heuristics to

generate heuristics hyper-heuristic the aim is to fabricate

new low level heuristics by combining existing heuristic

components [3]. Genetic programming has been

successfully used to evolve constructive heuristics for SAT

[36], scheduling [37] and bin packing problems [26].

Despite the fact that genetic programming hyper-

heuristics have achieved good results, one can argue that

most of them are tailored to solve specific problems (e.g.

SAT and the bin packing problems) using a restricted

constructive heuristic component. Another limitation is that

they have been used in an off-line manner which may

restrict their generality because they will be tailor made to

the training instances unless the testing instances have the

same features and complexity which usually does not

reflect many real world applications.

Motivated by the achievements of the above work, in this

work, we propose a gene expression programming

framework to automatically generate the high level

heuristic for the perturbative heuristics to choose heuristics

hyper-heuristic framework. The proposed gene expression

framework can be classified as an on-line generational

hyper-heuristic and thus the same as a genetic programming

hyper-heuristic. The benefit of the proposed gene

expression programming framework is its ability to use the

current problem state to generate, for each instance,

different high level heuristic in an on-line manner which

could help the search in coping with the changes that might

happen during the instance solving process.

IV. THE PROPOSED FRAMEWORK

The proposed hyper-heuristic framework has two levels

called high level and low level heuristics. The high level

heuristic contains two components, a heuristic selection

mechanism and an acceptance criterion. The low level

heuristic contains a set of perturbative low level heuristics,

the memory mechanism and the objective function. The

proposed hyper-heuristic starts with an initial solution,

randomly selected from the memory mechanism, and

iteratively explores its neighborhood by applying a

perturbative low level heuristic. Given a pool of

perturbative low level heuristics, a complete solution

(randomly selected from the memory mechanism) and the

objective function, the proposed hyper-heuristic framework

will successively invoke the following steps for a certain

number of iterations (defined by the user):

i) Call the heuristic selection mechanism to select,

from a given pool, one perturbative low level

heuristic.

ii) Randomly selects one solution for the memory

mechanism.

iii) Apply the selected perturbative low level heuristic to

the given solution to generate a new solution.

iv) Call the objective function to evaluate the generated

solution. If it is better than the incumbent solution,

replace it with the incumbent solution and continue

the search. If not, call the acceptance criterion to

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

decide either to accept or reject the generated

solution according to the acceptance criterion rules.

v) Update the memory mechanism, the parameters and

start a new iteration.

A. High level heuristic

In the high level heuristic, the role of the heuristic selection

mechanism is to select, for a given instance, the suitable

perturbative low level heuristic from those supplied.

Usually, the choice of which perturbative low level

heuristic to be applied is a crucial decision, as this would

lead the search in order not to confine it to a localized

region of the solution space. The aim of the acceptance

criterion is to assist the search process in order to avoid

local optima and at the same time explore different areas of

the search space through the decision of accepting or

rejecting the generated solution [4]. A good acceptance

criteria mechanism should be able to strike a balance

between accepting improving solutions and also worse

solutions if the search is trapped in a local optima [20].

Therefore, this work proposes a program generation method

using gene expression programming to adaptively select the

suitable low level heuristic and to balance between

accepting and rejecting the generated solution (see Fig. 4).

Fig. 4. The proposed high level heuristic

1) Basic gene expression programming algorithm

Gene expression programming (GEP) [21] is a program

generation method that uses a linear representation instead

of a tree representation that is often used in genetic

programming (GP). Each individual in GEP comprises a set

of strings with a fixed size, called genomes. The program in

GEP is generated by converting the individual string into a

parse tree utilizing breadth-first search. The parse tree is

then executed against the given problem instance. To

generate a new individual, GEP applies genetic algorithm

operators (crossover, mutation, inversion and transposition)

directly on the linear encoding instead of the parse tree.

Thus, GEP merges the advantages of both a genetic

algorithm and genetic programming in evolving a

population of computer programs. This feature allows GEP

to generate programs that are always syntactically correct

while avoiding the problem of code bloat (a well-known

problem in traditional GP). The evolutionary steps of GEP

in generating population of individuals are shown in Fig 5.

First, GEP components are defined. These are the

function set (F) (which manipulates the values returned by

terminals, and they take one or more arguments), terminal

set (T) (which represents a set of nodes that form the leaf

nodes of the program tree; they take no arguments), fitness

function, GEP parameters and stopping condition.

Next, we generate a population of individuals. An

individual in GEP is composed of a set of symbols called

genes. Each gene has two elements called head and tail.

Head contains both terminals and functions and its length h

is fixed by users. The tail only contains terminals and its

length t is calculated by the formula t=h*(n-1) +1, where n

represents the maximum number of function arguments

[21]. Thus, the individual length is equal to h+t. Assume a

individual is comprised of a set of symbols of function F =

{*, /, +, -} and terminal T = {a, b}. In this example, n = 2

because the maximum arity of the function is two

arguments. If we set the head length h = 10, then the tail

length t = 11 and the length of the individual will be h + t =

10+11 = 21. An example of a randomly generated

individual can be [21]: GEP_gene=+*ab-

ab+aab+ababbbabaa and its corresponding expression tree

is: GEP_expression= a+b*((a+b)-a). Each individual in the

population employs the head-tail encoding method which

ensures the validity of the generated individual.

Set GEP parameters

Generate a population of solutions

Calculate solutions fitness by translating them into

parse tree and execute the generated tree

Select two solutions from the population

(S1 and S2)

 Apply genetic algorithm operators (crossover,

mutation and inversion) on S1 and S2 to generate

two offspring, S’1 and S’2

Calculate the fitness of S`1 and S`2 by translating

them into parse tree and execute the generated tree

Satisfied?
yes

No

Terminate and return the best solution

Update the

population

Fig. 5. Basic gene expression programming flowchart

Then, we calculate individual fitness as follows: following

the breadth-first manner individuals are converted into

expression trees. First, scan the individual string one by one

from left to right. The first string will form the node of the

tree and other strings are written in a left to right manner at

each lower level. If the scanned string is a function (F) with

n (n>=1) arguments, then the next n strings are attached

below it as its n children. Otherwise, it will form a leaf of

the corresponding tree (terminal (T)). The scanning process

is repeated until all leaves in the corresponding tree are

terminals only. Next, the program trees are executed on the

underlying problem and their fitness values are calculated.

Next, two individuals are selected by the selection

mechanism (e.g. roulette wheel selection) according to their

fitness values. The selected individuals will go through the

following genetic operators:

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

i) Crossover: exchanges elements between two randomly

selected genes from the chosen parents (e.g., one-point

and two point crossover).

ii) Mutation: change any string in the generated individual

while making sure that the string in the head part can

be changed into both terminal and function and, string

in the tail part can be changed into terminals only.

iii) Inversion: reveres small sequence of strings within the

head or tail.

iv) Convert the created individuals (offsprings) to program

trees and execute them on the underlying problem to

calculate their fitness values.

v) Following roulette wheel (or other selection operators)

sampling with elitism, the fittest individuals are always

copied into the next generation.

This process is executed until the stopping condition is

satisfied (e.g. a given number of generations).

2) The proposed gene expression programming framework

to generate the high level heuristic components

In this work, we propose a gene expression programming

framework to automatically generate the high level

heuristic selection mechanism and the acceptance criteria,

based on a given problem instance, for the perturbative

heuristic to choose heuristic hyper-heuristic framework.

This is an on-line heuristic generation method based hyper-

heuristic which iteratively evolves a population of

individuals through the evolution process. Each individual

represents a set of rules which are decoded into a selection

mechanism and acceptance criterion to be used by the

hyper-heuristic framework. To simultaneously generate

both selection mechanism and the acceptance criterion,

each individual is divided into two parts of equal size to

represent both components. For example, in a individual of

m strings, strings 1 to m/2 will be used for the selection

mechanism and strings m/2 to m will be used for the

acceptance criterion. Each part has a head of a user defined

length h (contains terminal and function) and a tail

(contains terminal only) of length t=h*(n-1) +1, where n

represent the maximum number of function arguments.

