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 

Abstract—Hyper-heuristic approaches aim to automate 

heuristic design in order to solve multiple problems instead of 

designing tailor-made methodologies for individual problems. 

Hyper-heuristics accomplish this through a high level heuristic 

(heuristic selection mechanism and an acceptance criterion). 

This automates heuristic selection, deciding whether to accept 

or reject the returned solution. The fact that different 

problems or even instances, have different landscape 

structures and complexity, the design of efficient high level 

heuristics can have a dramatic impact on hyper-heuristic 

performance. In this work, instead of using human knowledge 

to design the high level heuristic, we propose a gene expression 

programming algorithm to automatically generate, during the 

instance solving process, the high level heuristic of the hyper-

heuristic framework. The generated heuristic takes 

information (such as the quality of the generated solution and 

the improvement made) from the current problem state as 

input and decides which low level heuristic should be selected 

and the acceptance or rejection of the resultant solution. The 

benefit of this framework is the ability to generate, for each 

instance, different high level heuristics during the problem 

solving process. Furthermore, in order to maintain solution 

diversity, we utilize a memory mechanism which contains a 

population of both high quality and diverse solutions that is 

updated during the problem solving process. The generality of 

the proposed hyper-heuristic is validated against six well 

known combinatorial optimization problem, with very 

different landscapes, provided by the HyFlex software. 

Empirical results comparing the proposed hyper-heuristic 

with state of the art hyper-heuristics, conclude that the 

proposed hyper-heuristic generalizes well across all domains 

and achieves competitive, if not superior, results for several 

instances on all domains. 
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I. INTRODUCTION 

The growth in the complexity and constraints of 

optimization problems that can be found in many real world 

applications makes them not only an ongoing challenge but 

also implies that they cannot be solved using exact methods 

within tractable (or acceptable) computational time [1], [2]. 

Alternatively, meta-heuristic approaches, which offer no 

guarantee of returning an optimal solution (or even near 

optimal solutions), becomes not only a suitable option but 

also the only available option, as they usually return 

reasonably good solutions within a reasonable time. 

Although the efficiency of meta-heuristic approaches has 

been demonstrated over several real world applications, 

their success is due to the use of domain-specific 

knowledge [3], [4], [5]. As a consequence, to solve a given 

problem by a meta-heuristic algorithm, practitioners usually 

have to face the problem of configuring the selected meta-

heuristic such as selecting the appropriate problem specific 

structures, most suitable operators and fine tuning the 

parameters, which are non-trivial tasks [6], [7] .  

Over the years, it has become evident that the decision of 

which problem specific structures, operators and parameter 

values to be included (or excluded) in a given meta-

heuristic algorithm has an impact on algorithm performance 

[3], [8], [9], [10]. Thus, to obtain a good quality solution, 

meta-heuristic approaches have to be expertly crafted by 

incorporating problem-specific knowledge of the 

underlying problem instance [3], [11]. Customization of a 

meta-heuristic can be problem or even instance dependent 

and consequently will decrease its generality. Moreover, 

according to the No Free Lunch Theorem [12] no single 

algorithm with a unique configuration is able to perform 

well over all problem instances. As a consequence, when 

new problems are considered, meta-heuristics need to be 

(re)developed, which is usually not only time consuming 

but also requires a deep understanding of both algorithm 

behavior and the instance structure. Broadly speaking, at 

the expense of generality, researchers and practitioners have 

concentrated their effort on outperforming existing methods 

on one, or a few instances, by tailoring a given algorithm to 

the problem at hand.   

Arguably, meta-heuristic configuration plays a crucial 

role on the algorithm performance [5], [6]. Furthermore, 

different problems require different configurations, and 

even for different instances of the same problem using a 
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different configuration during the solving process could 

improve algorithm performance [7]. When a search 

becomes trapped in a local optima, adapting the algorithm, 

on the fly, could help the algorithm to escape. Therefore, 

one way to design an effective search methodology is to 

take advantage of several operators as well as different 

parameter values by combining them in one framework or 

adjusting them during the solving process [13]. Automated 

heuristic design has proven to be an efficient and effective 

way in enhancing the search methodology by adjusting 

algorithm operators or parameter values in on-line fashion 

[7], [13]. These methodologies should work well, not only 

across different instances of the same problem, but also 

across several problem domains. Hyper-heuristics [3], 

parameter tuning [7], reactive search [14], adaptive 

memetic algorithms [9] and multi-method [15] are some of 

examples of automated heuristic design. Recently proposed 

frameworks in the automatic heuristic design concern the 

self-adaptation of search methodologies by coadapting 

algorithm configuration through coevolutionary process 

such as coadapted memeplexes [16], a theoretic model of 

symbiotic evolution [17] and the coevolving memetic 

algorithms [18]. 

This work focuses on the hyper-heuristic framework. 

Hyper-heuristics are search methodologies that explore the 

search space of a given set of heuristics, or heuristic 

components in order to select the most appropriate 

heuristic. Hyper-heuristics can also be utilized to evolve 

new heuristic by combining basic component of existing 

heuristics. These features distinguish hyper-heuristics from 

meta-heuristic methods, as they operate directly on the 

solution space. The key motivation behind hyper-heuristics 

is to raise the level of generality and to combine the 

strength of several heuristics or heuristic components into 

one framework [3].  

A traditional hyper-heuristic framework has two levels. 

The higher level heuristic manages which low level 

heuristic to call (heuristic selection mechanism) and then 

decides whether to accept the resultant solution (the 

acceptance criterion). The lower level contains a set of 

problem specific heuristics which are different for each 

problem domain. Since each instance has certain 

characteristics and landscape complexity, high level 

heuristic components have a dramatic impact on the hyper-

heuristic performance and that is why there is considerable 

research interest in devolving either new heuristic selection 

mechanisms or different acceptance criteria [3], [4]. The 

design of a good high level heuristic would increase the 

ability of the hyper-heuristic in selecting the correct 

heuristic at any particular point, and a good acceptance 

criterion can guide the search process toward promising 

regions [19], [20].  

Although the high level heuristic of a heuristic to choose 

heuristic hyper-heuristic framework, has been properly 

designed, one can argue that most of them have one (or a 

few) sensitive parameters and they have been manually 

designed by human experts [19]. In addition, a manually 

designed high level heuristic needs considerable expertise 

and experience, and they only represent a small fraction of 

the overall search space. Furthermore, as far as we are 

aware, previous hyper-heuristic frameworks that have been 

proposed in the scientific literature [4], [19] are single 

solution based method. Reliance on a single solution may 

restrict their ability in dealing with huge and heavily 

constrained search spaces [10].  

Therefore, we address the challenges of designing the 

high level heuristic components and of using a population 

of solutions in a hyper-heuristic framework by proposing 

the following (see Fig. 1):  

 

i) Instead of manually designing the high level 

heuristic of a perturbative heuristic to choose 

heuristics in a hyper-heuristic framework, we 

propose an automatic programming generation 

framework to automatically design the heuristic 

selection mechanism and the acceptance criteria by 

using gene expression programming [21] (denoted as 

GEP-HH). The proposed gene expression 

programming framework, see Fig. 1, is implemented 

as an on-line heuristic or rule generation method, 

which evolves a population of individuals. Each 

individual represents a set of rules that is decoded 

into a selection mechanism and acceptance criteria to 

be used by the hyper-heuristic framework. The 

quality of the generated rule is evaluated by inserting 

it into the hyper-heuristic framework and using it on 

a given problem instance for a certain number of 

iterations. We use the idea of controlling the 

population size in an evolutionary algorithm to 

measure the performance of the generated heuristic 

[22]. We utilize gene expression programming 

algorithm to automate the design of the high level 

heuristic of the hyper-heuristic framework instead of 

genetic programming, due to its ability in avoiding 

code bloat and the fact that it generates a solution 

that is syntactically correct [21].  

 
Fig. 1. The proposed gene expression programming based hyper-

heuristic (GEP-HH) framework. 
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ii) We utilize a memory mechanism, which contain a set 

of both high quality and diverse solutions, see Fig. 1, 

which is updated as the search progresses in order to 

enhance the ability of the perturbative heuristic to 

choose heuristics when dealing with heavily 

constrained problems in a huge search space, and 

also to diversify the search.  
 

To our knowledge, the high level heuristic components of 

the currently existing hyper-heuristic frameworks are all 

manually designed and they are also single based solution 

methods. Hence, the proposed framework represents a 

paradigm shift in using an automatic program generation 

method in automating the design of hyper-heuristics or 

meta-heuristic components, as well as using a population of 

solutions instead of a single solution within the set of low 

level heuristics. This could reduce the human expertise 

required in manually customizing the high level heuristic of 

the hyper-heuristic framework and could also enhance the 

performance of the hyper-heuristic framework. Our 

research questions are:  

 

“Can we use a gene expression programming algorithm 

framework to generate high level heuristic components 

(heuristic selection mechanism and the acceptance 

criteria) of the hyper-heuristic framework? Does the use 

of a population of solutions, instead of a single solution, 

within the hyper-heuristic framework enhance the 

performance of the hyper-heuristics? “ 

 

Thus, our objectives are: 

 

- To propose an on-line gene expression programming 

(GEP-HH) framework to automatically generate the high 

level heuristic components (heuristic selection 

mechanism and the acceptance criteria) of the hyper-

heuristic framework.  

 

- To propose a population based hyper-heuristic framework 

by incorporating a memory mechanism which contains a 

set of solutions updated during problem solving progress 

in order to effectively diversify the search.  

 

- To test the generality and the performance of the 

proposed hyper-heuristic framework over six different 

problem domains, of very different natures and compare 

the results with the state of the art hyper-heuristics. 

