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Abstract

Trend breaks appear to be prevalent in macroeconomic time series. Consequently, to avoid the

catastrophic impact that unmodelled trend breaks have on power it is standard empirical practice

to employ unit root tests which allow for such effects. A popularly applied approach is the infimum

ADF-type test. Its appeal has endured with practitioners despite results which show that the

infimum ADF statistic diverges to −∞ as the sample size diverges, with the consequence that

the test has an asymptotic size of unity when a break in trend is present under the unit root

null hypothesis. The result for additive outlier-type breaks in trend (but not intercept) is refined

and shows that divergence to −∞ occurs only when the true break fraction is smaller than 2/3.

An alternative testing strategy based on the maximum of the original infimum statistic and the

corresponding statistic constructed using the time-reversed sample data is considered.
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1 Introduction

Macroeconomic series appear to often be characterized by broken trend functions; see, inter alia, Stock

and Watson (1996,1999,2005) and Perron and Zhu (2005). In a seminal paper, Perron (1989) shows

that failure to account for trend breaks present in the data results in unit root tests with zero power,

even asymptotically. Consequently, when testing for a unit root it has become a matter of regular

practice to allow for this kind of deterministic structural change. While Perron (1989) initially treated

the location of the break as known, subsequent approaches have focused on the case where the break

location is unknown and is chosen via a data-dependent method; see, inter alia, Zivot and Andrews

(1992) [ZA], Banerjee et al. (1992) and Perron (1997); see also Pitarakis (2012).

Of these endogenised approaches, the testing methodology proposed by ZA has been widely used

by practitioners (for a recent example, see Alexeev and Maynard, 2012). The approach suggested by

ZA is to calculate the ADF t-ratio-type statistic of Perron (1989) for all candidate break points within

a trimmed range and to then form a test based on the infimum (most negative) of this sequence of

statistics. This infimum test is simple to compute and, by selecting the statistic within the sequence

which gives most weight to the alternative, follows an established approach to such problems in

econometrics.

A significant drawback with the infimum approach, however, is that it is predicated on the main-

tained hypothesis that no break in trend occurs under the unit root null hypothesis. This assumption

needs to be made in order for the infimum statistic to have a pivotal limiting null distribution. Inves-

tigating what happens when this maintained assumption does not hold, results presented in Vogelsang

and Perron (1998) show that, for both sudden additive outlier (AO) breaks and slowly evolving inno-

vational outlier (IO) breaks, when a trend break of fixed non-zero magnitude occurs under the unit

root null, so the infimum statistics diverge to −∞ as the sample size diverges and, hence, cause the

tests to have asymptotic size of unity.

In this paper we revisit this issue, focusing on AO-type breaks in the trend (but not intercept). Our

primary contribution is to refine the theoretical results given in Vogelsang and Perron (1998), showing

that the divergence of the infimum statistic to −∞ occurs only when the true break fraction, τ0 say,

is smaller than 2/3. We also briefly consider an alternative testing strategy based on the maximum

of the original infimum statistic and the corresponding statistic constructed using the time-reversed

sample data. We find that such an approach appears to offer considerable improvements in finite

sample size control relative to the original test, while retaining attractive power properties.

In the following ‘b·c’ denotes the integer part of its argument, ‘⇒’ and ‘
p→’ denote weak convergence

and convergence in probability, respectively, in each case as the sample size diverges to +∞, ‘x := y’

(‘x =: y’) indicates that x is defined by y (y is defined by x), and ‘1(·)’ denotes the indicator function.
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2 The Model and the Infimum Unit Root Test