Each part employs the head-tail encoding method which

ensures the validly of the generated program which

represents one expression tree for the selection mechanism

and acceptance criterion, respectively.

Except crossover, genetic operators (mutation and

inversion) can occur at any point as long as the gene rules

are respected, i.e., a head element can be changed into

terminal or function, whilst, a tail element can be changed

into terminal only. Crossover operators will exchange

elements between two randomly selected genes from the

chosen parents within the same parts. For example, if the

selected genes are from the first part of the first individual,

these genes will be replaced with those in the first part of

the second individual. This will ensure that the exchanged

genes are the same types, i.e., either for the selection

mechanism or the acceptance criterion.

To run the proposed gene expression programming

framework, one needs to define the following components:

1- Terminal and function sets

A crucial issue in the design of the proposed framework

is the definition of the terminal set (T) and the function

set (F). The terminal set (T) represents a set of variables

which will express the state of the underlying problems.

The function set (F) represents a set of arithmetic or

logical operators that will be used to connect or

compose the terminal set (T). To use the proposed

framework across various problems, we keep the

definition of the terminal set (T) and function set (F) as

general and simple as possible. By doing so, the

proposed framework can be used across other problem

domains, in addition to those considered in this work.

Since the purpose of the heuristic selection mechanism

is fundamentally different from the acceptance criterion,

we use two terminal sets. The first set represents the

selection mechanism, whilst, the second represents the

acceptance criterion.

To cope with instance changes that might happen

during the instance solving process, the proposed

framework utilizes several evaluation criteria to

represent the terminal sets in such a way that their

combination will favor one criterion among others and

these evaluation criteria will be updated during instance

solving. Each evaluation criterion favors the selection of

the low level heuristic from a different perspective. The

rationale behind this is that some low level heuristics

perform well only at the beginning of the search process

while others could be better at the end of the process.

Therefore, the heuristic selection mechanism should be

able to quickly respond to instance landscape changes

by selecting the appropriate low level heuristic. The

function (F) and terminal (T) sets of the selection

mechanism that have been used in this work are

presented in Table 1. The utilized terminals for the

heuristic selection are:

- Reward credit (RC): The main idea of this reward is

that infrequently used low level heuristics which lead

to a large improvement in the solution quality are

preferred to be selected more than those that lead to a

small improvement. Thus, as a result, the low level

heuristic which brings frequent, but small

improvements will get less reward and consequently

has a lesser chance of being preferred [13]. This

terminal is good in reducing the heuristic search

space by only favoring certain low level heuristics.

- Update the best known solution counter (Cbest): This

terminal favors the low level heuristic that manage to

update the best known results. This terminal is good

in systematically improving the current local optima.

- Update the counter of accepting current solution

(Ccurrent): This terminal favors the low level heuristic

that manages to update the current solution. This

terminal is good in keeping the search focused

around the current local solution.

- Update counter of accept solution (Caccept): This

terminal favors the low level heuristic that produces

a solution that is accepted by the acceptance

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

criterion. This terminal is good in helping the search

to escape from a local optima.

- Update the average improvement counter (Cava): This

terminal favors the low level heuristic that has made

a large improvement on average. This terminal is

good at focusing the search on the current area in the

search space.

- Update the first rank counter (Cr): This terminal

favors the low level heuristic that has been selected

first. This terminal is good for applying the current

low level heuristic.

Please note that the terminal (T) set of the heuristic

selection mechanism is used for the low level heuristic

and their value together with function (F) set are used

to rank the low level heuristics.

TABLE 1 THE TERMINAL AND FUNCTION SET OF THE

SELECTION MECHANISM
Terminals set for the heuristics selection mechanism

terminal description
RC The extreme value-based reward is used to

calculate the credit (CA) for each low level
heuristic. When the i-th low level heuristic is

applied, its corresponding improvement to the
current solution is computed. The improvement

gained is then saved for the i-th low level

heuristic in a sliding time window of size W,
following the rule of FIFO. The credit of any

low level heuristic is then set as the maximum

value in its corresponding sliding window W.
In this work, the improvement gained (PI) from

the i-th low level heuristic is calculated as

follows: PI(i) =(/f1-f2/f1)*100 if f2<f1. Where
f1 is the quality of the current solution and f2 is

the quality of the resultant solution after

applying the i-th low level heuristic.

Cbest The number of times that the i-th low level
heuristic has updated the best known solution.

Ccurrent The number of times that the i-th low level

heuristic has updated the current solution.

Caccept The number of times that the generated solution
by the i-th low level heuristic has been accepted

by the acceptance criterion.

Cava The average of the previous improvement
strength of the i-th low level over the search

process.

Cr The number of times that the i-th low level
heuristic has been ranked the first.

Function set for the heuristics selection mechanism

function description

+ Add two inputs.

- Subtract the second input from the first one.

* Multiply two inputs.

% Protected divide function, i.e., change the

division by zero into 0.001.

The function (F) and terminal (T) sets of the

acceptance criteria that have been used in this work are

presented in Table 2.

TABLE 2 THE TERMINAL AND FUNCTION SET OF THE
ACCEPTANCE CRITERIA

Terminals set for the acceptance criteria mechanism

terminal description

delta The change in the solution quality

PF The quality of the previous solution

CF The quality of the current solution

CI Current iteration

TI Total number of iterations

Function set for the acceptance criteria mechanism
function description

+ Add two inputs.

- Subtract the second input from the first one.

* Multiply two inputs.

ex The result of the child node is raised to its power

(Euler’s number).

% Protected divide function, i.e., change the

division by zero into 0.001.

2- Fitness function

The aim of the fitness function is to evaluate the

performance of the generated high level heuristics

(population individual). In this work, we use the idea in

[22] that was used to control the population size in an

evolutionary algorithm to evaluate the fitness of the

generated high level heuristics. The probability of

selecting each high level heuristic (an individual in the

GEP framework) is updated according to the quality of

the best solution returned, after the stopping condition

is satisfied. The quality of the returned solution is

usually either better or worse than the one that has been

used as an input solution for the hyper-heuristic

framework. Formally, let Ah[] represent the array of

the probability of selecting the high level heuristics

(individual), fi and fb represent the fitness of the initial

and returned solutions, NoH represents the number of

high level heuristics (individuals) or the population size

of GEP. Then, if the application of the i-th high level

heuristic leads to an improvement in the solution

quality, then reward the i-th high level heuristic

(individual) as follows: Ah[i] = Ah[i]+∆ where ∆ = (fi -

fb) / (fi + fb). Other high level heuristics,  j{1,…,

NoH} and j ≠ i, are penalized as Ah[j] = Ah[j] -

(∆/(NoH-1)). Otherwise (if the solution cannot be

improved), then penalize the i-th high level heuristic,

Ah[i]= Ah[i]-|(∆*α)| where α= Current_Iteration /

Total_Iteration and reward other high level heuristics,

 j{1,…, NoH} and j ≠ i, Ah[j] =Ah[j] +

(|∆|*α/(NoH-1)). Please note that the main idea behind

decreasing the probability of other high level heuristic

is to decrease their chances of being selected. Initially,

the probability of each high level heuristic (individual)

is calculated by translating them into expression trees

and executing the corresponding program.

3- The stopping condition

In this work, the maximum number of consecutive non

improvement iterations is used as the stopping

condition (see section V.A).

When all elements are defined, the proposed framework is

carried out as follows (see Fig. 6):

i) Generate a population of individuals.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

ii) Calculate the fitness of the population by inserting

them into the hyper-heuristic framework and using it

to solve a given instance for a certain number of

iterations.

iii) Iteratively selects two parents, apply crossover and

mutation operators to generate two offspring,

evaluate the fitness of the generated offspring and

update the population. This is executed for a certain

number of generations.