 

We demonstrate the generality and the consistency of the 

proposed hyper-heuristic framework using the HyFlex 

(Hyper-heuristics Flexible Framework) software [23], 

which provides access to six problem domains with very 

different landscape structures and complexity. The domains 

are: boolean satisfiability (MAX-SAT), one dimensional 

bin packing, permutation flow shop, personnel scheduling, 

traveling salesman and vehicle routing. This work is among 

the first attempts to apply a hyper-heuristic framework to 

tackle all these challenging problems. Although it is 

entirely appropriate to have a bespoke method that can 

produce the best known results for one (perhaps more) 

instance, having a methodology which is generally 

applicable to more than one problems domain would be 

more beneficial. Our ultimate goal is not to propose a 

hyper-heuristic framework that can outperform the best 

known methods but rather propose a methodology that 

generalizes well over different problem domains. However, 

the results demonstrate that the proposed hyper-heuristic is 

able to update the best known results for some instances. 

II. THE MOTIVATION BEHIND AUTOMATED HEURISTIC 

DESIGNING  

As we have mentioned earlier, given an optimization 

problem and a solution method, researchers or practitioners 

have to address the problem of which problem specific 

structures, operators and parameter values to be used within 

the given solution method in order to achieve good quality 

results. Although algorithm configuration is intuitively 

appealing, usually it is very difficult, if not impossible, to 

manually search through all possible configurations such as 

adding or removing specific operators or adjusting the 

parameter values [24]. Therefore, exploring such an 

interactive and large search space using other search 

methods (i.e. GEP, GP or other meta-heuristic algorithms) 

might yield a better performance compared to manually 

designing an algorithm [6] and this is actually what the 

automated heuristic design usually does.  

Recently, automatic program generation methods, such as 

genetic programming (GP), have paved the way for a 

paradigm of optimizing or evolving the components of 

search methodologies. For example, GP has been employed 

in [25] to evolve the cooling schedule in simulated 

annealing to solve quadratic assignment problems. Whilst, 

in [26] GP has been utilized to generate constructive 

heuristics for the hyper-heuristic framework. It is also used 

in [27] to evolve the equation that controls the movement of 

particles in particle optimization algorithms. In [28] GP has 

been used to evolve the pheromone updating strategy for an 

ant colony algorithm. Recently a grammatical evolution 

(GE) algorithm has been utilized in [29] to evolve low level 

heuristics for the bin packing problem. Whilst, GE is used 

in [30]  to automatically combine the high level heuristic 

components of the hyper-heuristic framework.  Please note 

that the main difference between the proposed gene 

expression framework and the framework introduced in 

[30] is that the framework proposed in this paper generates 

a set of rules to select the most suitable low level heuristic 

and then either accepts or rejects the generated solution, 

whilst the framework in [30] combines existing meta-

heuristic acceptance criteria with neighborhood structures. 

Furthermore, the utilized terminal and function sets are 

fundamentally different. 

However, despite the success of GP based hyper-

heuristics, the same hyper-heuristic cannot be used to 

generate heuristics for other domains such as exam 

timetabling or vehicle routing. That is, the function and 

terminal sets that have been defined for one domain cannot 

be used on other domains. In this work we propose an 

automatic program generation framework to automatically 

generate the high level heuristic of the hyper-heuristic 
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framework. The novelty of our proposed framework is that 

it can tackle many optimization problems using the same 

set of functions and terminals. This feature distinguishes 

our framework from existing GP based hyper-heuristics. In 

practice, evolving or optimizing algorithm components will 

not only alleviate user intervention in finding the most 

effective configuration, but also facilitate algorithm 

configurations. 

Thus, if the automatic program generation methods can 

optimize meta-heuristic components [25], [28] and evolve 

the constructive heuristic of the hyper-heuristic framework 

[26], then using the automatic program generation method 

(GEP in this work) to automatically design the high level 

heuristic of the hyper-heuristic framework in an on-line 

manner may produce an effective hyper-heuristic 

framework.  

III. RELATED WORK  

Hyper-heuristics are one of the automated heuristic design 

methodologies motivated by the fact that different 

heuristics impose different strength and weakness. Thus it 

makes sense to merge them into one framework. A recent 

definition of a hyper-heuristics framework is “an automated 

methodology for selecting or generating heuristics to solve 

hard computational search problems” [3]. Over the years, 

hyper-heuristic frameworks have demonstrated success in 

solving various classes of real world applications. A generic 

hyper-heuristic framework is composed of two levels 

known as high level and low level heuristics [3] (see Fig. 

2). The high level heuristic is problem independent and has 

no domain knowledge. Its role is to manage the selection or 

generation of which heuristic are to be applied at each 

decision point. The low level heuristic corresponds to a pool 

of heuristics or heuristic components.  

Hyper-Heuristics 

High Level Heuristics 

Heuristic to choose 

heuristics 

Heuristic to generate 

heuristics 

          Low Level Heuristics  

     

LLH1 LLH2

LLH3 LLHn

-Problem representation 

-Problem instances 

-Evaluation function 

-Single Solution

Problem Domain

Heuristics Repository 

Apply heuristic

Domain-independent information acquisition and processing: change in a candidate 

solution quality, number of low level heuristics, measuring the performance of the applied 

heuristics, statistics, etc.

Domain Barrier   

Fig. 2. A generic hyper-heuristic framework [3] 

 

Recently, hyper-heuristic frameworks have been classified 

[3] based on the nature of the heuristic search space and the 

source of feedback during learning (see Fig. 3). The source 

of feedback can be either on-line, if the hyper-heuristic 

framework uses the feedback obtained during the problem 

solving in decision making, or off-line, if  the hyper-

heuristic framework uses information gathered during the 

training phase in order to be used when solving other or 

unseen instances. The nature of the heuristic search space is 

also classified into two subclasses known as heuristics to 

choose heuristics and heuristics to generate heuristics. In 

either case, this is often further classified based on the 

employed low level heuristics into: constructive heuristics, 

which starts from scratch and keeps extending a partial 

solution step by step until a complete solution is generated, 

or perturbative heuristics, which starts with a complete 

solution and iteratively refines it to improve its quality.  

 

Nature of the 

search space 
Heuristics 

selection  

Heuristics 

generation  

Low level 

heuristics 
Constructive Constructive Purtrbative  Purtrbative  

Hyper-heuristics    
Source of feedback 

during learning 

On-line

No learning

Off-line

Fig. 3. Classifications of hyper-heuristic approaches, according to two 
dimensions: (i) the nature of the heuristic search space and (ii) the source 

of feedback during learning [3]. 

A. Heuristics to choose heuristics 

Most of hyper-heuristic frameworks published are 

heuristics to choose heuristics. These operate on a set of 

human designed heuristics called low level heuristics [19]. 

The set of low level heuristics can be either constructive or 

perturbative. The role of the hyper-heuristic framework is 

to intelligently select, from a given set of low level 

heuristics, which heuristic to apply at a given time. The 

motivation behind heuristics to choose heuristics is that the 

strength of several heuristics can be included in one 

framework. A traditionally perturbative heuristic based 

hyper-heuristic framework has two components, known as 

the heuristic selection mechanism and the acceptance 

criteria. The role of the selection mechanism is to select the 

low level heuristic from the given set, whilst, the 

acceptance criteria is to decide whether to accept or reject 

the resultant solution after applying the selected low level 

heuristic. Both components play an important role and have 

significant impact on hyper-heuristic performance [19], 

[20]. Examples of heuristic selection mechanisms are tabu 

search [31], genetic algorithm [32], iterated local search and 

variable neighborhood [33]. Examples of acceptance 

criteria that have been used within hyper-heuristics are 

simulated annealing, great deluge and tabu search [19]. 

More details of these hyper-heuristics can be found in  

recent surveys [19], [4].  

The cross-domain heuristic search (CHeSC) competition 

has been recently introduced, which provides a common 

software interface for investigating different (high level) 

hyper-heuristics and provides access to six problem 

domains where the low level heuristics are provided as part 

of the supplied framework [23]. The algorithm designer 

only needs to provide the higher level component (heuristic 

selection and acceptance criterion). The adaptive hyper-
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heuristic (AdapHH) proposed in [34] was the competition 

winner. Their heuristic selection mechanism uses an 

adaptive dynamic heuristic set or relay hybridization and an 

adaptive acceptance criterion. Further details about the 

competition, including further results, are available in [23]. 

Recently, Chen [35] introduced an algorithm 

development environment (ADEP) to address meta-

heuristic design and configuration problems through an 

integrated framework that allows both manual and 

automated configuration of a variety meta-heuristic 

approaches. The main difference between [35] and 

proposed GEP-HH framework is that the proposed GEP-

HH framework generates meta-heuristic components 

instead of combining and/or configuring existing ones. 

Although several types of heuristic selection mechanisms 

and acceptance criteria exist, no heuristic selection 

mechanisms or acceptance criteria so far presented are the 

best, or the most suitable, across all domains [19]. In 

practice, all of them face generalization issues. This is 

because the choice of which heuristic to apply does not 

depend only on the problem instances but also on the 

current stage of the solving process, since at each decision 

point the problem instance landscape is acquiescent to at 

least one low level heuristic. Most of the current heuristic 

selection mechanisms use simple rules to select the low 

level heuristic based on their past performance [19]. 

However, to quickly respond to instance landscape changes, 

a sophisticated heuristic selection mechanism may be 

needed. Furthermore, some low level heuristics perform 

well only at the beginning of the search process while 

others could be good at the end of solving process [19], 

[13]. For example, the application of a certain local search 

based low level heuristic would be unuseful if the solution 

is already trapped in a local optima. As a result, there is a 

need for a high level heuristic that is more general than 

those currently available, that can use the problem state in 

selecting the appropriate low level heuristic, and can cope 

with several problem domains or even different instances of 

the same problem. 

In this work, we address this challenge by proposing a 

gene expression programming framework to generate, for 

each instance, the heuristic selection mechanism and the 

acceptance criteria for the perturbative heuristic to choose 

heuristic. What makes our proposed framework different 

from others is that, at every iteration, the generated 

selection mechanism and acceptance criteria favor different 

criteria or information in selecting the low level heuristic 

and the acceptance of the generated solution. For example, 

the heuristic selection mechanism generated at iteration i 

may favor the selection of the low level heuristic that has 

very good performance during the previous application, 

whilst, the  heuristic selection mechanism generated at 

iteration i+1 may favor the selection of the low level 

heuristic that has been more frequently applied than those 

of very good performance.  