We consider a univariate time series {yt} generated by the AO DGP,

yt = µ+ βt+ γDTt(τ0) + ut, t = 1, ..., T, (1)

ut = ρut−1 + εt, t = 2, ..., T (2)

where, for a generic fraction τ , DTt(τ) := 1(t > bτT c)(t − bτT c) in (1), and τ0 is an (unknown)

putative trend break fraction, with associated break magnitude γ. The break fraction is assumed to

be such that τ0 ∈ Λ, where Λ := [τL, τU ] with 0 < τL < τU < 1; the fractions τL and τU representing

trimming parameters. In (2), {ut} is an unobserved mean zero stochastic process, initialised such that

u1 = op(T
1/2). Also, for simplicity of exposition, we will assume that εt in (2) is an independent and

identically distributed sequence with mean zero, variance σ2
ε and finite fourth moment. The theoretical

results given in the paper would continue to hold under a more general weak dependence assumption

provided the Dickey-Fuller-type unit root regression in (3) below was augmented with k lags of the

dependent variable and where k satisfies the usual condition that 1/k + k3/T → 0 as T →∞.

We examine the problem of testing the unit root null hypothesis H0 : ρ = 1, against the alternative,

H1 : ρ < 1, without assuming knowledge of where, or indeed if, the trend break occurs in the DGP.

Let ût denote the residual from fitting the OLS regression of yt on zt := [1, t,DTt(τ)]′ (we suppress

the dependence of ût and any associated OLS estimators on τ for convenience of notation), i.e.

ût := yt − µ̂− β̂t− γ̂DTt(τ)

and let tφ̂ (τ) denote the Dickey-Fuller t-ratio for testing φ = 0 in the fitted OLS regression

∆ût = φ̂ût−1 + ε̂t (3)

that is

tφ̂ (τ) :=

∑T
t=2 ∆ûtût−1√
σ̂2
ε

∑T
t=2 û

2
t−1

with σ̂2
ε := (T − 2)−1

∑T
t=2 ε̂

2
t . Then the infimum ZA-type procedure we consider is based on the

statistic

ZAAO := inf
τ∈Λ

tφ̂ (τ) .

3 Limiting Behaviour of ZAAO

In order to derive the large sample behaviour of the ZAAO statistic we must first evaluate the limiting

behaviour of the tφ̂ (τ) statistic for τ 6= τ0. This is provided in Theorem 1.

Theorem 1 Let yt be generated according to (1) and (2), with γ = κσε, κ 6= 0. Then for τ 6= τ0

T−1/2tφ̂ (τ)
p→ κ2{N(1, τ0, τ)2 −N(0, τ0, τ)2}

2
√
κ2{1 + κ2M(τ0, τ)}

∫ 1
0 N(r, τ0, τ)2dr
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with

N(r, τ0, τ) := Irτ0
(r − τ0)− P1 − P2r − IrτP3(r − τ),

M(τ0, τ) := L(τ0, τ)− {N(1, τ0, τ)2 −N(0, τ0, τ)2}2

2
∫ 1

0 N(r, τ0, τ)2dr
,

L(τ0, τ) := (1− τ0) + P 2
2 + (1− τ)P 2

3 − 2(1− τ0)P2 − 2(1− τ0 − Iττ0
(τ − τ0))P3 + 2(1− τ)P2P3

and 
P1

P2

P3

 :=


1 1

2
(1−τ)2

2

1
2

1
3

(1−τ)2(2+τ)
6

(1−τ)2

2
(1−τ)2(2+τ)

6
(1−τ)3

3


−1 

(1−τ0)2

2
(1−τ0)2(2+τ0)

6
{1−τ0−Iττ0

(τ−τ0)}2{2+τ0−3τ+4Iττ0
(τ−τ0)}

6


where Iyx := 1(y > x).