The main role of GEP is to evolve a population of

individuals, each encoding a high level heuristic (selection

mechanism and acceptance criterion) which will be used by

the hyper-heuristic framework. The hyper-heuristic

framework will be called at every generation to evaluate the

generated offspring. When the proposed hyper-heuristic is

called the following steps will be carried out:

i) Decoded the current individual into a heuristic

selection mechanism and an acceptance criterion,

i.e., translate it into two expression trees for the

selection mechanism and the acceptance criterion,

respectively. Then, use the terminal (T) set value of

each low level heuristic as the input for the selection

mechanism expression tree.

ii) Execute the selection mechanism expression tree and

rank the given set of low level heuristics from the

highest to the lowest based on the value retuned from

the expression tree.

iii) Randomly select one solution for the memory

mechanism. Apply the highest ranked low level

heuristic to the given solution and calculate the

quality of the generated solution.

iv) If the generated solution is better than the current

one, the current one is replaced. If not, the hyper-

heuristic will call the acceptance criterion expression

tree and execute the corresponding program. Then,

the generated solution by the low level heuristic is

accepted if the exponential of the value retuned by

the acceptance criterion expression tree is less or

equal to 0.5 (the exp function returns values between

0 and 1). In the literature, a value of 0.5 was

suggested [26], but for different domains. The value

0.5 was also determined based on preliminary

testing.

v) Repeatedly apply the current low level heuristic until

no improvement is returned.

vi) If no improvement is returned, the hyper-heuristic

framework will stop applying the current low level

heuristic and restarts from the local optimum

obtained by current low level heuristic, but with next

low level heuristic in the ranked list.

vii) If the hyper-heuristic framework reaches the end of

the low level heuristic ranked list, it executes the

current heuristic selection mechanism expression tree

again and rank the given set of low level heuristics

and restart the search from the local optimum, but

using the current highest ranked low level heuristic.

viii) The proposed hyper-heuristic framework will keep

using the utilized high level heuristic components

(selection mechanism and acceptance criterion),

which is generated by the GEP framework, for a pre-

defined number of iterations (see section V. A).

Fig. 6. The proposed hyper-heuristic

B. Low level heuristics

The low level heuristic of the proposed hyper-heuristic

framework has three components as follows:

1) A set of perturbative low level heuristics

In this work, a pool of problem-specific perturbative

heuristics is used as low level heuristics. The aim of the

low level heuristics is to explore the neighborhoods of the

current solution by altering the current solution

(perturbation). The generated neighborhood solution is

accepted if it does not break the imposed hard constraints

and also satisfies the acceptance criterion. Thus, the

employed low level heuristic explores only the feasible

search space. Details of these perturbative heuristics are

presented in the problem description sections (see section

V.C).

2) Memory mechanism

Most hyper-heuristic frameworks that have been proposed

in the scientific literature operate on a single solution [4],

[19]. Reliance on a single solution may restrict their ability

in dealing with a large and heavily constrained search

space, as it is widely known that single solution based

methods are not well suited to cope with the large search

spaces and heavily constrained problems [10]. In order to

enhance the efficiency of the proposed hyper-heuristic

framework and to diversify the search, we embed it with a

memory mechanism as in [38] which contains a collection

of both high quality and diverse solutions, updated as the

algorithm progresses. The integrated memory mechanism

Set GEP parameters

Generate a population of solutions

Calculate solutions fitness

Select two solutions (S1 and S2)

Apply crossover, mutation and inversion on S1 and

S2 to generate S`1 and S`2.

Calculate the fitness of S`1 and S`2.

Satisfied?

Yes

No

Terminate and return the best solution

Update the

population

Call the Hyper-heuristic in Fig.1.

Call the Hyper-heuristic in Fig.1.

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

interacts with the high level heuristic as follows: first

initialize the memory mechanism by generating a set of

diverse solutions (randomly or by using a heuristic method,

see Section V). For each solution, associate a frequency

matrix to measure solution diversity. The frequency matrix

stores the frequency of an object assigned to the same

location. At every iteration, the high level heuristic will

randomly select one solution from the memory; apply the

selected low level heuristic to this solution, update both the

solution in memory and the solution frequency matrix.

The associated frequency matrix is represented by a two

dimensional array where rows represent objects and

columns represent locations. For example, in the bin

packing problem, the frequency matrix stores how many

times the item has been assigned to the same bin. Whilst, in

the vehicle routing problem, it stores how many times a

customer has been assigned to the same route. In this work,

objects represent the items in the bin packing problem or

customers in the vehicle routing problem, while locations

represent bins in the bin packing problem and routes in the

vehicle routing problems.

Fig. 7 shows an example of a solution and its

corresponding frequency matrix. The frequency matrix is

initialized to zero. We can see five objects (represented by

rows, items or customers) and there are five available

locations (represented by columns, bins or routes). The

solution on the left side of Fig. 7 can be read as follows:

object 1 is assigned to location 1, object 2 is assigned to

location 3, etc. The frequency matrix on the right side of

Fig. 7 can be read as follows: object 1 has been assigned to

location 1 twice, to location 2 three times, to location 3

once, to location 4 four times and to location 5 once; and so

on for the other objects.

Location

O
b

je
ct

s

 1 2 3 4 5 1 2 3 4 5

1 1 0 0 0 0

O
b

je
ct

s

1 2 3 1 4 1

2 0 0 1 0 0 2 1 1 1 2 2

3 0 0 0 0 1 3 2 2 2 2 1

4 0 0 0 1 0 4 2 1 3 1 1

5 0 1 0 0 0 5 2 1 2 1 3

 solution frequency matrix

Fig. 7. Solution and its corresponding frequency matrix.

If any solution is used by the hyper-heuristic framework,

then we update the frequency matrix of this solution. Next

we calculate the quality and the diversity of this solution. In

this work, the quality represents the quality of the solution

of a given instance (see section V). The diversity is

measured using the entropy information theory (see

Equations (1) and (2)) as follows [38]:

e

m

e

m

ee

j

ijij

i
log

log.
1



 

 (1)

e

e

i i  1


 (2)

Where

- eij is the frequency of allocating object i to location j.
- m is the number of objects.

- εi is the entropy for object i.

- ε is the entropy for one solution (0 ≤ εi≥ 1).

Next, add the new solution to the memory mechanism by

considering the solution quality and diversity.

3) Objective function

The objective function is problem dependent and it

measures the quality of the generated solution (see section

V).

V. EXPERIMENTAL SETUP

In this section, we will discuss the parameter settings of

GEP-HH, problem description and the perturbative low

level heuristics of the considered problems.

A. GEP-HH Parameter Settings

Fine tuning the algorithm parameters for optimal

performance is usually a tedious task that needs

considerable expertise and experience [6]. Therefore, the

parameter values of the GEP-HH are obtained by using

Relevance Estimation and Value Calibration method

(REVAC) [39]. REVAC is a tool for parameter

optimization, where a steady state genetic algorithm and

entropy theory are used in defining algorithm parameter

values. REVAC is utilized to find the generic values that

can be used for all considered domains instead of finding

the optimal one which is problem (if not instances)

dependent.

Taking into consideration the solution quality and the

computational time needed to achieve good quality

solutions, the running time for each instance is fixed to 20

seconds and the number of iterations performed by REVAC

is fixed at 100 iterations (see [39] for more details). To do

so, we tuned GEP-HH for each domain separately and then

used the average of the minimum value for each parameter

obtained by REVAC for all tested instances. Then the

average values over all tested instances for all domains for

each parameter are set as the generic values for GEP-HH.

Table 3 lists the parameter settings of GEP-HH that have

been used for all problem domains.

TABLE 3 GEP-HH PARAMETERS

Parameters
Possible

Range

Suggested Value by

REVAC

Population size 5-50 10

Number of generations 10-200 100
One point crossover

probability
0.1-0.9 0.7

Mutation probability 0.1-0.9 0.1
Inversion rate 0.1-0.9 0.1

Head length h 2-40 5

Selection mechanism - Roulette Wheel

Crossover type
Two/multi/

one point
One point

Consecutive non
improvement

1-1000 50

The sliding window size

W
2-100 20

Memory mechanism size 2-40 8

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

B. Problem Description

In this work, we used HyFlex (Hyper-heuristics Flexible

Framework) to test the generality and the performance of

GEP-HH. HyFlex is a java framework which provides six

problem domains (boolean satisfiability (MAX-SAT), one

dimensional bin packing, permutation flow shop, personnel

scheduling, traveling salesman and vehicle routing), the

initial solution generation method, and a set of perturbative

low level heuristics [23]. HyFlex was used during the cross-

domain heuristic search challenge competition (CHeSC) in

order to compare the performance of hyper-heuristic

methods and to support researchers in their efforts to

develop generally applicable hyper-heuristics for various

problem domains. In addition, we also report in the

appendix, the results of testing GEP-HH on exam

timetabling and dynamic vehicle routing problems (See the

supplementary file).