 

B. Heuristics to generate heuristics  

In contrast to the heuristics to choose heuristics hyper-

heuristic, where the hyper-heuristic starts with a set of low 

level heuristics provided manually, in a heuristics to 

generate heuristics hyper-heuristic the aim is to fabricate 

new low level heuristics by combining existing heuristic 

components [3]. Genetic programming has been 

successfully used to evolve constructive heuristics for SAT 

[36], scheduling  [37] and bin packing  problems [26].  

Despite the fact that genetic programming hyper-

heuristics have achieved good results, one can argue that 

most of them are tailored to solve specific problems (e.g. 

SAT and the bin packing problems) using a restricted 

constructive heuristic component. Another limitation is that 

they have been used in an off-line manner which may 

restrict their generality because they will be tailor made to 

the training instances unless the testing instances have the 

same features and complexity which usually does not 

reflect many real world applications.      

Motivated by the achievements of the above work, in this 

work, we propose a gene expression programming 

framework to automatically generate the high level 

heuristic for the perturbative heuristics to choose heuristics 

hyper-heuristic framework. The proposed gene expression 

framework can be classified as an on-line generational 

hyper-heuristic and thus the same as a genetic programming 

hyper-heuristic. The benefit of the proposed gene 

expression programming framework is its ability to use the 

current problem state to generate, for each instance, 

different high level heuristic in an on-line manner which 

could help the search in coping with the changes that might 

happen during the instance solving process.  

 

IV. THE PROPOSED FRAMEWORK  

The proposed hyper-heuristic framework has two levels 

called high level and low level heuristics. The high level 

heuristic contains two components, a heuristic selection 

mechanism and an acceptance criterion. The low level 

heuristic contains a set of perturbative low level heuristics, 

the memory mechanism and the objective function. The 

proposed hyper-heuristic starts with an initial solution, 

randomly selected from the memory mechanism, and 

iteratively explores its neighborhood by applying a 

perturbative low level heuristic. Given a pool of 

perturbative low level heuristics, a complete solution 

(randomly selected from the memory mechanism) and the 

objective function, the proposed hyper-heuristic framework 

will successively invoke the following steps for a certain 

number of iterations (defined by the user):  

 

i) Call the heuristic selection mechanism to select, 

from a given pool, one perturbative low level 

heuristic.  

ii) Randomly selects one solution for the memory 

mechanism. 

iii) Apply the selected perturbative low level heuristic to 

the given solution to generate a new solution.  

iv) Call the objective function to evaluate the generated 

solution. If it is better than the incumbent solution, 

replace it with the incumbent solution and continue 

the search. If not, call the acceptance criterion to 
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decide either to accept or reject the generated 

solution according to the acceptance criterion rules.  

v) Update the memory mechanism, the parameters and 

start a new iteration.   

A. High level heuristic  

In the high level heuristic, the role of the heuristic selection 

mechanism is to select, for a given instance, the suitable 

perturbative low level heuristic from those supplied. 

Usually, the choice of which perturbative low level 

heuristic to be applied is a crucial decision, as this would 

lead the search in order not to confine it to a localized 

region of the solution space. The aim of the acceptance 

criterion is to assist the search process in order to avoid 

local optima and at the same time explore different areas of 

the search space through the decision of accepting or 

rejecting the generated solution [4]. A good acceptance 

criteria mechanism should be able to strike a balance 

between accepting improving solutions and also worse 

solutions if the search is trapped in a local optima [20]. 

Therefore, this work proposes a program generation method 

using gene expression programming to adaptively select the 

suitable low level heuristic and to balance between 

accepting and rejecting the generated solution (see Fig. 4).  

 
Fig. 4. The proposed high level heuristic  

1) Basic gene expression programming algorithm  

Gene expression programming (GEP) [21] is a program 

generation method that uses a linear representation instead 

of a tree representation that is often used in genetic 

programming (GP). Each individual in GEP comprises a set 

of strings with a fixed size, called genomes. The program in 

GEP is generated by converting the individual string into a 

parse tree utilizing breadth-first search. The parse tree is 

then executed against the given problem instance. To 

generate a new individual, GEP applies genetic algorithm 

operators (crossover, mutation, inversion and transposition) 

directly on the linear encoding instead of the parse tree. 

Thus, GEP merges the advantages of both a genetic 

algorithm and genetic programming in evolving a 

population of computer programs. This feature allows GEP 

to generate programs that are always syntactically correct 

while avoiding the problem of code bloat (a well-known 

problem in traditional GP). The evolutionary steps of GEP 

in generating population of individuals are shown in Fig 5.  

First, GEP components are defined. These are the 

function set (F) (which manipulates the values returned by 

terminals, and they take one or more arguments), terminal 

set (T) (which represents a set of nodes that form the leaf 

nodes of the program tree; they take no arguments), fitness 

function, GEP parameters and stopping condition.  

Next, we generate a population of individuals. An 

individual in GEP is composed of a set of symbols called 

genes. Each gene has two elements called head and tail. 

Head contains both terminals and functions and its length h 

is fixed by users. The tail only contains terminals and its 

length t is calculated by the formula t=h*(n-1) +1, where n 

represents the maximum number of function arguments 

[21]. Thus, the individual length is equal to h+t. Assume a 

individual is comprised of a set of symbols of function F = 

{*, /, +, -} and terminal T = {a, b}. In this example, n = 2 

because the maximum arity of the function is two 

arguments. If we set the head length h = 10, then the tail 

length t = 11 and the length of the individual will be h + t = 

10+11 = 21. An example of a randomly generated 

individual can be [21]: GEP_gene=+*ab-

ab+aab+ababbbabaa and its corresponding expression tree 

is: GEP_expression= a+b*((a+b)-a). Each individual in the 

population employs the head-tail encoding method which 

ensures the validity of the generated individual. 

 

Set GEP parameters

Generate a population of solutions  

Calculate solutions fitness by translating them into 

parse tree and execute the generated tree 

Select two solutions from the population 

(S1 and S2)

 Apply genetic algorithm operators (crossover, 

mutation and inversion) on S1 and S2 to generate  

two offspring, S’1 and S’2 

Calculate the fitness of  S`1 and S`2 by translating 

them into parse tree and execute the generated tree

Satisfied? 
yes

No 

Terminate and return the best solution 

Update the 

population 

Fig. 5. Basic gene expression programming flowchart 

Then, we calculate individual fitness as follows: following 

the breadth-first manner individuals are converted into 

expression trees. First, scan the individual string one by one 

from left to right. The first string will form the node of the 

tree and other strings are written in a left to right manner at 

each lower level. If the scanned string is a function (F) with 

n (n>=1) arguments, then the next n strings are attached 

below it as its n children. Otherwise, it will form a leaf of 

the corresponding tree (terminal (T)). The scanning process 

is repeated until all leaves in the corresponding tree are 

terminals only. Next, the program trees are executed on the 

underlying problem and their fitness values are calculated.  

Next, two individuals are selected by the selection 

mechanism (e.g. roulette wheel selection) according to their 

fitness values. The selected individuals will go through the 

following genetic operators:  
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i) Crossover: exchanges elements between two randomly 

selected genes from the chosen parents (e.g., one-point 

and two point crossover).  

ii) Mutation: change any string in the generated individual 

while making sure that the string in the head part can 

be changed into both terminal and function and, string 

in the tail part can be changed into terminals only.  

iii) Inversion: reveres small sequence of strings within the 

head or tail.  

iv) Convert the created individuals (offsprings) to program 

trees and execute them on the underlying problem to 

calculate their fitness values. 

v) Following roulette wheel (or other selection operators) 

sampling with elitism, the fittest individuals are always 

copied into the next generation.  

This process is executed until the stopping condition is 

satisfied (e.g. a given number of generations). 

 

2) The proposed gene expression programming framework 

to generate the high level heuristic components  

In this work, we propose a gene expression programming 

framework to automatically generate the high level 

heuristic selection mechanism and the acceptance criteria, 

based on a given problem instance, for the perturbative 

heuristic to choose heuristic hyper-heuristic framework. 

This is an on-line heuristic generation method based hyper-

heuristic which iteratively evolves a population of 

individuals through the evolution process. Each individual 

represents a set of rules which are decoded into a selection 

mechanism and acceptance criterion to be used by the 

hyper-heuristic framework. To simultaneously generate 

both selection mechanism and the acceptance criterion, 

each individual is divided into two parts of equal size to 

represent both components. For example, in a individual of 

m strings, strings 1 to m/2 will be used for the selection 

mechanism and strings m/2 to m will be used for the 

acceptance criterion. Each part has a head of a user defined 

length h (contains terminal and function) and a tail 

(contains terminal only) of length t=h*(n-1) +1, where n 

represent the maximum number of function arguments. 

Each part employs the head-tail encoding method which 

ensures the validly of the generated program which 

represents one expression tree for the selection mechanism 

and acceptance criterion, respectively.  

Except crossover, genetic operators (mutation and 

inversion) can occur at any point as long as the gene rules 

are respected, i.e., a head element can be changed into 

terminal or function, whilst, a tail element can be changed 

into terminal only. Crossover operators will exchange 

elements between two randomly selected genes from the 

chosen parents within the same parts. For example, if the 

selected genes are from the first part of the first individual, 

these genes will be replaced with those in the first part of 

the second individual. This will ensure that the exchanged 

genes are the same types, i.e., either for the selection 

mechanism or the acceptance criterion.  

To run the proposed gene expression programming 

framework, one needs to define the following components:  

 

1- Terminal and function sets   

A crucial issue in the design of the proposed framework 

is the definition of the terminal set (T) and the function 

set (F). The terminal set (T) represents a set of variables 

which will express the state of the underlying problems. 