Notice that when τ = τ0, we find that [P1, P2, P3] = [0, 0, 1] and N(r, τ0, τ0) = 0; consequently,

the limit of T−1/2tφ̂ (τ0) is undefined. We know, however, from Kim and Perron (2009) that tφ̂ (τ)

has a well-defined limit distribution under H0 when τ is within an o(T−1/2) neighbourhood of τ0,

thus tφ̂ (τ) = Op(1) here, and we will therefore consider the limit of T−1/2tφ̂ (τ0) to be zero. For

τ 6= τ0, Theorem 1 implies that tφ̂ (τ) = Op(T
1/2). Now since ZAAO takes the minimum value of

tφ̂ (τ) across all τ ∈ Λ, the pertinent issue is the sign of the limit of T−1/2tφ̂ (τ). More specifically, if,

given a break at time τ0, T−1/2tφ̂ (τ) is positive for all τ ∈ Λ, then, since tφ̂ (τ)
p→ +∞ for all τ 6= τ0,

ZAAO would not be minimised over this problem region, but rather for a value of τ within a shrinking

neighbourhood of τ0. On the other hand, if T−1/2tφ̂ (τ) is negative for any τ ∈ Λ, then tφ̂ (τ)
p→ −∞

for some τ 6= τ0, and consequently ZAAO
p→ −∞ also, resulting in unit asymptotic size. We now

therefore examine the sign of the limit of T−1/2tφ̂ (τ) as a function of τ0 and τ .

The sign of the limit of T−1/2tφ̂ (τ) is determined by the sign of N(1, τ0, τ)2 − N(0, τ0, τ)2 as

the other terms in the limit are unambiguously positive (as is clear from the Proof of Theorem 1,

1 + κ2M(τ0, τ) is the limit of σ̂2
ε/σ

2
ε and is therefore positive). Next note that we can write

N(0, τ0, τ) = −P1,

N(1, τ0, τ) = (1− τ0)− P1 − P2 − P3(1− τ)

and so

N(1, τ0, τ)2 −N(0, τ0, τ)2 = {(1− τ0)− P1 − P2 − P3(1− τ)}2 − P 2
1 .

First consider the case where τ < τ0. Here, we find (upon simplification)
P1

P2

P3

 =


(1−τ0)2(τ0−τ)

2(1−τ)

−3(1−τ0)2(τ0−τ)
2τ(1−τ)

(1−τ0)2(3τ0−τ−2ττ0)

2τ(1−τ)3


yielding

N(1, τ0, τ)2 −N(0, τ0, τ)2 = jτ ,τ0hτ ,τ0 (4)
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where

jτ ,τ0 := (1− τ0)2 (τ0 − τ)2 (1− τ + τ0 − τ) /4 (1− τ)4 ,

hτ ,τ0 := 2τ0(1− τ)− (1− τ0)

with jτ ,τ0 always positive when τ < τ0. Now, the function hτ ,τ0 is, for a given τ0, monotonically

decreasing in τ , and since τL ≤ τ < τ0 it is bounded by [2τ0(1 − τL) − (1 − τ0), (2τ0 − 1)(1 − τ0)).

We then find that

For τ0 < 1/3 hτ ,τ0 < 0 for all τL ≤ τ < τ0,

For 1/3 ≤ τ0 < 1/2 hτ ,τ0

{
< 0 for τL ≤ τ < 3τ0−1

2τ0

≥ 0 for 3τ0−1
2τ0

≤ τ < τ0

,

For τ0 ≥ 1/2 hτ ,τ0 > 0 for all τL ≤ τ < τ0.

Next, when τ > τ0 we have
P1

P2

P3

 =


τ0(τ−τ0)(−2τ+τ0+ττ0)

2τ2

(τ−τ0)(2τ2−τ2
0+2ττ0−3ττ2

0)
2τ3

τ2
0(−3τ+τ0+2ττ0)

2τ3(τ−1)


giving

N(1, τ0, τ)2 −N(0, τ0, τ)2 = kτ ,τ0 lτ ,τ0 (5)

where

kτ ,τ0 := τ2
0 (τ − τ0)2 (2τ − τ0) /4τ4,

lτ ,τ0 := τ0 − 2τ(1− τ0)

with kτ ,τ0 always positive when τ > τ0. The function lτ ,τ0 is, for a given τ0, monotonically decreasing

in τ and since τ0 < τ ≤ τU it is bounded by (τ0(2τ0 − 1), τ0 − 2τU (1− τ0)]. Then,