1) Boolean Satisfiability (MAX-SAT) Problems

Boolean Satisfiability problems can be defined as follows

[40]: given a formula of Boolean variables, determine the

assignment of truth values to the variables that can make

the formula true. MAX-SAT, which is an extension of

Boolean Satisfiability, is an optimization problem where the

aim is to determine the maximum number of true clauses of

a given Boolean formula. In other words, the aim of the

optimization process is to minimize the number of

unsatisfied clauses in a given formula. The instances that

were considered in this work are summarized in Table 4.

The set of initial solutions are randomly generated by

assigning either true or false value to each variable. The

quality of the solution is measured based on how many

`broken' clauses in a given formula i.e., those which

evaluate to false. See [40] for more details.

TABLE 4 THE MAX-SAT INSTANCES
Instances Name Variables Clauses

Instance 1 parity-games/instance-n3-i3-pp 525 2276

Instance 2 parity-games/instance-n3-i4-pp-

ci-ce

696 3122

Instance 3 parity-games/instance-n3-i3-pp-

ci-ce

525 2336

Instance 4 jarvisalo/eq.atree.braun.8.unsat 684 2300
Instance 5 highgirth/3SAT/HG-3SAT-

V300-C1200-4

300 1200

2) One Dimensional Bin Packing Problems

The one dimensional bin packing is a well-known

combinatorial optimization problem. Given a set of items of

a fixed weight and a finite number of bins of fixed capacity,

the goal is to pack all items into as few bins as possible

[41]. The packing process should respect the following

constraints: each item should be assigned to one bin only

and the total weight of items in each bin should be less or

equal to the bin capacity. The aim of the optimization

process is to minimize the number of bins that are used.

Table 5 shows the characteristic of the considered

instances. The set of initial solutions are generated as

follows: first, generate a random sequence of items and then

pack them one by one into the first bin which they will fit,

i.e. “first fit heuristic”. The quality of solution is measured

by quality=

2

1

1
1  











n

i C

fl

n
where n is the number of

bins, fl is the sum of the sizes of all the pieces in bin i, and

C the bin capacity. See [41] for more details.

TABLE 5 THE ONE DIMENSIONAL BIN PACKING INSTANCES

Instances Name Capacity No. Pieces

Instance 1 triples2004/instance1 1000 2004

Instance 2 falkenauer/u1000-01 150 1000

Instance 3 test/testdual7/binpack0 100 5000
Instance 4 50-90/instance1 150 2000

Instance 5 test/testdual10/binpack0 100 5000

3) Permutation Flow Shop Problems

The permutation flow shop problem is defined as, while

respecting the imposed constraints, find the sequence for a

set of jobs to be processed on a set of consecutive machines

with the minimal completion time of the last job to exit the

shop [42]. Each job requires a processing time on a

particular machine. One machine can only process one job

at a time. Jobs can be processed by only one machine at a

time. The job ordering process should be respected and

machines are not allowed to remain idle when a job is ready

for processing. Table 6 shows the characteristic of the

considered instances. The set of initial solutions are

generated by using the NEH [42] algorithm which works as

follows: first generate a random permutation of jobs and an

empty schedule. Then, assign the first job in the

permutation sequence into the schedule, second job into

places 1 and 2; third job into places 1, 2 and 3, and so on.

Each assignment should be fixed where the partial schedule

has the smallest makespan time, i.e. completion time of the

last job. The quality of solution represents the completion

time of the last job in the schedule. See [42] for more

details.

TABLE 6 THE PERMUTATION FLOW SHOP INSTANCES

Instances Name No. jobs No. Machines

Instance 1 100x20/2 100 20

Instance 2 500x20/2 500 20
Instance 3 100x20/4 100 20

Instance 4 200x20/1 200 20

Instance 5 500x20/3 500 20

4) Personnel Scheduling Problems

Personnel scheduling is a well-known NP-hard problem.

Given a set of employees of specific categories, a set of pre-

defined periods (shifts) on a working day, and a set of

working days; the aim of the optimization process is to

assign each employee to specific planning periods to meet

the operational requirements and satisfying a range of

preferences as much as possible [43]. Due to the variety of

hard and soft constraints, which are different from one

organization to another, the modeling and implementation

is challenging. A unique general mathematical model to

accommodate all related constraints does not exist. Table 7

gives the characteristics of the considered instances. The set

of initial solutions are created by using a neighborhood

operator which incrementally adds new shifts to the roster

until all employees have been scheduled. The quality of the

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

generated solutions is assessed based on how many soft

constraints are satisfied. See [43] for more details.

TABLE 7 THE PERSONNEL SCHEDULING PROBLEMS INSTANCES

Instances Name Staff Shift Types Days

Instance 1 Ikegami-3Shift-DATA1.2 25 3 30

Instance 2 MER-A 54 12 42
Instance 3 ERRVH-B 51 8 42

Instance 4 BCV-A.12.1 12 5 31

Instance 5 ORTEC01 16 4 31

5) Traveling Salesman Problems

The traveling salesman problem is a very popular

combinatorial optimization problem [44]. In its classic

form, given a set of cities and their positions (pairwise

distances), the aim is to find the shortest path where each

city is visited only once and the path ends at the starting

city. The aim of the optimization process is to minimize the

traveling distance. Table 8 gives the characteristics of the

considered instances. The set of initial solutions are created

by randomly generating permutation sequences. The quality

of solution is represented by the total distance of the route.

TABLE 8 THE TRAVELING SALESMAN INSTANCES
Instances Name No. Cities

Instance 1 pr299 299
Instance 2 usa13509 13509

Instance 3 rat575 575

Instance 4 u2152 2152
Instance 5 d1291 1291

6) Vehicle Routing Problems

The vehicle routing problem is a well-known challenging

combinatorial optimization problem [45]. Given a set of

customers associated with demand and serving time, and a

fleet of vehicles with a maximum capacity, the aim is to

design a least cost set of routes to serve all customers,

where each vehicle starts and ends at the depot, the total

demand of each route does not exceed the vehicle capacity,

each customer is visited exactly once by exactly one vehicle

during its time window(s). Table 9 shows the characteristics

of the considered instances. The set of initial solutions are

generated as follows: first create an empty route, then loop

through all customers and add any one to the current route

that does not violate any constraints. If no customer can be

added to the current route, create a new route. The process

is repeated until all customers have been assigned to a

route. The quality of solution represents the total travel

distance.

TABLE 9 THE VEHICLE ROUTING PROBLEMS INSTANCES

Instances Name
No.

Vehicles

Vehicle

Capacity

Instance 1 Homberger/RC/RC2-10-1 250 1000
Instance 2 Solomon/RC/RC103 25 200

Instance 3 Homberger/C/C1-10-1 250 200

Instance 4 Solomon/R/R101 25 1000
Instance 5 Homberger/RC/RC1-10-5 250 200

C. The perturbative low level heuristics

HyFlex provides, for each of the considered problems, a set

of different perturbative low level heuristics. The set of

perturbative low level heuristics are classified into four

types as follows:

- Mutational or perturbation heuristics: generate a new

solution by modifying the current solution by changing,

removing, swapping, adding or deleting one solution

component. Mutation intensity is controlled by α, 0<= α

<=1.

- Ruin-recreate (destruction-construction) heuristics:

destroy part of the current solution and recreate it in a

different way to generate a new solution. The difference

between ruin-recreate and mutational heuristics is that the

ruin-recreate can be seen as large neighborhood

structures and they use problem specific construction

heuristics to recreate the solutions.