The function set (F) represents a set of arithmetic or 

logical operators that will be used to connect or 

compose the terminal set (T). To use the proposed 

framework across various problems, we keep the 

definition of the terminal set (T) and function set (F) as 

general and simple as possible. By doing so, the 

proposed framework can be used across other problem 

domains, in addition to those considered in this work.  

Since the purpose of the heuristic selection mechanism 

is fundamentally different from the acceptance criterion, 

we use two terminal sets. The first set represents the 

selection mechanism, whilst, the second represents the 

acceptance criterion.  

To cope with instance changes that might happen 

during the instance solving process, the proposed 

framework utilizes several evaluation criteria to 

represent the terminal sets in such a way that their 

combination will favor one criterion among others and 

these evaluation criteria will be updated during instance 

solving. Each evaluation criterion favors the selection of 

the low level heuristic from a different perspective. The 

rationale behind this is that some low level heuristics 

perform well only at the beginning of the search process 

while others could be better at the end of the process. 

Therefore, the heuristic selection mechanism should be 

able to quickly respond to instance landscape changes 

by selecting the appropriate low level heuristic. The 

function (F) and terminal (T) sets of the selection 

mechanism that have been used in this work are 

presented in Table 1. The utilized terminals for the 

heuristic selection are: 

 

- Reward credit (RC):  The main idea of this reward is 

that infrequently used low level heuristics which lead 

to a large improvement in the solution quality are 

preferred to be selected more than those that lead to a 

small improvement. Thus, as a result, the low level 

heuristic which brings frequent, but small 

improvements will get less reward and consequently 

has a lesser chance of being preferred [13]. This 

terminal is good in reducing the heuristic search 

space by only favoring certain low level heuristics.  

- Update the best known solution counter (Cbest): This 

terminal favors the low level heuristic that manage to 

update the best known results. This terminal is good 

in systematically improving the current local optima.  

- Update the counter of accepting current solution 

(Ccurrent): This terminal favors the low level heuristic 

that manages to update the current solution. This 

terminal is good in keeping the search focused 

around the current local solution.  

- Update counter of accept solution (Caccept): This 

terminal favors the low level heuristic that produces 

a solution that is accepted by the acceptance 
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criterion. This terminal is good in helping the search 

to escape from a local optima.  

- Update the average improvement counter (Cava): This 

terminal favors the low level heuristic that has made 

a large improvement on average. This terminal is 

good at focusing the search on the current area in the 

search space.   

- Update the first rank counter (Cr): This terminal 

favors the low level heuristic that has been selected 

first. This terminal is good for applying the current 

low level heuristic. 

 

Please note that the terminal (T) set of the heuristic 

selection mechanism is used for the low level heuristic 

and their value together with function (F) set are used 

to rank the low level heuristics. 

 
TABLE 1 THE TERMINAL AND FUNCTION SET OF THE 

SELECTION MECHANISM 
Terminals set for the heuristics selection mechanism 

terminal description 
RC The extreme value-based reward is used to 

calculate the credit (CA) for each low level 
heuristic. When the i-th low level heuristic is 

applied, its corresponding improvement to the 
current solution is computed. The improvement 

gained is then saved for the i-th low level 

heuristic in a sliding time window of size W, 
following the rule of FIFO. The credit of any 

low level heuristic is then set as the maximum 

value in its corresponding sliding window W. 
In this work, the improvement gained (PI) from 

the i-th low level heuristic is calculated as 

follows: PI(i) =(/f1-f2/f1)*100 if f2<f1. Where 
f1 is the quality of the current solution and f2 is 

the quality of the resultant solution after 

applying the i-th low level heuristic. 

Cbest The number of times that the i-th low level 
heuristic has updated the best known solution. 

Ccurrent The number of times that the i-th low level 

heuristic has updated the current solution. 

Caccept The number of times that the generated solution 
by the i-th low level heuristic has been accepted 

by the acceptance criterion. 

Cava The average of the previous improvement 
strength of the i-th low level over the search 

process. 

Cr The number of times that the i-th low level 
heuristic has been ranked the first. 

 

Function set for the heuristics selection mechanism 

function description 

+ Add two inputs. 

- Subtract the second input from the first one. 

* Multiply two inputs. 

% Protected divide function, i.e., change the 

division by zero into 0.001. 

 

The function (F) and terminal (T) sets of the 

acceptance criteria that have been used in this work are 

presented in Table 2. 

 
 

TABLE 2 THE TERMINAL AND FUNCTION SET OF THE 
ACCEPTANCE CRITERIA 

Terminals set for the acceptance criteria mechanism 

terminal description  

delta The change in the solution quality 

PF The quality of the previous solution 

CF The quality of the current solution 

CI Current iteration 

TI Total number of iterations 

 

Function set for the acceptance criteria mechanism 
function  description  

+ Add two inputs. 

- Subtract the second input from the first one. 

* Multiply two inputs. 

ex The result of the child node is raised to its power 

(Euler’s number). 

% Protected divide function, i.e., change the 

division by zero into 0.001. 

 

2- Fitness function  

The aim of the fitness function is to evaluate the 

performance of the generated high level heuristics 

(population individual). In this work, we use the idea in  

[22] that was used to control the population size in an 

evolutionary algorithm to evaluate the fitness of the 

generated high level heuristics. The probability of 

selecting each high level heuristic (an individual in the 

GEP framework) is updated according to the quality of 

the best solution returned, after the stopping condition 

is satisfied. The quality of the returned solution is 

usually either better or worse than the one that has been 

used as an input solution for the hyper-heuristic 

framework. Formally, let Ah[] represent the array of 

the probability of selecting the high level heuristics 

(individual), fi and fb represent the fitness of the initial 

and returned solutions, NoH represents the number of 

high level heuristics (individuals) or the population size 

of GEP. Then, if the application of the i-th high level 

heuristic leads to an improvement in the solution 

quality, then reward the i-th high level heuristic 

(individual) as follows: Ah[i] = Ah[i]+∆  where ∆ = (fi - 

fb) / ( fi + fb). Other high level heuristics,  j{1,…, 

NoH} and j ≠ i, are penalized as Ah[j] = Ah[j] - 

(∆/(NoH-1)). Otherwise (if the solution cannot be 

improved), then penalize the i-th high level heuristic, 

Ah[i]= Ah[i]-|(∆*α)| where α= Current_Iteration / 

Total_Iteration and reward other high level heuristics, 

 j{1,…, NoH} and j ≠ i, Ah[j] =Ah[j] + 

(|∆|*α/(NoH-1)). Please note that the main idea behind 

decreasing the probability of other high level heuristic 

is to decrease their chances of being selected. Initially, 

the probability of each high level heuristic (individual) 

is calculated by translating them into expression trees 

and executing the corresponding program. 

 

3- The stopping condition  

In this work, the maximum number of consecutive non 

improvement iterations is used as the stopping 

condition (see section V.A). 

 

When all elements are defined, the proposed framework is 

carried out as follows (see Fig. 6):  

 

i) Generate a population of individuals.   
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ii) Calculate the fitness of the population by inserting 

them into the hyper-heuristic framework and using it 

to solve a given instance for a certain number of 

iterations.  

iii) Iteratively selects two parents, apply crossover and 

mutation operators to generate two offspring, 

evaluate the fitness of the generated offspring and 

update the population. This is executed for a certain 

number of generations.  

 

The main role of GEP is to evolve a population of 

individuals, each encoding a high level heuristic (selection 

mechanism and acceptance criterion) which will be used by 

the hyper-heuristic framework. The hyper-heuristic 

framework will be called at every generation to evaluate the 

generated offspring. When the proposed hyper-heuristic is 

called the following steps will be carried out:  

 

i) Decoded the current individual into a heuristic 

selection mechanism and an acceptance criterion, 

i.e., translate it into two expression trees for the 

selection mechanism and the acceptance criterion, 

respectively. Then, use the terminal (T) set value of 

each low level heuristic as the input for the selection 

mechanism expression tree.  

ii) Execute the selection mechanism expression tree and 

rank the given set of low level heuristics from the 

highest to the lowest based on the value retuned from 

the expression tree.  

iii) Randomly select one solution for the memory 

mechanism. Apply the highest ranked low level 

heuristic to the given solution and calculate the 

quality of the generated solution.  

iv) If the generated solution is better than the current 

one, the current one is replaced. If not, the hyper-

heuristic will call the acceptance criterion expression 

tree and execute the corresponding program. Then, 

the generated solution by the low level heuristic is 

accepted if the exponential of the value retuned by 

the acceptance criterion expression tree is less or 

equal to 0.5 (the exp function returns values between 

0 and 1). In the literature, a value of 0.5 was 

suggested [26], but for different domains. The value 

0.5 was also determined based on preliminary 

testing.  

v) Repeatedly apply the current low level heuristic until 

no improvement is returned. 

vi) If no improvement is returned, the hyper-heuristic 

framework will stop applying the current low level 

heuristic and restarts from the local optimum 

obtained by current low level heuristic, but with next 

low level heuristic in the ranked list. 

vii) If the hyper-heuristic framework reaches the end of 

the low level heuristic ranked list, it executes the 

current heuristic selection mechanism expression tree 

again and rank the given set of low level heuristics 

and restart the search from the local optimum, but 

using the current highest ranked low level heuristic.  

viii) The proposed hyper-heuristic framework will keep 

using the utilized high level heuristic components 

(selection mechanism and acceptance criterion), 

which is generated by the GEP framework, for a pre-

defined number of iterations (see section V. A).  

Fig. 6. The proposed hyper-heuristic 

B. Low level heuristics  

The low level heuristic of the proposed hyper-heuristic 

framework has three components as follows: 

 

1) A set of perturbative low level heuristics 

In this work, a pool of problem-specific perturbative 

heuristics is used as low level heuristics.  The aim of the 

low level heuristics is to explore the neighborhoods of the 

current solution by altering the current solution 

(perturbation). The generated neighborhood solution is 

accepted if it does not break the imposed hard constraints 

and also satisfies the acceptance criterion. Thus, the 

employed low level heuristic explores only the feasible 

search space. Details of these perturbative heuristics are 

presented in the problem description sections (see section 

V.C).  