For τ0 < 1/2 lτ ,τ0 < 0 for all τ0 < τ ≤ τU ,

For 1/2 ≤ τ0 < 2/3 lτ ,τ0

 < 0 for τ0 ≤ τ < τ0
2(1−τ0)

≥ 0 for τ0
2(1−τ0) ≤ τ ≤ τU

,

For τ0 ≥ 2/3 lτ ,τ0 > 0 for all τ0 < τ ≤ τU .

Drawing on the above results for (4) when τ < τ0 and (5) when τ > τ0, we can then write

For τ0 < 1/3 p lim(T−1/2tφ̂ (τ)) < 0 for all τL ≤ τ ≤ τU ,

For 1/3 ≤ τ0 < 2/3 p lim(T−1/2tφ̂ (τ))

{
< 0 for some τL ≤ τ ≤ τU
≥ 0 for some τL ≤ τ ≤ τU

,

For τ0 ≥ 2/3 p lim(T−1/2tφ̂ (τ)) > 0 for all τL ≤ τ ≤ τU .
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To further illustrate the behaviour of T−1/2tφ̂ (τ), Figure 1 displays the regions in (τ , τ0) space where

p lim(T−1/2tφ̂ (τ)) is positive/negative. Translating this behaviour into that of ZAAO , which locates

the minimum of tφ̂ (τ) across all τ ∈ Λ, we consequently obtain that

ZAAO ⇒

{
−∞ τ0 < 2/3

Op(1) τ0 ≥ 2/3.

We therefore find that, under H0, ZAAO will spuriously reject with probability approaching one

in the limit provided the true break fraction τ0 lies below 2/3. It will, however, not spuriously reject

with probability one in the limit if τ0 is 2/3 or above. It is this second finding that refines the result

presented in Vogelsang and Perron (1998), since the finding that spurious rejections of the null occur

with probability one in the limit is here shown to depend on where the true break is located. (Note

that, in contrast, the innovational outlier version of the statistic diverges to −∞ for all τ0, as stated

by Vogelsang and Perron (1998).) Of course, in an empirical setting where uncertainty exists as to the

presence or location of a break, one is unlikely to have any confidence that the putative break will lie

in the region τ0 ∈ [2/3, τU ], and so the fundamental problem raised by Vogelsang and Perron (1998)

of potentially serious over-sizing persists in the practical application of ZAAO .

Figure 1. Sign of p lim(T−1/2tφ̂(τ))

p lim(T−1/2tφ̂(τ)) < 0

p lim(T−1/2tφ̂(τ)) > 0

4 Use of Time-Reversed Data

In order to consider how the asymptotic over-size problem region of a ZAAO -type test might be reduced,

we now consider the following improvisation. If we time-reverse the data, i.e. consider {yT−t+1}Tt=1 in

place of {yt}Tt=1, then any break appearing in the first half of the original sample {yt} is translated into

one occurring in the second half of {yT−t+1}. Thus application of ZAAO to {yT−t+1}, which we denote

by ZA′AO , will deliver a test which does not spuriously reject in the limit with probability one when a

break occurs in the first third of {yt}. Of course, since in practice we have no information regarding
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the location of a break, ZA′AO does not achieve robustness, since here a break in the last two-thirds

of {yt} would cause spurious rejection of the null by ZA′AO . However, if we consider the maximum

of ZAAO and ZA′AO (cf. Leybourne, 1995, in the context of unit root testing without allowance for a

break in trend); that is,

ZAmax
AO := max(ZAAO ,ZA

′
AO)

the ZAAO problem of spuriously rejecting the null with probability approaching one when τ0 ∈ [τL, 2/3]

is for ZAmax
AO restricted to the region τ0 ∈ (1/3, 2/3). Under H0 and for the case γ = 0, it is straight-

forward to show that

ZAmax
AO ⇒ max

(
inf
τ∈Λ

Z(τ), inf
τ∈Λ

Z ′(τ)