- Hill-climbing or local search heuristics: iteratively

perturb the current solution, only accepting improving

solutions, until a local optimum is found or a stopping

condition is satisfied. The difference between hill-

climbing and mutational heuristics is that hill-climbing is

an iterative improvement process, accepting only

improving solutions. The depth of search is controlled by

β, 0<= β <=1.

- Crossover heuristics: take two solutions and produce a

new one by combining them.

Table 10 shows the total number of each type of the

perturbative low level heuristics for the six problem

domains [23].

TABLE 10 HYFLEX LOW LEVEL HEURISTIC TYPES

Problem domains M R&R HC Xover Total

1- Boolean Satisfiability 4 1 2 2 9

2- One Dimensional Bin
Packing

3 2 2 1 8

3- Permutation Flow Shop 5 2 4 3 15

4- Personnel Scheduling 1 3 4 3 12
5- Traveling Salesman 5 1 6 3 15

6- Vehicle Routing 4 2 4 2 12

Note: M: mutation. R&R: Ruin-recreate. HC: Hill-climbing. Xover:

Crossover

VI. COMPUTATIONAL RESULTS AND DISCUSSION

This section is devoted to assess the performance of GEP-

HH against other hyper-heuristic methods in the literature.

Our aims are:

- To assess the benefit of integrating the memory

mechanism within GEP-HH.

- To test the generality and consistency of GEP-HH over

six different problem domains and compare it to the state

of the art of hyper-heuristic methods.

In this work, we have carried out, for each problem domain,

two sets of experiments:

i) The first one compares the performance of the GEP-HH

with the memory mechanism (GEP-HH) against GEP-

HH without the memory mechanism (denoted as GEP-

HH*) using the same parameter values and

computational resources.

ii) The second evaluates the performance of GEP-HH

against the top five hyper-heuristics of the first cross-

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

domain heuristic search challenge (CHeSC) [23]. These

are: AdapHH [34], VNS-TW [46], ML [47], PHUNTER

[48] and EPH [49].

Following CHeSC, rules and in order to make the

comparison as fair as possible, for both experimental tests,

the execution time is used as the stopping condition. It is

determined by using the benchmark software provided by

the organizers to ensure fair comparisons between

researchers using different platforms [23]. We have used

this software to determine the allowed execution time using

our computer resources (i.e. 10 minutes on the benchmark

machine).

 The best, average, standard deviation and median of

GEP-HH and GEP-HH* over independent 31 runs

(adhering to the CHeSC competition rules) are reported for

each instance. In addition, the percentage deviation from

the best known value found in the hyper-heuristic literature

is also calculated for each instance as follows:

%
*

*
(%)

best

bestbest HHGEP 
  (3)

where bestGEP-HH is the best result returned over 31

independent runs by GEP-HH and best* is the best result

obtained by other hyper-heuristic methods.

To demonstrate the generality, consistency and the

effectiveness of GEP-HH across all tested problem

domains, we have compared the performance of GEP-HH

against GEP-HH* and existing hyper-heuristic methods

based on generality, consistency, efficiency, statistical test

and formula one (see [30] for more details).

A. The computational results of GEP-HH compared to

GEP-HH*

The first set of experiments presents the comparison

between GEP-HH and GEP-HH* across all of the six

considered problems. Each problem domain contains 5

instances and the total number of tested instances is 30. The

computational results of GEP-HH and GEP-HH* over 31

independent runs for the six problems are summarized in

Table 11.

Observing the results reported in Table 11, we can make

the following observations: in terms of solution quality,

GEP-HH outperformed GEP-HH* on 18, tieing with GEP-

HH* on 11 and being inferior on 1 (MAX-SAT Instances 4)

out of 30 instances of the considered problem domains.

From the average results perspective, it is clear that, across

all instances of the considered problems domains, GEP-HH

is the overall best.

In addition to the solution quality and the average results,

it is natural to ask how consistent GEP-HH is, i.e., how

likely GEP-HH would perform well over multiple runs on

each instance compared to GEP-HH*. This question can be

answered by analyzing the standard deviation and the

median over 31 runs as well as the box-plots of solution

distributions. In general, the standard deviation produced by

GEP-HH is smaller than those from GEP-HH* for all

instances of the considered problem domains (except PS 2

in Table 11). From the median perspective, we can draw the

following conclusion: GEP-HH obtained better median

results for 19, tieing on 3 and being slightly worse than

GEP-HH* on 8 out of 30 instances of the considered

problem domains. To save space, the box-plot figures (Figs.

8 to 13) are presented in the supplementary file. Figs. 8 to

13 show the box-plot of results distribution of GEP-HH and

GEP-HH* for all instances of the considered problem

domains, where one can clearly see that, for most instances,

GEP-HH is more consistent than GEP-HH*. This indicates

that GEP-HH is more consistent than GEP-HH* across all

tested problem domains.

In addition to the above results, it is worth drawing some

statistical significant conclusions regarding the performance

of GEP-HH and GEP-HH*. Therefore, the Wilcoxon test

(pairwise comparisons) with significant level of 0.05 is

performed. The p-value of the Wilcoxon test of GEP-HH

versus GEP-HH* are presented in the last column of Table

11. Where “S+” indicate GEP-HH is statistically better than

GEP-HH* (p-value <0.05), “S-” indicate GEP-HH

outperformed by GEP-HH* (p-value >0.05) and “~”

indicate both algorithms have the same performance (p-

value =0.05). The results in Table 11 (last column) show

that GEP-HH is statistically better than GEP-HH* on 23

instances, not statistically better than GEP-HH* on 5 and

perform the same as GEP-HH* on 2 instances out of 30

tested instances of the considered problem domains.

To summarize, the results demonstrate that GEP-HH is

better than GEP-HH* in term of consistency, efficiency and

generality (with regards to the tested instances of the

considered problem domains). This is mainly due to the use

of memory mechanism within GEP-HH which has a

positive effect on the ability of GEP-HH in producing good

quality and consistent results compared to GEP-HH*.