 

2) Memory mechanism  

Most hyper-heuristic frameworks that have been proposed 

in the scientific literature operate on a single solution [4], 

[19]. Reliance on a single solution may restrict their ability 

in dealing with a large and heavily constrained search 

space, as it is widely known that single solution based 

methods are not well suited to cope with the large search 

spaces and heavily constrained problems [10]. In order to 

enhance the efficiency of the proposed hyper-heuristic 

framework and to diversify the search, we embed it with a 

memory mechanism as in [38] which contains a collection 

of both high quality and diverse solutions, updated as the 

algorithm progresses. The integrated memory mechanism 

Set GEP parameters

Generate a population of solutions  

Calculate solutions fitness 

Select two solutions (S1 and S2)

Apply crossover, mutation and inversion on S1 and 

S2 to generate S`1 and S`2.

Calculate the fitness of S`1 and S`2.

Satisfied?

Yes

No 

Terminate and return the best solution 

Update the 

population 

Call the Hyper-heuristic in Fig.1. 

Call the Hyper-heuristic in Fig.1. 
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interacts with the high level heuristic as follows: first 

initialize the memory mechanism by generating a set of 

diverse solutions (randomly or by using a heuristic method, 

see Section V). For each solution, associate a frequency 

matrix to measure solution diversity. The frequency matrix 

stores the frequency of an object assigned to the same 

location. At every iteration, the high level heuristic will 

randomly select one solution from the memory; apply the 

selected low level heuristic to this solution, update both the 

solution in memory and the solution frequency matrix.  

The associated frequency matrix is represented by a two 

dimensional array where rows represent objects and 

columns represent locations. For example, in the bin 

packing problem, the frequency matrix stores how many 

times the item has been assigned to the same bin. Whilst, in 

the vehicle routing problem, it stores how many times a 

customer has been assigned to the same route. In this work, 

objects represent the items in the bin packing problem or 

customers in the vehicle routing problem, while locations 

represent bins in the bin packing problem and routes in the 

vehicle routing problems.  

Fig. 7 shows an example of a solution and its 

corresponding frequency matrix. The frequency matrix is 

initialized to zero. We can see five objects (represented by 

rows, items or customers) and there are five available 

locations (represented by columns, bins or routes). The 

solution on the left side of Fig. 7 can be read as follows: 

object 1 is assigned to location 1, object 2 is assigned to 

location 3, etc. The frequency matrix on the right side of 

Fig. 7 can be read as follows: object 1 has been assigned to 

location 1 twice, to location 2 three times, to location 3 

once, to location 4 four times and to location 5 once; and so 

on for the other objects.  
 

Location 

O
b

je
ct

s 

 1 2 3 4 5  1 2 3 4 5 

1 1 0 0 0 0 

O
b

je
ct

s 

1 2 3 1 4 1 

2 0 0 1 0 0 2 1 1 1 2 2 

3 0 0 0 0 1 3 2 2 2 2 1 

4 0 0 0 1 0 4 2 1 3 1 1 

5 0 1 0 0 0 5 2 1 2 1 3 

 solution  frequency matrix 

Fig. 7. Solution and its corresponding frequency matrix. 

If any solution is used by the hyper-heuristic framework, 

then we update the frequency matrix of this solution. Next 

we calculate the quality and the diversity of this solution. In 

this work, the quality represents the quality of the solution 

of a given instance (see section V). The diversity is 

measured using the entropy information theory (see 

Equations (1) and (2)) as follows [38]: 
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Where  

- eij is the frequency of allocating object i to location j. 
- m is the number of objects. 

- εi is the entropy for object i. 

- ε is the entropy for one solution (0 ≤ εi≥ 1).  

Next, add the new solution to the memory mechanism by 

considering the solution quality and diversity.   

 

3) Objective function 

The objective function is problem dependent and it 

measures the quality of the generated solution (see section 

V). 

V. EXPERIMENTAL SETUP 

In this section, we will discuss the parameter settings of 

GEP-HH, problem description and the perturbative low 

level heuristics of the considered problems. 

A. GEP-HH Parameter Settings  

Fine tuning the algorithm parameters for optimal 

performance is usually a tedious task that needs 

considerable expertise and experience [6]. Therefore, the 

parameter values of the GEP-HH are obtained by using 

Relevance Estimation and Value Calibration method 

(REVAC) [39]. REVAC is a tool for parameter 

optimization, where a steady state genetic algorithm and 

entropy theory are used in defining algorithm parameter 

values. REVAC is utilized to find the generic values that 

can be used for all considered domains instead of finding 

the optimal one which is problem (if not instances) 

dependent.  

Taking into consideration the solution quality and the 

computational time needed to achieve good quality 

solutions, the running time for each instance is fixed to 20 

seconds and the number of iterations performed by REVAC 

is fixed at 100 iterations (see [39] for more details). To do 

so, we tuned GEP-HH for each domain separately and then 

used the average of the minimum value for each parameter 

obtained by REVAC for all tested instances. Then the 

average values over all tested instances for all domains for 

each parameter are set as the generic values for GEP-HH. 

Table 3 lists the parameter settings of GEP-HH that have 

been used for all problem domains.  
 

TABLE 3 GEP-HH PARAMETERS 

Parameters 
Possible 

Range  

Suggested Value by 

REVAC 

Population size 5-50 10 

Number of generations 10-200 100 
One point crossover 

probability 
0.1-0.9 0.7 

Mutation probability 0.1-0.9 0.1 
Inversion rate 0.1-0.9 0.1 

Head length h 2-40 5 

Selection mechanism - Roulette Wheel 

Crossover type 
Two/multi/ 

one point 
One point 

Consecutive non 
improvement 

1-1000 50 

The sliding window size 

W 
2-100 20 

Memory mechanism size 2-40 8 
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B. Problem Description  

In this work, we used HyFlex (Hyper-heuristics Flexible 

Framework) to test the generality and the performance of 

GEP-HH. HyFlex is a java framework which provides six 

problem domains (boolean satisfiability (MAX-SAT), one 

dimensional bin packing, permutation flow shop, personnel 

scheduling, traveling salesman and vehicle routing), the 

initial solution generation method, and a set of  perturbative 

low level heuristics [23]. HyFlex was used during the cross-

domain heuristic search challenge competition (CHeSC) in 

order to compare the performance of hyper-heuristic 

methods and to support researchers in their efforts to 

develop generally applicable hyper-heuristics for various 

problem domains. In addition, we also report in the 

appendix, the results of testing GEP-HH on exam 

timetabling and dynamic vehicle routing problems (See the 

supplementary file).  

 

1) Boolean Satisfiability (MAX-SAT) Problems 

Boolean Satisfiability problems can be defined as follows 

[40]: given a formula of Boolean variables, determine the 

assignment of truth values to the variables that can make 

the formula true. MAX-SAT, which is an extension of 

Boolean Satisfiability, is an optimization problem where the 

aim is to determine the maximum number of true clauses of 

a given Boolean formula. In other words, the aim of the 

optimization process is to minimize the number of 

unsatisfied clauses in a given formula. The instances that 

were considered in this work are summarized in Table 4. 

The set of initial solutions are randomly generated by 

assigning either true or false value to each variable. The 

quality of the solution is measured based on how many 

`broken' clauses in a given formula i.e., those which 

evaluate to false. See [40] for more details. 
 

TABLE 4 THE MAX-SAT INSTANCES  
Instances Name Variables Clauses 

Instance 1 parity-games/instance-n3-i3-pp 525 2276 

Instance 2 parity-games/instance-n3-i4-pp-

ci-ce 

696 3122 

Instance 3 parity-games/instance-n3-i3-pp-

ci-ce 

525 2336 

Instance 4 jarvisalo/eq.atree.braun.8.unsat 684 2300 
Instance 5 highgirth/3SAT/HG-3SAT-

V300-C1200-4 

300 1200 

 

2) One Dimensional Bin Packing Problems 

The one dimensional bin packing is a well-known 

combinatorial optimization problem. Given a set of items of 

a fixed weight and a finite number of bins of fixed capacity, 

the goal is to pack all items into as few bins as possible 

[41]. The packing process should respect the following 

constraints: each item should be assigned to one bin only 

and the total weight of items in each bin should be less or 

equal to the bin capacity. The aim of the optimization 

process is to minimize the number of bins that are used. 

Table 5 shows the characteristic of the considered 

instances. The set of initial solutions are generated as 

follows: first, generate a random sequence of items and then 

pack them one by one into the first bin which they will fit, 

i.e. “first fit heuristic”. The quality of solution is measured 

by quality= 

2
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1
1  
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n
where n is the number of 

bins, fl is the sum of the sizes of all the pieces in bin i, and 

C the bin capacity. See [41] for more details. 

 
TABLE 5 THE ONE DIMENSIONAL BIN PACKING INSTANCES 

Instances Name Capacity No. Pieces 

Instance 1 triples2004/instance1 1000 2004 

Instance 2 falkenauer/u1000-01 150 1000 

Instance 3 test/testdual7/binpack0 100 5000 
Instance 4 50-90/instance1 150 2000 

Instance 5 test/testdual10/binpack0 100 5000 

 

3) Permutation Flow Shop Problems  

The permutation flow shop problem is defined as, while 

respecting the imposed constraints, find the sequence for a 

set of jobs to be processed on a set of consecutive machines 

with the minimal completion time of the last job to exit the 

shop [42]. Each job requires a processing time on a 

particular machine. One machine can only process one job 

at a time. Jobs can be processed by only one machine at a 

time. The job ordering process should be respected and 

machines are not allowed to remain idle when a job is ready 

for processing. Table 6 shows the characteristic of the 

considered instances. The set of initial solutions are 

generated by using the NEH [42] algorithm which works as 

follows: first generate a random permutation of jobs and an 

empty schedule. Then, assign the first job in the 

permutation sequence into the schedule, second job into 

places 1 and 2; third job into places 1, 2 and 3, and so on. 