)
(6)

where

Z(τ) :=
K(1, τ)2 −K(0, τ)2 − 1

2
√∫ 1

0 K(r, τ)2dr
, Z ′(τ) :=

K ′(1, τ)2 −K ′(0, τ)2 − 1

2
√∫ 1

0 K
′(r, τ)2dr

with K(r, τ) and K ′(r, τ) the continuous time residual processes from the projections of W (r), and

W (1−r), respectively, onto the space spanned by {1, r, (r−τ)Irτ}, where W (r) is the Brownian motion

process defined by T−1/2
∑brT c

t=1 εt ⇒ σεW (r). Table 1 reports asymptotic nominal 0.10, 0.05 and 0.01

level critical values for ZAmax
AO for a selection of commonly used trimming parameters. The critical

values were obtained by direct simulation of (6), approximating the Wiener processes in the limiting

functionals using NIID(0, 1) random variates, with the integrals approximated by normalized sums

of 2,000 steps. Unreported simulations, available from the authors on request, suggest that (i) ZAmax
AO

displays good finite sample size control for all τ0 values, unless a large magnitude break occurs at

τ0 ∈ (1/3, 2/3) in an extremely large sample, and (ii) ZAmax
AO has attractive power properties under H1,

regardless of whether or not a break is actually present. Given that substantial over-size is only seen

to occur for series that are unrepresentative of those encountered in typical economic applications, a

pragmatic case could be made for using ZAmax
AO , although it is difficult to fully justify such an approach,

given that the test still has asymptotic size approaching one when τ0 ∈ (1/3, 2/3).

Table 1. Asymptotic ξ-level critical values for the ZAmax
AO test

[τL, τU ] ξ = 0.10 ξ = 0.05 ξ = 0.01

[0.05, 0.95] −3.81 −4.07 −4.64

[0.10, 0.90] −3.80 −4.06 −4.62

[0.15, 0.85] −3.78 −4.04 −4.61

[0.20, 0.80] −3.75 −4.02 −4.60
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Appendix: Proof of Theorem 1

In what follows we can set µ = β = 0 without loss of generality. When τ 6= τ0 we have

T−2∑T
t=1 yt = T−2∑T

t=1 ut + κσεT
−2∑T

t=τ0T+1(t− τ0T )
p→ κσε (1− τ0)2 /2,

T−3∑T
t=1 tyt = T−3∑T

t=1 tut + κσεT
−3∑T

t=τ0T+1 t(t− τ0T )
p→ κσε (1− τ0)2 (2 + τ0) /6,

T−3∑T
t=τT+1(t− τT )yt = T−3∑T

t=τT+1(t− τT )ut + κσεT
−3∑T

t=τT+1(t− τT )DTt(τ0)

p→ κσε[{1− τ0 − Iττ0
(τ − τ0)}2{2 + τ0 − 3τ + 4Iττ0

(τ − τ0)}]/6.

Examining the limit behaviour of the residuals ût we obtain
T−1µ̂

β̂

γ̂

 =


1 T−2

∑T
t=1 t T−2

∑T
t=τT+1(t− τT )

T−2
∑T

t=1 t T−3
∑T

t=1 t
2 T−3

∑T
t=τT+1 t(t− τT )

T−2
∑T

t=τT+1(t− τT ) T−3
∑T

t=τT+1 t(t− τT ) T−3
∑T

t=τT+1(t− τT )2


−1

×


T−2

∑T
t=1 yt

T−3
∑T

t=1 tyt

T−3
∑T

t=τT+1(t− τT )yt


p→


1 1

2
(1−τ)2

2

1
2

1
3

(1−τ)2(2+τ)
6

(1−τ)2

2
(1−τ)2(2+τ)