TABLE 11 THE RESULT OF GEP-HH COMPARING TO GEP-HH* FOR ALL PROBLEM DOMAINS

 Instances
GEP-HH GEP-HH* GEP-HH vs. GEP-HH*

Best Average Std Median Best Average Std Median p-value

M
A

X
-S

A
T

 SAT 1 1 4.4 1.70 3 1 5.0 1.74 3 S+

SAT 2 1 13.0 11.01 3 5 20.4 13.73 5 S+

SAT 3 1 3.8 2.44 2 1 4.7 3.26 3 S+

SAT 4 4 8.0 4.60 4 1 12.3 6.78 8 S-

SAT 5 7 7.8 0.88 7 7 10.3 3.20 8 S+

B
in

 P
a

c
k

in
g

 BP 1 0.0131 0.029 0.013 0.0192 0.034 0.053 0.021 0.0168 S+

BP 2 0.0029 0.005 0.003 0.0032 0.0067 0.011 0.006 0.0036 S+

BP 3 0.0011 0.003 0.002 0.0039 0.0035 0.014 0.004 0.0038 S+

BP 4 0.1083 0.108 0.001 0.1083 0.1083 0.115 0.024 0.1085 S-

BP 5 0.0031 0.015 0.010 0.0066 0.0031 0.027 0.016 0.0066 S+

F l o w S h o p

FS 1 6212 6243.29 10.39 6245 6212 6283.12 89.57 6248 S+

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

FS 2 26721 26821 83.79 26898 26744 26887.9 85.12 26804 S+

FS 3 6285 6325.83 11.87 6326 6295 6335.83 16.25 6323 S+

FS 4 11320 11376.7 24.56 11377 11327 11377 27.12 11359 S+

FS 5 26530 26616 40.70 26634 26531 26638 50.37 26604 S+

P
e
r
so

n
n

e
l

S
c
h

e
d

u
li

n
g

 PS 1 11 18.64 3.91 21 14 33.80 24.10 22 S+

PS 2 9345 10830.4 1660.5 9628 9345 11077.0 1403.8 9630 S-

PS 3 3123 3312.16 83.10 3351 3124 3369.38 104.79 3231 ~

PS 4 1364 1541.48 86.52 1555 1378 1619.54 133.14 1590 S+

PS 5 280 306.54 14.25 315 290 322.45 27.03 320 S+

T
r
a
v
e
li

n
g

S
a
le

sm
a

n
 TSP 1 48194.9 48222.72 38.41 48194.9 48194.9 48519.82 450.35 48194.9 S-

TSP 2 20754969 21227727 255264 21268571 20910693 21536045 760071.4 21270792 ~

TSP 3 6796 6828.34 13.80 6810.5 6796.0 6868.6 54.98 6816.2 S+

TSP 4 65952.1 67118.9 493.71 67105.2 66448.2 67360.89 624.27 66898.2 S+

TSP 5 52050 54393.66 1015.18 54755.3 52052.7 55547.7 1879.55 54896.8 S+

V
e
h

ic
le

R
o
u

ti
n

g
 VRP 1 58052.1 60046.3 1444.7 60720.0 67012.9 82505.9 5722.2 83094.9 S+

VRP 2 12261.0 12814.52 519.7 12337.9 12263.0 13639.4 907.4 13341.0 S+

VRP 3 142479.1 145294.4 1622.3 145418.9 142562.5 145664.7 1857.9 145329.9 S-

VRP 4 20650.8 20653.6 1.3 20653.8 20650.8 20684.2 6.3 20683.5 S+

VRP 5 144258.1 148943.6 1365.3 149007.9 144258.1 149326.4 2488.1 149107.9 S+

B. The computational results of GEP-HH compared to

other hyper-heuristic methods

We now assess the performance GEP-HH versus the top

five hyper-heuristic methods from the CHeSC competition

[23] (AdapHH, VNS-TW, ML, PHUNTER and EPH) from

the best and median results perspective. In addition, we

have also included the results of GEP-HH* (without

memory) in the comparison to assess its ability in

producing good quality solutions compared to the top five

hyper-heuristic methods from the CHeSC competition.

Table 12 present the best, percentage deviation and

instances ranking results for the six problems obtained by

GEP-HH along with a comparison with respect to the best

result of top five hyper-heuristic methods from the CHeSC

competition. Please note that all the compared methods

(GEP-HH, GEP-HH* and the top five hyper-heuristics)

used the 10 minute execution time as the stopping condition

which is determined by the benchmark software provided

by the CHeSC organizers.

The results in Table 12 suggest that, out of 30 instances,

GEP-HH outperformed the top five hyper-heuristic methods

on 12 instances, match the best results on 12 instances and

is inferior on 6 instances. We can also remark that GEP-HH

without memory mechanism (GEP-HH*) manages to

produce new best results for 6 instances and tieing on 12

out of 30 instances compared to the top five hyper-heuristic

methods.

In Table 13, we provide the median, percentage deviation

and instances ranking results achieved by GEP-HH in

comparison with the median results obtained by the top five

hyper-heuristic methods from the CHeSC competition as

well as GEP-HH* median results. It is clear from Table 13

that, GEP-HH obtained better median results for 4 instances

and tie with other hyper-heuristic methods on 8 out of 30

instances. Table 13 also show that GEP-HH without

memory mechanism (GEP-HH*) obtained better median

results for 1 instance and matched the best in 6 out of 30

instances of the considered problem domains.

To summarize, even though GEP-HH did not manage to

obtain the best results for all instances, the percentage

deviation of these instances is, however, relatively small

and GEP-HH achieved the second best and third best results

for other instances. One can clearly see that both GEP-HH

and GEP-HH* have generalized well across all tested

domains and produced good quality results compared to the

top five hyper-heuristic methods in the existing literature.

TABLE 12 THE BEST RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS

 GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition

 Instances Best ∆(%) Rank Best AdapHH VNS-TW ML PHUNTER EPH

M
A

X
-S

A
T

 SAT 1 1 0.0 1 1 1 1 1 1 4

SAT 2 1 0.0 1 5 3 1 3 5 5

SAT 3 1 0.0 1 1 1 1 1 2 2

SAT 4 4 300 2 1 1 1 4 4 5

SAT 5 7 0.0 1 7 9 7 7 7 7

B
in

 P
a
c
k

in
g

 BP 1 0.0131 0 1 0.034 0.0131 0.0298 0.0323 0.0397 0.0430

BP 2 0.0029 3.5 2 0.0067 0.0028 0.0036 0.0067 0.0034 0.0034

BP 3 0.0011 175 2 0.0035 0.0004 0.0136 0.0124 0.0178 0.0080

BP 4 0.1083 0 1 0.1083 0.1083 0.1087 0.1084 0.1088 0.1083

BP 5 0.0031 0 1 0.0031 0.0031 0.0238 0.0178 0.0318 0.0136

F
lo

w
 S

h
o

p
 FS 1 6212 -0.03 1 6212 6214 6230 6226 6221 6232

FS 2 26721 -0.06 1 26744 26757 26765 26744 26786 26738

FS 3 6285 -0.2 1 6295 6303 6303 6304 6303 6309

FS 4 11320 0.01 2 11327 11318 11333 11338 11336 11328

FS 5 26530 -0.01 1 26531 26541 26535 26559 26600 26569

P
e r
s

o
n n
e l

S
c

h
e d u
l

in g
 PS 1 11 0.00 1 14 17 13 11 13 16

PS 2 9345 -0.02 1 9345 9435 9347 9436 9624 9747

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

PS 3 3123 -0.03 1 3124 3142 3124 3138 3142 3142

PS 4 1364 1.03 2 1378 1448 1370 1384 1350 1469

PS 5 280 -3.44 1 290 295 290 300 290 310

T
r
a
v
e
li

n
g

S
a
le

sm
a

n
 TSP 1 48194.9 0.00 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9

TSP 2 20754969 0.01 3 20910693 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1