Each assignment should be fixed where the partial schedule 

has the smallest makespan time, i.e. completion time of the 

last job. The quality of solution represents the completion 

time of the last job in the schedule. See [42] for more 

details. 
 

TABLE 6 THE PERMUTATION FLOW SHOP INSTANCES 

Instances Name No. jobs No. Machines 

Instance 1 100x20/2 100 20 

Instance 2 500x20/2 500 20 
Instance 3 100x20/4 100 20 

Instance 4 200x20/1 200 20 

Instance 5 500x20/3 500 20 

 

4) Personnel Scheduling Problems  

Personnel scheduling is a well-known NP-hard problem. 

Given a set of employees of specific categories, a set of pre-

defined periods (shifts) on a working day, and a set of 

working days; the aim of the optimization process is to 

assign each employee to specific planning periods to meet 

the operational requirements and satisfying a range of 

preferences as much as possible [43]. Due to the variety of 

hard and soft constraints, which are different from one 

organization to another, the modeling and implementation 

is challenging. A unique general mathematical model to 

accommodate all related constraints does not exist. Table 7 

gives the characteristics of the considered instances. The set 

of initial solutions are created by using a neighborhood 

operator which incrementally adds new shifts to the roster 

until all employees have been scheduled. The quality of the 
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generated solutions is assessed based on how many soft 

constraints are satisfied. See [43] for more details. 
 

TABLE 7 THE PERSONNEL SCHEDULING PROBLEMS INSTANCES 

Instances Name Staff Shift Types Days 

Instance 1 Ikegami-3Shift-DATA1.2 25 3 30 

Instance 2 MER-A 54 12 42 
Instance 3 ERRVH-B 51 8 42 

Instance 4 BCV-A.12.1 12 5 31 

Instance 5 ORTEC01 16 4 31 

 

5) Traveling Salesman Problems 

The traveling salesman problem is a very popular 

combinatorial optimization problem [44]. In its classic 

form, given a set of cities and their positions (pairwise 

distances), the aim is to find the shortest path where each 

city is visited only once and the path ends at the starting 

city. The aim of the optimization process is to minimize the 

traveling distance. Table 8 gives the characteristics of the 

considered instances. The set of initial solutions are created 

by randomly generating permutation sequences. The quality 

of solution is represented by the total distance of the route. 
 

TABLE 8 THE TRAVELING SALESMAN INSTANCES 
Instances Name No. Cities 

Instance 1 pr299 299 
Instance 2 usa13509 13509 

Instance 3 rat575 575 

Instance 4 u2152 2152 
Instance 5 d1291 1291 

 

6) Vehicle Routing Problems 

The vehicle routing problem is a well-known challenging 

combinatorial optimization problem [45]. Given a set of 

customers associated with demand and serving time, and a 

fleet of vehicles with a maximum capacity, the aim is to 

design a least cost set of routes to serve all customers, 

where each vehicle starts and ends at the depot, the total 

demand of each route does not exceed the vehicle capacity, 

each customer is visited exactly once by exactly one vehicle 

during its time window(s). Table 9 shows the characteristics 

of the considered instances. The set of initial solutions are 

generated as follows: first create an empty route, then loop 

through all customers and add any one to the current route 

that does not violate any constraints. If no customer can be 

added to the current route, create a new route. The process 

is repeated until all customers have been assigned to a 

route.  The quality of solution represents the total travel 

distance. 
 

TABLE 9 THE VEHICLE ROUTING PROBLEMS INSTANCES 

Instances Name 
No. 

Vehicles 

Vehicle 

Capacity 

Instance 1 Homberger/RC/RC2-10-1 250 1000 
Instance 2 Solomon/RC/RC103 25 200 

Instance 3 Homberger/C/C1-10-1 250 200 

Instance 4 Solomon/R/R101 25 1000 
Instance 5 Homberger/RC/RC1-10-5 250 200 

 

C. The perturbative low level heuristics  

HyFlex provides, for each of the considered problems, a set 

of different perturbative low level heuristics. The set of 

perturbative low level heuristics are classified into four 

types as follows:  

- Mutational or perturbation heuristics: generate a new 

solution by modifying the current solution by changing, 

removing, swapping, adding or deleting one solution 

component. Mutation intensity is controlled by α, 0<= α 

<=1.  

- Ruin-recreate (destruction-construction) heuristics: 

destroy part of the current solution and recreate it in a 

different way to generate a new solution. The difference 

between ruin-recreate and mutational heuristics is that the 

ruin-recreate can be seen as large neighborhood 

structures and they use problem specific construction 

heuristics to recreate the solutions.  

- Hill-climbing or local search heuristics: iteratively 

perturb the current solution, only accepting improving 

solutions, until a local optimum is found or a stopping 

condition is satisfied. The difference between hill-

climbing and mutational heuristics is that hill-climbing is 

an iterative improvement process, accepting only 

improving solutions. The depth of search is controlled by 

β, 0<= β <=1. 

- Crossover heuristics: take two solutions and produce a 

new one by combining them. 

Table 10 shows the total number of each type of the 

perturbative low level heuristics for the six problem 

domains [23].  

 
TABLE 10 HYFLEX LOW LEVEL HEURISTIC TYPES  

# Problem domains M R&R HC Xover Total 

1- Boolean Satisfiability 4 1 2 2 9 

2- One Dimensional Bin 
Packing 

3 2 2 1 8 

3- Permutation Flow Shop 5 2 4 3 15 

4- Personnel Scheduling 1 3 4 3 12 
5- Traveling Salesman 5 1 6 3 15 

6- Vehicle Routing 4 2 4 2 12 

Note: M: mutation. R&R: Ruin-recreate. HC: Hill-climbing. Xover:  

Crossover 

VI. COMPUTATIONAL RESULTS AND DISCUSSION 

This section is devoted to assess the performance of GEP-

HH against other hyper-heuristic methods in the literature. 

Our aims are: 

 

- To assess the benefit of integrating the memory 

mechanism within GEP-HH. 

- To test the generality and consistency of GEP-HH over 

six different problem domains and compare it to the state 

of the art of hyper-heuristic methods.  

In this work, we have carried out, for each problem domain, 

two sets of experiments:  

i) The first one compares the performance of the GEP-HH 

with the memory mechanism (GEP-HH) against GEP-

HH without the memory mechanism (denoted as GEP-

HH*) using the same parameter values and 

computational resources.  

ii) The second evaluates the performance of GEP-HH 

against the top five hyper-heuristics of the first cross-
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domain heuristic search challenge (CHeSC) [23]. These 

are: AdapHH [34], VNS-TW [46], ML [47], PHUNTER 

[48] and EPH [49].  

 

Following CHeSC, rules and in order to make the 

comparison as fair as possible, for both experimental tests, 

the execution time is used as the stopping condition. It is 

determined by using the benchmark software provided by 

the organizers to ensure fair comparisons between 

researchers using different platforms [23]. We have used 

this software to determine the allowed execution time using 

our computer resources (i.e. 10 minutes on the benchmark 

machine).  

 The best, average, standard deviation and median of 

GEP-HH and GEP-HH* over independent 31 runs 

(adhering to the CHeSC competition rules) are reported for 

each instance. In addition, the percentage deviation from 

the best known value found in the hyper-heuristic literature 

is also calculated for each instance as follows:   

%
*

*
(%)

best

bestbest HHGEP 
     (3) 

where bestGEP-HH is the best result returned over 31 

independent runs by GEP-HH and best* is the best result 

obtained by other hyper-heuristic methods.  

To demonstrate the generality, consistency and the 

effectiveness of GEP-HH across all tested problem 

domains, we have compared the performance of GEP-HH 

against GEP-HH* and existing hyper-heuristic methods 

based on generality, consistency, efficiency, statistical test 

and formula one (see [30]  for more details).  

A. The computational results of GEP-HH compared to 

GEP-HH* 

The first set of experiments presents the comparison 

between GEP-HH and GEP-HH* across all of the six 

considered problems. Each problem domain contains 5 

instances and the total number of tested instances is 30. The 

computational results of GEP-HH and GEP-HH* over 31 

independent runs for the six problems are summarized in 

Table 11.  

Observing the results reported in Table 11, we can make 

the following observations: in terms of solution quality, 

GEP-HH outperformed GEP-HH* on 18, tieing with GEP-

HH* on 11 and being inferior on 1 (MAX-SAT Instances 4) 

out of 30 instances of the considered problem domains. 

From the average results perspective, it is clear that, across 

all instances of the considered problems domains, GEP-HH 

is the overall best.  

In addition to the solution quality and the average results, 

it is natural to ask how consistent GEP-HH is, i.e., how 

likely GEP-HH would perform well over multiple runs on 

each instance compared to GEP-HH*. This question can be 

answered by analyzing the standard deviation and the 

median over 31 runs as well as the box-plots of solution 

distributions. In general, the standard deviation produced by 

GEP-HH is smaller than those from GEP-HH* for all 

instances of the considered problem domains (except PS 2 

in Table 11). From the median perspective, we can draw the 

following conclusion: GEP-HH obtained better median 

results for 19, tieing on 3 and being slightly worse than 

GEP-HH* on 8 out of 30 instances of the considered 

problem domains. To save space, the box-plot figures (Figs. 

8 to 13) are presented in the supplementary file. Figs. 8 to 

13 show the box-plot of results distribution of GEP-HH and 

GEP-HH* for all instances of the considered problem 

domains, where one can clearly see that, for most instances, 

GEP-HH is more consistent than GEP-HH*. This indicates 

that GEP-HH is more consistent than GEP-HH* across all 

tested problem domains. 