6
(1−τ)3

3


−1 

κσε(1−τ0)2

2
κσε(1−τ0)2(2+τ0)

6
κσε{1−τ0−Iττ0

(τ−τ0)}2{2+τ0−3τ+4Iττ0
(τ−τ0)}

6



= : κσε


P1

P2

P3


giving

T−1ûbrT c = T−1ybrT c − T−1µ̂− T−1β̂ brT c − T−1γ̂Irτ (brT c − bτT c)

= T−1ubrT c + κσεIrτ0
(r − τ0)− T−1µ̂− β̂r − γ̂Irτ (r − τ)

p→ κσε{Irτ0
(r − τ0)− P1 − P2r − IrτP3(r − τ)} =: κσεN(r, τ0, τ).

We also require

∆ût = ∆yt − β̂ − γ̂DUt(τ)

= κσεDUt(τ0) + ∆ut − β̂ − γ̂DUt(τ)∑T
t=2 ∆û2

t = κ2σ2
ε(T − τ0T ) +

∑T
t=2 ∆u2

t + (T − 1)β̂
2

+ γ̂2(T − τT )

+2κσε
∑T

t=τ0T+1 ∆ut − 2κσε(T − τ0T )β̂ − 2κσεγ̂
∑T

t=2DUt(τ0)DUt(τ)

−2β̂
∑T

t=2 ∆ut − 2γ̂
∑T

t=τT+1 ∆ut + 2β̂γ̂(T − τT )

T−1∑T
t=2 ∆û2

t
p→ σ2

ε[1 + κ2{(1− τ0) + P 2
2 + (1− τ)P 2

3 − 2(1− τ0)P2 − 2(1− τ0 − Iττ0
(τ − τ0))P3

+2(1− τ)P2P3}] =: σ2
ε{1 + κ2L(τ0, τ)}
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and

T φ̂ =
T−2û2

T − T−2û2
1 − T−2

∑T
t=2 ∆û2

t

2T−3
∑T

t=2 û
2
t−1

p→ N(1, τ0, τ)2 −N(0, τ0, τ)2

2
∫ 1

0 N(r, τ0, τ)2dr
.

Now we can establish the limit of σ̂2
ε

σ̂2
ε = T−1∑T

t=2 ε̂
2
t

= T−1∑T
t=2 ∆û2

t + T 2φ̂
2
T−3∑T

t=2 û
2
t−1 − 2T φ̂T−2∑T

t=2 ∆ûtût−1

p→ σ2
ε{1 + κ2L(τ0, τ)}+

[
N(1, τ0, τ)2 −N(0, τ0, τ)2

2
∫ 1

0 N(r, τ0, τ)2dr

]2

κ2σ2
ε

∫ 1

0
N(r, τ0, τ)2dr

−2

[
N(1, τ0, τ)2 −N(0, τ0, τ)2

2
∫ 1

0 N(r, τ0, τ)2dr

]
{κ2σ2

εN(1, τ0, τ)2 − κ2σ2
εN(0, τ0, τ)2}

= σ2
ε

(
1 + κ2

[
L(τ0, τ)− {N(1, τ0, τ)2 −N(0, τ0, τ)2}2

2
∫ 1

0 N(r, τ0, τ)2dr

])
=: σ2

ε{1 + κ2M(τ0, τ)}.

It then follows using standard theory that

T−1/2tφ̂ =
T−2û2

T − T−2û2
1 − T−2

∑T
t=2 ∆û2

t

2
√
σ̂2
εT
−3
∑T

t=2 û
2
t−1

p→ κ2{N(1, τ0, τ)2 −N(0, τ0, τ)2}

2
√
κ2{1 + κ2M(τ0, τ)}

∫ 1
0 N(r, τ0, τ)2dr

.
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