TSP 3 6796 0.00 1 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2

TSP 4 65952.1 -0.009 1 66448.2 66277.1 66830.2 66428.2 66641.4 65958.6

TSP 5 52050 -0.006 1 52052.7 52383.8 52896.5 52626.7 52172.0 52053.4

V
e
h

ic
le

R
o
u

ti
n

g
 VRP 1 58052.1 0.0 1 67012.9 58052.1 68340.4 67622.1 61139.3 63932.2

VRP 2 12261.0 -0.016 1 12263.0 13304.9 13298.1 13298.4 12263.0 13284.0

VRP 3 142479.1 -0.02 1 142562.5 145481.5 144012.6 142517.0 143663.9 143510.8

VRP 4 20650.8 0.0 1 20650.8 20652.3 20651.1 20651.1 20650.8 20650.8

VRP 5 144258.1 -1.17 1 144258.1 146154.0 146513.6 146200.8 146472.9 145976.5

TABLE 13 THE MEDIAN RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS

 GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition

 Instances Median ∆(%) Rank Median AdapHH VNS-TW ML PHUNTER EPH

M
A

X
-S

A
T

 SAT 1 3 0.0 1 3 3 3 5 5 7

SAT 2 3 0.0 1 5 5 3 10 11 11

SAT 3 2 0.0 1 3 2 2 3 4 6

SAT 4 4 33.3 2 8 3 3 9 9 15

SAT 5 7 -12.5 1 8 8 10 8 8 13

B
in

 P
a

c
k

in
g

 BP 1 0.0192 19.2 2 0.0168 0.0161 0.0370 0.0421 0.0479 0.0504

BP 2 0.0032 -11.1 1 0.0036 0.0036 0.0072 0.0075 0.0036 0.0036

BP 3 0.0039 8.3 2 0.0038 0.0036 0.0167 0.0146 0.0201 0.0113

BP 4 0.1083 0 1 0.1085 0.1083 0.1088 0.1085 0.1091 0.1087

BP 5 0.0066 88.5 2 0.0066 0.0035 0.0278 0.0218 0.0395 0.0224

F
lo

w
 S

h
o

p
 FS 1 6245 0.08 2 6248 6240 6251 6245 6253 6250

FS 2 26898 0.36 6 26804 26814 26803 26800 26858 26816

FS 3 6326 0.04 2 6323 6326 6328 6323 6350 6347

FS 4 11377 0.15 3 11359 11359 11376 11384 11388 11397

FS 5 26634 0.12 3 26604 26643 26602 26610 26677 26640

P
e
r
so

n
n

e
l

S
c
h

e
d

u
li

n
g

 PS 1 21 16.6 2 22 24 19 18 25 22

PS 2 9628 0.0 1 9630 9667 9628 9812 10136 10074

PS 3 3351 3.9 6 3231 3289 3223 3228 3255 3232

PS 4 1555 -2.2 1 1590 1765 1590 1605 1595 1615

PS 5 315 0.0 1 320 325 320 315 320 345

T
r
a

v
e
li

n
g

S
a

le
sm

a
n

 TSP 1 48194.9 0.0 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9

TSP 2 21041571 0.01 2 21270792 20822145.7 21042675.8 21093828.3 21246427.7 21064606.3

TSP 3 6810.5 0.0 1 6816.2 6810.5 6819.1 6820.6 6813.6 6811.9

TSP 4 67105.2 0.5 4 66898.2 66879.8 67378.0 66894.0 67136.8 66756.2

TSP 5 54755.3 3.4 5 54896.8 53099.8 54028.6 54368.4 52934.4 52925.3

V
e
h

ic
le

R
o

u
ti

n
g

 VRP 1 60720.0 -0.20 1 83094.9 60900.6 76147.1 80671.3 64717.8 74715.8

VRP 2 12337.9 0.3 2 13341.0 13347.6 13367.9 13329.8 12290.0 13335.6

VRP 3 145418.9 0.05 2 145329.9 148516.8 148206.2 145333.5 146944.4 162188.5

VRP 4 20653.8 0.01 2 20683.5 20656.6 21642.9 20654.1 20650.8 20650.8

VRP 5 149007.9 0.23 4 149107.9 148689.2 149132.4 148975.1 148659.0 155224.7

C. DISCUSSION

The numerical results presented throughout this work

demonstrate that, across six very different combinatorial

optimization problems, GEP-HH achieved favorable results

compared to the top five hyper-heuristic methods from the

CHeSC competition. More importantly, out of the 30

instances GEP-HH matched the best results for 12 instances

and manages to obtain new best results for 12 instances. In

all domains, the standard deviation and the percentage

deviation of GEP-HH reveal that GEP-HH results are stable

and very close to the best results obtained by other hyper-

heuristic methods. These results are also supported by

statistical tests and box-plots of solution distribution. In

order to compare the performance of GEP-HH against the

top five hyper-heuristic methods from the CHeSC

competition (AdapHH, VNS-TW, ML, PHUNTER and

EPH) more accurately, we have conducted the following

comparison:

i) In the first comparison we used Formula one that was

used in the CHeSC competition [23] to calculate the

score of GEP-HH and the top five hyper-heuristic

methods. Table 14 shows the overall rankings of GEP-

HH and the top five hyper-heuristic methods (the higher

the better). We also included GEP-HH* in the

comparisons. It is interesting to note that GEP-HH

obtained the first rank, whilst, GEP-HH* obtained the

third rank compared to the top five hyper-heuristic

methods.

TABLE 14 THE RANKING OF GEP-HH AND THE TOP FIVE HYPER-

HEURISTICS
Hyper-heuristics Score

1- GEP-HH 167.03

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

2- AdapHH 155.7

3 GEP-HH* 130.43
4- VNS-TW 110.2

5- ML 101.33

6- PHUNTER 63.83
7- EPH 75.25

ii) In the second comparison, we conducted a multiple

comparison statistical tests between GEP-HH and the

top five hyper-heuristic methods. To do so, we

performed Friedman and Iman-Davenport tests with a

critical level of 0.05 to detect whether there are

statistical differences between the results of these

methods. The p-value of Friedman (p-value = 0.000)

and Iman-Davenport (p-value =0.000) are less than the

critical level 0.05, which implies that there is a

significant difference between the compared methods.

As a result, we conducted a Friedman test to calculate

the average ranking of each method. Table 15

summarizes the average ranking (the lower the better)

produced by the Friedman test for each method. It is

obvious that, GEP-HH ranked the first, followed by

AdapHH, GEP-HH*, ML, VNS-TW, PHUNTER and

EPH.

TABLE 15 THE AVERAGE RANK OBTIANED
BY FRIEDMAN TEST

Hyper-heuristics Ranking

1- GEP-HH 3.2333

2- AdapHH 3.2667
3- GEP-HH* 3.6833

4- ML 3.8667

5- VNS-TW 4.05

6- PHUNTER 4.9333

7- EPH 4.9667

Overall, the advantages of the proposed framework are the

ability to utilize the information about the current state

during instance solving to automatically generate the

heuristic selection mechanism and an acceptance criterion.

Results demonstrate that it provides a general mechanism

regardless of the nature and complexity of the instances and

can be applied to other domains without many changes (i.e.

the user only needs to change the low level heuristics).

Applying a methodology to other problem domains or even

different instances of the same problem usually requires a

considerable amount of modification (e.g. change algorithm

parameters or structures). Our GEP-HH provides automated

heuristic method that can cope with not only different

instances of the same problem, but we have demonstrated

its generality across six different problem domains. We

would hope that the proposed methodology would also

generalize to other domains.

VII. CONCLUSIONS

In this work, we have proposed a new hyper-heuristic

framework for combinatorial optimization problems. At the

higher level, we have introduced a gene expression

programming framework to automatically generate the high

level heuristic of the hyper-heuristic framework. The

proposed gene expression programming framework evolves

a population of individuals and each one is decoded into a

heuristic selection mechanism and an acceptance criterion.

The evolved heuristic selection mechanism takes the

current state as input (pervious performance) and decides

which low level heuristic is to be applied. Then, the

generated solution is accepted if it satisfies the evolved

acceptance criterion. At the lower level, we employed a set

of human designed perturbative low level heuristics to

perturb the solution of a given instance. To diversify the

search, we have embedded the proposed hyper-heuristic

with a memory mechanism, which contains a set of high

quality and diverse solutions, which are updated during the

search.

We have shown that gene expression programming

algorithm can be effectively used to automatically generate

the high level heuristics of the perturbative hyper-heuristic

framework. The efficiency, consistency and the generality

of GEP-HH is demonstrated across six challenging

problems using HyFlex software. The experimental results

demonstrate that GEP-HH achieves highly competitive

results, if not superior, and generalizes well over six

problem domains (MAX-SAT, one dimensional bin

packing, permutation flow shop, personnel scheduling,

traveling salesman and vehicle routing problems) when

compared to GEP-HH without a memory mechanism as

well as the top five hyper-heuristic methods from the

CHeSC competition. The main contributions of this work

are:

1- The development of a GEP-HH hyper-heuristic

framework that automatically generates, during instance

solving process, the high level heuristic (heuristic

selection mechanism and the acceptance criteria) of the

improvement based hyper-heuristic framework.

2- The development of a population based hyper-heuristic

framework that uses a memory mechanism of a set of

solutions, which is updated during the solving process to

effectively diversify the search.

3- The development of a hyper-heuristic framework that is

not customized to specific problems class and can be

applied to different problems without much

development effort.

In our future work, we intend to investigate the

effectiveness of the GEP-HH across other combinatorial

optimization problems.

REFERENCES

[1] E. G. Talbi, Metaheuristics: From design to implementation:

Wiley Online Library, 2009.

[2] T. Weise, M. Zapf, R. Chiong, and A. Nebro, "Why is
optimization difficult?," Nature-Inspired Algorithms for

Optimisation, pp. 1-50, 2009.

[3] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.
R. Woodward, "A classification of hyper-heuristic approaches,"

Handbook of Metaheuristics, pp. 449-468, 2010.

[4] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent
developments," Adaptive and multilevel metaheuristics, pp. 3-

29, 2008.

[5] Y. Hamadi, E. Monfroy, and F. Saubion, "What is Autonomous

Search?," Hybrid Optimization, pp. 357-391, 2011.