In addition to the above results, it is worth drawing some 

statistical significant conclusions regarding the performance 

of GEP-HH and GEP-HH*.  Therefore, the Wilcoxon test 

(pairwise comparisons) with significant level of 0.05 is 

performed. The p-value of the Wilcoxon test of GEP-HH 

versus GEP-HH* are presented in the last column of Table 

11. Where “S+” indicate GEP-HH is statistically better than 

GEP-HH* (p-value <0.05), “S-” indicate GEP-HH 

outperformed by GEP-HH* (p-value >0.05) and “~” 

indicate both algorithms have the same performance (p-

value =0.05). The results in Table 11 (last column) show 

that GEP-HH is statistically better than GEP-HH* on 23 

instances, not statistically better than GEP-HH* on 5 and 

perform the same as GEP-HH* on 2 instances out of 30 

tested instances of the considered problem domains.  

To summarize, the results demonstrate that GEP-HH is 

better than GEP-HH* in term of consistency, efficiency and 

generality (with regards to the tested instances of the 

considered problem domains). This is mainly due to the use 

of memory mechanism within GEP-HH which has a 

positive effect on the ability of GEP-HH in producing good 

quality and consistent results compared to GEP-HH*.  

 

 
 

TABLE 11 THE RESULT OF GEP-HH COMPARING TO GEP-HH* FOR ALL PROBLEM DOMAINS 

 Instances 
GEP-HH GEP-HH* GEP-HH vs. GEP-HH* 

Best Average Std Median Best Average Std Median p-value 

M
A

X
-S

A
T

 SAT 1 1 4.4 1.70 3 1 5.0 1.74 3 S+ 

SAT 2 1 13.0 11.01 3 5 20.4 13.73 5 S+ 

SAT 3 1 3.8 2.44 2 1 4.7 3.26 3 S+ 

SAT 4 4 8.0 4.60 4 1 12.3 6.78 8 S- 

SAT 5 7 7.8 0.88 7 7 10.3 3.20 8 S+ 

B
in

 P
a

c
k

in
g

 BP 1 0.0131 0.029 0.013 0.0192 0.034 0.053 0.021 0.0168 S+ 

BP 2 0.0029 0.005 0.003 0.0032 0.0067 0.011 0.006 0.0036 S+ 

BP 3 0.0011 0.003 0.002 0.0039 0.0035 0.014 0.004 0.0038 S+ 

BP 4 0.1083 0.108 0.001 0.1083 0.1083 0.115 0.024 0.1085 S- 

BP 5 0.0031 0.015 0.010 0.0066 0.0031 0.027 0.016 0.0066 S+ 

F l o w  S h o p
 

FS 1 6212 6243.29 10.39 6245 6212 6283.12 89.57 6248 S+ 
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FS 2 26721 26821 83.79 26898 26744 26887.9 85.12 26804 S+ 

FS 3 6285 6325.83 11.87 6326 6295 6335.83 16.25 6323 S+ 

FS 4 11320 11376.7 24.56 11377 11327 11377 27.12 11359 S+ 

FS 5 26530 26616 40.70 26634 26531 26638 50.37 26604 S+ 

P
e
r
so

n
n

e
l 

S
c
h

e
d

u
li

n
g

 PS 1 11 18.64 3.91 21 14 33.80 24.10 22 S+ 

PS 2 9345 10830.4 1660.5 9628 9345 11077.0 1403.8 9630 S- 

PS 3 3123 3312.16 83.10 3351 3124 3369.38 104.79 3231 ~ 

PS 4 1364 1541.48 86.52 1555 1378 1619.54 133.14 1590 S+ 

PS 5 280 306.54 14.25 315 290 322.45 27.03 320 S+ 

T
r
a
v
e
li

n
g
 

S
a
le

sm
a

n
 TSP 1 48194.9 48222.72 38.41 48194.9 48194.9 48519.82 450.35 48194.9 S- 

TSP 2 20754969 21227727 255264 21268571 20910693 21536045 760071.4 21270792 ~ 

TSP 3 6796 6828.34 13.80 6810.5 6796.0 6868.6 54.98 6816.2 S+ 

TSP 4 65952.1 67118.9 493.71 67105.2 66448.2 67360.89 624.27 66898.2 S+ 

TSP 5 52050 54393.66 1015.18 54755.3 52052.7 55547.7 1879.55 54896.8 S+ 

V
e
h

ic
le

 

R
o
u

ti
n

g
 VRP 1 58052.1 60046.3 1444.7 60720.0 67012.9 82505.9 5722.2 83094.9 S+ 

VRP 2  12261.0 12814.52 519.7 12337.9 12263.0 13639.4 907.4 13341.0 S+ 

VRP 3 142479.1 145294.4 1622.3 145418.9 142562.5 145664.7 1857.9 145329.9 S- 

VRP 4 20650.8 20653.6 1.3 20653.8 20650.8 20684.2 6.3 20683.5 S+ 

VRP 5 144258.1 148943.6 1365.3 149007.9 144258.1 149326.4 2488.1 149107.9 S+ 

 

B. The computational results of GEP-HH compared to 

other hyper-heuristic methods 

We now assess the performance GEP-HH versus the top 

five hyper-heuristic methods from the CHeSC competition 

[23] (AdapHH, VNS-TW, ML, PHUNTER and EPH) from 

the best and median results perspective. In addition, we 

have also included the results of GEP-HH* (without 

memory) in the comparison to assess its ability in 

producing good quality solutions compared to the top five 

hyper-heuristic methods from the CHeSC competition. 

Table 12 present the best, percentage deviation and 

instances ranking results for the six problems obtained by 

GEP-HH along with a comparison with respect to the best 

result of top five hyper-heuristic methods from the CHeSC 

competition. Please note that all the compared methods 

(GEP-HH, GEP-HH* and the top five hyper-heuristics) 

used the 10 minute execution time as the stopping condition 

which is determined by the benchmark software provided 

by the CHeSC organizers. 

The results in Table 12 suggest that, out of 30 instances, 

GEP-HH outperformed the top five hyper-heuristic methods 

on 12 instances, match the best results on 12 instances and 

is inferior on 6 instances. We can also remark that GEP-HH 

without memory mechanism (GEP-HH*) manages to 

produce new best results for 6 instances and tieing on 12 

out of 30 instances compared to the top five hyper-heuristic 

methods.  

In Table 13, we provide the median, percentage deviation 

and instances ranking results achieved by GEP-HH in 

comparison with the median results obtained by the top five 

hyper-heuristic methods from the CHeSC competition as 

well as GEP-HH* median results. It is clear from Table 13 

that, GEP-HH obtained better median results for 4 instances 

and tie with other hyper-heuristic methods on 8 out of 30 

instances. Table 13 also show that GEP-HH without 

memory mechanism (GEP-HH*) obtained better median 

results for 1 instance and matched the best in 6 out of 30 

instances of the considered problem domains.  

To summarize, even though GEP-HH did not manage to 

obtain the best results for all instances, the percentage 

deviation of these instances is, however, relatively small 

and GEP-HH achieved the second best and third best results 

for other instances. One can clearly see that both GEP-HH 

and GEP-HH* have generalized well across all tested 

domains and produced good quality results compared to the 

top five hyper-heuristic methods in the existing literature. 
 
 

 

TABLE 12 THE BEST RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS 

  GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition 

 Instances Best  ∆(%) Rank Best  AdapHH VNS-TW ML PHUNTER EPH 

M
A

X
-S

A
T

 SAT 1 1 0.0 1 1 1 1 1 1 4 

SAT 2 1 0.0 1 5 3 1 3 5 5 

SAT 3 1 0.0 1 1 1 1 1 2 2 

SAT 4 4 300 2 1 1 1 4 4 5 

SAT 5 7 0.0 1 7 9 7 7 7 7 

B
in

 P
a
c
k

in
g

 BP 1 0.0131 0 1 0.034 0.0131 0.0298 0.0323 0.0397 0.0430 

BP 2 0.0029 3.5 2 0.0067 0.0028 0.0036 0.0067 0.0034 0.0034 

BP 3 0.0011 175 2 0.0035 0.0004 0.0136 0.0124 0.0178 0.0080 

BP 4 0.1083 0 1 0.1083 0.1083 0.1087 0.1084 0.1088 0.1083 

BP 5 0.0031 0 1 0.0031 0.0031 0.0238 0.0178 0.0318 0.0136 

F
lo

w
 S

h
o

p
 FS 1 6212 -0.03 1 6212 6214 6230 6226 6221 6232 

FS 2 26721 -0.06 1 26744 26757 26765 26744 26786 26738 

FS 3 6285 -0.2 1 6295 6303 6303 6304 6303 6309 

FS 4 11320 0.01 2 11327 11318 11333 11338 11336 11328 

FS 5 26530 -0.01 1 26531 26541 26535 26559 26600 26569 

P
e r
s

o
n n
e l 

S
c

h
e d u
l

in g
 PS 1 11 0.00 1 14 17 13 11 13 16 

PS 2 9345 -0.02 1 9345 9435 9347 9436 9624 9747 
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PS 3 3123 -0.03 1 3124 3142 3124 3138 3142 3142 

PS 4 1364 1.03 2 1378 1448 1370 1384 1350 1469 

PS 5 280 -3.44 1 290 295 290 300 290 310 

T
r
a
v
e
li

n
g
 

S
a
le

sm
a

n
 TSP 1 48194.9 0.00 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9 

TSP 2 20754969 0.01 3 20910693 20752853.8 2084855.6 20793219.8 20754199.8 20941645.1 

TSP 3 6796 0.00 1 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2 

TSP 4 65952.1 -0.009 1 66448.2 66277.1 66830.2 66428.2 66641.4 65958.6 

TSP 5 52050 -0.006 1 52052.7 52383.8 52896.5 52626.7 52172.0 52053.4 

V
e
h

ic
le

 