[6] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle,

"ParamILS: an automatic algorithm configuration framework,"

Accepted by IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014

Journal of Artificial Intelligence Research, vol. 36, pp. 267-

306, 2009.
[7] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter

control in evolutionary algorithms," IEEE Transactions on

Evolutionary Computation, vol. 3, pp. 124-141, 1999.
[8] X. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, "A multi-facet

survey on memetic computation," IEEE Transactions on

Evolutionary Computation, vol. 15, pp. 591-607, 2011.
[9] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in

memetic algorithms," IEEE Transactions on Evolutionary

Computation, vol. 8, pp. 99-110, 2004.
[10] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, "Hybrid

metaheuristics in combinatorial optimization: A survey,"

Applied Soft Computing, 2011.
[11] F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Tradeoffs in the

empirical evaluation of competing algorithm designs," Annals

of Mathematics and Artificial Intelligence, vol. 60, pp. 65-89,
2010.

[12] D. H. Wolpert and W. G. Macready, "No free lunch theorems

for optimization," IEEE Transactions on Evolutionary

Computation, vol. 1, pp. 67-82, 1997.

[13] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag,

"Analyzing bandit-based adaptive operator selection
mechanisms," Annals of Mathematics and Artificial

Intelligence, vol. 60, pp. 25-64, 2010.

[14] M. Brunato and R. Battiti, "R-EVO: A Reactive Evolutionary
Algorithm for the Maximum Clique Problem," IEEE

Transactions on Evolutionary Computation, pp. 1-13, 2010.
[15] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, "Self-adaptive

multimethod search for global optimization in real-parameter

spaces," IEEE Transactions on Evolutionary Computation, vol.
13, pp. 243-259, 2009.

[16] X. Chen and Y.-S. Ong, "A Conceptual Modeling of Meme

Complexes in Stochastic Search," IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and

Reviews, vol. 42, pp. 612-625, 2012.

[17] M. N. Le, Y.-S. Ong, Y. Jin, and B. Sendhoff, "A Unified
Framework for Symbiosis of Evolutionary Mechanisms with

Application to Water Clusters Potential Model Design," IEEE

Computational Intelligence Magazine, vol. 7, pp. 20-35, 2012.
[18] J. E. Smith, "Coevolving Memetic Algorithms: A Review and

Progress Report," IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 37, pp. 6-17, 2007.
[19] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.

Qu, "Hyper-heuristics: A Survey of the State of the Art,"

Journal of the Operational Research Society, in press, 2013.
[20] E. Özcan, B. Bilgin, and E. E. Korkmaz, "A comprehensive

analysis of hyper-heuristics," Intelligent Data Analysis, vol. 12,

pp. 3-23, 2008.
[21] C. Ferreira, Gene Expression Programming: Mathematical

Modeling by an Artificial Intelligence (Studies in

Computational Intelligence): Springer-Verlag New York, Inc.,
2006.

[22] J. Arabas, Z. Michalewicz, and J. Mulawka, "GAVaPS-a

genetic algorithm with varying population size," in Proceedings

of the 1st IEEE Conference on Evolutionary Computation,

1994, pp. 73-78 vol. 1.

[23] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.
Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.

Petrovic, and E. Burke, "HyFlex: A Benchmark Framework for

Cross-Domain Heuristic Search," in Evolutionary Computation
in Combinatorial Optimization, 2012, pp. 136-147.

[24] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter setting

in evolutionary algorithms vol. 54: Springer Verlag, 2007.
[25] A. Bölte and U. W. Thonemann, "Optimizing simulated

annealing schedules with genetic programming," European

Journal of Operational Research, vol. 92, pp. 402-416, 1996.
[26] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A

genetic programming hyper-heuristic approach for evolving 2-

D strip packing heuristics," IEEE Transactions on Evolutionary
Computation, vol. 14, pp. 942-958, 2010.

[27] W. Langdon and R. Poli, "Evolving problems to learn about

particle swarm optimizers and other search algorithms," IEEE
Transactions on Evolutionary Computation, vol. 11, pp. 561-

578, 2007.

[28] J. Tavares and F. B. Pereira, "Towards the development of self-

ant systems," in Proceedings of the 13th annual conference on
Genetic and evolutionary computation (GECCO), 2011, pp.

1947-1954.

[29] E. K. Burke, M. R. Hyde, and G. Kendall, "Grammatical
Evolution of Local Search Heuristics," IEEE Transactions on

Evolutionary Computation, pp. 1-1, 2012.

[30] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "Grammatical
Evolution Hyper-heuristic for Combinatorial Optimization

problems," IEEE Transactions on Evolutionary Computation,

to appear 2013.
[31] E. K. Burke, G. Kendall, and E. Soubeiga, "A tabu-search

hyperheuristic for timetabling and rostering," Journal of

Heuristics, vol. 9, pp. 451-470, 2003.
[32] P. Garrido and M. C. Riff, "DVRP: a hard dynamic

combinatorial optimisation problem tackled by an evolutionary

hyper-heuristic," Journal of Heuristics, vol. 16, pp. 795-834,
2010.

[33] R. Qu and E. K. Burke, "Hybridizations within a graph-based

hyper-heuristic framework for university timetabling

problems," Journal of the Operational Research Society, vol.

60, pp. 1273-1285, 2008.

[34] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden
Berghe, "An intelligent hyper-heuristic framework for chesc

2011," in The 6th Learning and Intelligent Optimization

Conference (LION12). Paris, France, 2012.
[35] X. Chen, "An algorithm development environment for

problem-solving: software review," Memetic Computing, vol. 4,
pp. 149-161, 2012/06/01 2012.

[36] M. Bader-El-Den and R. Poli, "Generating SAT local-search

heuristics using a GP hyper-heuristic framework," in Artificial
Evolution, 2008, pp. 37-49.

[37] J. C. Tay and N. B. Ho, "Evolving dispatching rules using

genetic programming for solving multi-objective flexible job-
shop problems," Computers & Industrial Engineering, vol. 54,

pp. 453-473, 2008.

[38] E. G. Talbi and V. Bachelet, "Cosearch: A parallel cooperative
metaheuristic," Journal of Mathematical Modelling and

Algorithms, vol. 5, pp. 5-22, 2006.

[39] V. Nannen and A. Eiben, "Efficient relevance estimation and
value calibration of evolutionary algorithm parameters," in

IEEE Congress on Evolutionary Computation, 2007, pp. 103-

110.
[40] M. Hyde, G. Ochoa, J. A. Vázquez-Rodríguez, and T. Curtois,

"A HyFlex Module for the MAX-SAT Problem," University of

Nottingham, Tech. Rep.2011.
[41] M. Hyde, G. Ochoa, T. Curtois, and J. Vázquez-Rodríguez, "A

hyflex module for the one dimensional bin-packing problem,"

School of Computer Science, University of Nottingham, Tech.
Rep 2010.

[42] J. A. Vázquez-Rodrıguez, G. Ochoa, T. Curtois, and M. Hyde,

"A hyflex module for the permutation flow shop problem,"
School of Computer Science, University of Nottingham, Tech.

Rep 2010.

[43] T. Curtois, G. Ochoa, M. Hyde, and J. A. Vázquez-Rodríguez,

"A hyflex module for the personnel scheduling problem,"

School of Computer Science, University of Nottingham, Tech.

Rep 2010.
[44] M. Bellmore and G. L. Nemhauser, "The traveling salesman

problem: a survey," Operations Research, pp. 538-558, 1968.

[45] P. Toth and D. Vigo, "The vehicle routing problem, Society for
industrial and applied mathematics," SIAM Monographs on

Discrete Mathematics and Applications, 2002.

[46] P. C. Hsiao, T. C. Chiang, and L. C. Fu, "A variable
neighborhood search-based hyperheuristic for cross-domain

optimization problems in CHeSC 2011 competition " CHeSC

2011 competition 2011.
[47] M. Larose, "A Hyper-heuristic for the CHeSC 2011," CHeSC

2011 competition 2011.

[48] F. Xue, C. Chan, W. Ip, and C. Cheung, "Pearl Hunter: A
Hyper-heuristic that Compiles Iterated Local Search

Algorithms," CHeSC 2011 competition 2011.

[49] D. Meignan, "An Evolutionary Programming Hyper-heuristic
with Co-evolution for CHeSC’11," CHeSC 2011 competition

2011.