R
o
u

ti
n

g
 VRP 1 58052.1 0.0 1 67012.9 58052.1 68340.4 67622.1 61139.3 63932.2 

VRP 2  12261.0 -0.016 1 12263.0 13304.9 13298.1 13298.4 12263.0 13284.0 

VRP 3 142479.1 -0.02 1 142562.5 145481.5 144012.6 142517.0 143663.9 143510.8 

VRP 4 20650.8 0.0 1 20650.8 20652.3 20651.1 20651.1 20650.8 20650.8 

VRP 5 144258.1 -1.17 1 144258.1 146154.0 146513.6 146200.8 146472.9 145976.5 

 

 
 

TABLE 13 THE MEDIAN RESULT OF GEP-HH and GEP-HH* COMPARING TO THE TOP FIVE HYPER-HEURISTICS 

  GEP-HH GEP-HH* The top five hyper-heuristic framework from CHeSC competition 

 Instances Median ∆(%) Rank Median AdapHH VNS-TW ML PHUNTER EPH 

M
A

X
-S

A
T

 SAT 1 3 0.0 1 3 3 3 5 5 7 

SAT 2 3 0.0 1 5 5 3 10 11 11 

SAT 3 2 0.0 1 3 2 2 3 4 6 

SAT 4 4 33.3 2 8 3 3 9 9 15 

SAT 5 7 -12.5 1 8 8 10 8 8 13 

B
in

 P
a

c
k

in
g

 BP 1 0.0192 19.2 2 0.0168 0.0161 0.0370 0.0421 0.0479 0.0504 

BP 2 0.0032 -11.1 1 0.0036 0.0036 0.0072 0.0075 0.0036 0.0036 

BP 3 0.0039 8.3 2 0.0038 0.0036 0.0167 0.0146 0.0201 0.0113 

BP 4 0.1083 0 1 0.1085 0.1083 0.1088 0.1085 0.1091 0.1087 

BP 5 0.0066 88.5 2 0.0066 0.0035 0.0278 0.0218 0.0395 0.0224 

F
lo

w
 S

h
o

p
 FS 1 6245 0.08 2 6248 6240 6251 6245 6253 6250 

FS 2 26898 0.36 6 26804 26814 26803 26800 26858 26816 

FS 3 6326 0.04 2 6323 6326 6328 6323 6350 6347 

FS 4 11377 0.15 3 11359 11359 11376 11384 11388 11397 

FS 5 26634 0.12 3 26604 26643 26602 26610 26677 26640 

P
e
r
so

n
n

e
l 

S
c
h

e
d

u
li

n
g

 PS 1 21 16.6 2 22 24 19 18 25 22 

PS 2 9628 0.0 1 9630 9667 9628 9812 10136 10074 

PS 3 3351 3.9 6 3231 3289 3223 3228 3255 3232 

PS 4 1555 -2.2 1 1590 1765 1590 1605 1595 1615 

PS 5 315 0.0 1 320 325 320 315 320 345 

T
r
a

v
e
li

n
g

 

S
a

le
sm

a
n

 TSP 1 48194.9 0.0 1 48194.9 48194.9 48194.9 48194.9 48194.9 48194.9 

TSP 2 21041571 0.01 2 21270792 20822145.7 21042675.8 21093828.3 21246427.7 21064606.3 

TSP 3 6810.5 0.0 1 6816.2 6810.5 6819.1 6820.6 6813.6 6811.9 

TSP 4 67105.2 0.5 4 66898.2 66879.8 67378.0 66894.0 67136.8 66756.2 

TSP 5 54755.3 3.4 5 54896.8 53099.8 54028.6 54368.4 52934.4 52925.3 

V
e
h

ic
le

 

R
o

u
ti

n
g

 VRP 1 60720.0 -0.20 1 83094.9 60900.6 76147.1 80671.3 64717.8 74715.8 

VRP 2  12337.9 0.3 2 13341.0 13347.6 13367.9 13329.8 12290.0 13335.6 

VRP 3 145418.9 0.05 2 145329.9 148516.8 148206.2 145333.5 146944.4 162188.5 

VRP 4 20653.8 0.01 2 20683.5 20656.6 21642.9 20654.1 20650.8 20650.8 

VRP 5 149007.9 0.23 4 149107.9 148689.2 149132.4 148975.1 148659.0 155224.7 

 

C. DISCUSSION 

The numerical results presented throughout this work 

demonstrate that, across six very different combinatorial 

optimization problems, GEP-HH achieved favorable results 

compared to the top five hyper-heuristic methods from the 

CHeSC competition. More importantly, out of the 30 

instances GEP-HH matched the best results for 12 instances 

and manages to obtain new best results for 12 instances. In 

all domains, the standard deviation and the percentage 

deviation of GEP-HH reveal that GEP-HH results are stable 

and very close to the best results obtained by other hyper-

heuristic methods. These results are also supported by 

statistical tests and box-plots of solution distribution. In 

order to compare the performance of GEP-HH against the 

top five hyper-heuristic methods from the CHeSC 

competition (AdapHH, VNS-TW, ML, PHUNTER and 

EPH) more accurately, we have conducted the following 

comparison: 

 

i) In the first comparison we used Formula one that was 

used in the CHeSC competition [23] to calculate the 

score of GEP-HH and the top five hyper-heuristic 

methods. Table 14 shows the overall rankings of GEP-

HH and the top five hyper-heuristic methods (the higher 

the better). We also included GEP-HH* in the 

comparisons. It is interesting to note that GEP-HH 

obtained the first rank, whilst, GEP-HH* obtained the 

third rank compared to the top five hyper-heuristic 

methods.  

TABLE 14 THE RANKING OF GEP-HH AND THE TOP FIVE HYPER-

HEURISTICS  
# Hyper-heuristics Score  

1- GEP-HH 167.03 
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2- AdapHH 155.7 

3 GEP-HH* 130.43 
4- VNS-TW 110.2 

5- ML 101.33 

6- PHUNTER 63.83 
7- EPH 75.25 

 

ii) In the second comparison, we conducted a multiple 

comparison statistical tests between GEP-HH and the 

top five hyper-heuristic methods. To do so, we 

performed Friedman and Iman-Davenport tests with a 

critical level of 0.05 to detect whether there are 

statistical differences between the results of these 

methods. The p-value of Friedman (p-value = 0.000) 

and Iman-Davenport (p-value =0.000) are less than the 

critical level 0.05, which implies that there is a 

significant difference between the compared methods. 

As a result, we conducted a Friedman test to calculate 

the average ranking of each method. Table 15 

summarizes the average ranking (the lower the better) 

produced by the Friedman test for each method. It is 

obvious that, GEP-HH ranked the first, followed by 

AdapHH, GEP-HH*, ML, VNS-TW, PHUNTER and 

EPH. 

TABLE 15 THE AVERAGE RANK OBTIANED  
BY FRIEDMAN TEST 

# Hyper-heuristics Ranking 

1- GEP-HH 3.2333 

2- AdapHH 3.2667 
3- GEP-HH* 3.6833 

4- ML 3.8667 

5- VNS-TW 4.05 

6- PHUNTER 4.9333 

7- EPH 4.9667 

 

Overall, the advantages of the proposed framework are the 

ability to utilize the information about the current state 

during instance solving to automatically generate the 

heuristic selection mechanism and an acceptance criterion. 

Results demonstrate that it provides a general mechanism 

regardless of the nature and complexity of the instances and 

can be applied to other domains without many changes (i.e. 

the user only needs to change the low level heuristics). 

Applying a methodology to other problem domains or even 

different instances of the same problem usually requires a 

considerable amount of modification (e.g. change algorithm 

parameters or structures). Our GEP-HH provides automated 

heuristic method that can cope with not only different 

instances of the same problem, but we have demonstrated 

its generality across six different problem domains. We 

would hope that the proposed methodology would also 

generalize to other domains.  

VII. CONCLUSIONS  

In this work, we have proposed a new hyper-heuristic 

framework for combinatorial optimization problems. At the 

higher level, we have introduced a gene expression 

programming framework to automatically generate the high 

level heuristic of the hyper-heuristic framework. The 

proposed gene expression programming framework evolves 

a population of individuals and each one is decoded into a 

heuristic selection mechanism and an acceptance criterion. 

The evolved heuristic selection mechanism takes the 

current state as input (pervious performance) and decides 

which low level heuristic is to be applied. Then, the 

generated solution is accepted if it satisfies the evolved 

acceptance criterion. At the lower level, we employed a set 

of human designed perturbative low level heuristics to 

perturb the solution of a given instance. To diversify the 

search, we have embedded the proposed hyper-heuristic 

with a memory mechanism, which contains a set of high 

quality and diverse solutions, which are updated during the 

search.  

We have shown that gene expression programming 

algorithm can be effectively used to automatically generate 

the high level heuristics of the perturbative hyper-heuristic 

framework. The efficiency, consistency and the generality 

of GEP-HH is demonstrated across six challenging 

problems using HyFlex software. The experimental results 

demonstrate that GEP-HH achieves highly competitive 

results, if not superior, and generalizes well over six 

problem domains (MAX-SAT, one dimensional bin 

packing, permutation flow shop, personnel scheduling, 

traveling salesman and vehicle routing problems) when 

compared to GEP-HH without a memory mechanism as 

well as the top five hyper-heuristic methods from the 

CHeSC competition. The main contributions of this work 

are: 

 

1- The development of a GEP-HH hyper-heuristic 

framework that automatically generates, during instance 

solving process, the high level heuristic (heuristic 

selection mechanism and the acceptance criteria) of the 

improvement based hyper-heuristic framework.  
 

2- The development of a population based hyper-heuristic 

framework that uses a memory mechanism of a set of 

solutions, which is updated during the solving process to 

effectively diversify the search. 
 

3- The development of a hyper-heuristic framework that is 

not customized to specific problems class and can be 

applied to different problems without much 

development effort. 

In our future work, we intend to investigate the 

effectiveness of the GEP-HH across other combinatorial 

optimization problems. 
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