
Worker/Wrapper/Makes it/Faster

Jennifer Hackett Graham Hutton
School of Computer Science, University of Nottingham

{jph,gmh}@cs.nott.ac.uk

Abstract
Much research in program optimization has focused on for-
mal approaches to correctness: proving that the meaning
of programs is preserved by the optimisation. Paradoxi-
cally, there has been comparatively little work on formal
approaches to efficiency: proving that the performance of op-
timized programs is actually improved. This paper addresses
this problem for a general-purpose optimization technique,
the worker/wrapper transformation. In particular, we use
the call-by-need variant of improvement theory to establish
conditions under which the worker/wrapper transformation
is formally guaranteed to preserve or improve the time per-
formance of programs in lazy languages such as Haskell.

Categories and Subject Descriptors D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

Keywords general recursion; improvement

1. Introduction
To misquote Oscar Wilde [31], “functional programmers
know the value of everything and the cost of nothing”1.
More precisely, the functional approach to programming
emphasises what programs mean in a denotational sense,
rather than what programs do in terms of their operational
behaviour. For many programming tasks this emphasis is
entirely appropriate, allowing the programmer to focus on
the high-level description of what is being computed rather
than the low-level details of how this is realised. However,
in the context of program optimisation both aspects play
a central role, as the aim of optimisation is to improve
the operational performance of programs while maintaining
their denotational correctness.

A research paper on program optimisation therefore
should justify both the correctness and performance aspects
of the optimisation described. There is a whole spectrum of
possible approaches to this, ranging from informal tests and
benchmarks [19], to tool-based methods such as property-

1 The general form of this misquote is due to Alan Perlis, who
originally said it of Lisp programmers.
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based testing [3] and space/time profiling [24], all the way
up to formal mathematical proofs [17]. For correctness, it is
now becoming standard to formally prove that an optimisa-
tion preserves the meaning of programs. For performance,
however, the standard approach is to provide some form of
empirical evidence that an optimisation improves the effi-
ciency of programs, and there is little published work on
formal proofs of improvement.

In this paper, we aim to go some way toward redress-
ing this imbalance in the context of the worker/wrapper
transformation [7], putting the denotational and operational
aspects on an equally formal footing. The worker/wrapper
transformation is a general purpose optimisation technique
that has already been formally proved correct, as well as
being realised in practice as an extension to the Glasgow
Haskell Compiler [26]. In this paper we formally prove that
this transformation is guaranteed to preserve or improve
time performance with respect to an established operational
theory. In other words, we show that the worker/wrapper
transformation never makes programs slower. Specifically,
the paper makes the following contributions:

• We show how Moran and Sands’ work on call-by-need im-
provement theory [15] can be applied to formally justify
that the worker/wrapper transformation for least fixed
points preserves or improves time performance;

• We present preconditions that ensure the transformation
improves performance in this manner, which come natu-
rally from the preconditions that ensure correctness;

• We demonstrate the utility of the new theory by verify-
ing that examples from previous worker/wrapper papers
indeed exhibit a time improvement.

The use of call-by-need improvement theory means that
our work applies to lazy functional languages such as
Haskell. Traditionally, the operational beheaviour of lazy
evaluation has been seen as difficult to reason about, but
we show that with the right tools this need not be the case.
To the best of our knowledge, this paper is the first time that
a general purpose optimisation method for lazy languages
has been formally proved to improve time performance.

Improvement theory does not seem to have attracted
much attention in recent years, but we hope that this pa-
per can help to generate more interest in this and other
techniques for reasoning about lazy evaluation. Whereas in
many papers calculations and proofs are often omitted or
compressed for reasons of brevity, in this paper they are the
central focus, so are presented in detail.



2. Example: Fast Reverse
We shall begin with an example that motivates the rest of
the paper: transforming the naïve list reverse function into
the so-called “fast reverse” function. This transformation
is an instance of the worker/wrapper transformation, and
there is an intuitive, informal justification of why this is an
optimisation. Here we give this non-rigorous explanation;
the remainder of this paper will focus on building the tools
to strengthen this to a rigorous argument.

We start with a naïve definition of the reverse function,
which takes quadratic time to run as each append ++ takes
time linear in the length of its left argument:

reverse :: [a ] → [a]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

We can write a more efficient version by using a worker
function revcat with a wrapper around it that simply applies
the worker function with [ ] as the second argument:

reverse′ :: [a] → [a ]
reverse′ xs = revcat xs [ ]

The specification for the worker revcat is as follows:
revcat :: [a] → [a ] → [a ]
revcat xs ys = reverse xs ++ ys

From this specification we can calculate a new definition
that does not depend on reverse. Because reverse is defined
by cases, we will have one calculation for each case.
Case for [ ]:

revcat [ ] ys
= { specification of revcat }

reverse [ ] ++ ys
= { definition of reverse }
[ ] ++ ys

= { definition of ++ }
ys

Case for (x : xs):
revcat (x : xs) ys

= { specification of revcat }
reverse (x : xs) ++ ys

= { definition of reverse }
(reverse xs ++ [x ]) ++ ys

= { associativity of ++ }
reverse xs ++ ([x ] ++ ys)

= { definition of ++ }
reverse xs ++ (x : ys)

= { specification of revcat }
revcat xs (x : ys)

Note the use of associativity of ++ in the third step, which
is the only step not simply by definition or specification.
Left-associated appends such as (xs ++ ys) ++ zs are less
time-efficient than the equivalent right-associated appends
xs++(ys++zs), as the former traverses xs twice. The intuition
here is that the efficiency gain from this step in the proof
carries over in some way to the rest of the proof, so that
overall our calculated definition of revcat is more efficient
than its original specification. The calculation gives us the
following definition, which runs in linear time:

reverse xs = revcat xs [ ]

revcat [ ] ys = ys
revcat (x : xs) ys = revcat xs (x : ys)
Unfortunately, there are a number of problems with this

approach. Firstly, we calculated revcat using the fold-unfold
style of program calculation [2]. This is an informal calcu-
lation, which fails to guarantee total correctness. Thus the
resulting reverse function may fail in some cases where the
original succeeded. Secondly, while we are applying the com-
mon pattern of factorising a program into a worker and a
wrapper, the reasoning we use is ad-hoc and does not take
advantage of this. We would like to abstract out this pattern
to make future applications of this technique more straight-
forward. Finally, while intuitively we can see an efficiency
gain from the use of associativity of ++, this is not a rigor-
ous argument. Put simply, we need rigorous proofs of both
correctness and improvement for our transformation.

3. Worker/Wrapper Transformation
The worker/wrapper transformation, as originally formu-
lated by Gill and Hutton [7], allowed a function written using
general recursion to be split into a recursive worker function
and a wrapper function that allows the new definition to be
used in the same contexts as the original. The usual applica-
tion of this technique would be to write the worker to use a
different type than the original program that supports more
efficient operations, thus hopefully resulting in a more effi-
cient program overall. Gill and Hutton gave conditions for
the correctness of the transformation; here we present the
more general theory and correctnesss conditions recently de-
veloped by Sculthorpe and Hutton [25].

3.1 The Fix Theory
The idea of the worker/wrapper transformation for fixed-
points is as follows. Given a recursive program prog of some
type A, we can write prog as some function f of itself:

prog :: A
prog = f prog

We can rewrite this definition so that it is explicitly written
using the well-known fixpoint operator fix:

fix :: (a → a) → a
fix f = f (fix f)

resulting in the following definition:
prog = fix f

Next, we write functions abs ::B → A and rep ::A → B that
allow us to convert from the original type A to some other
type B that supports more efficient operations. We finish by
constructing a new function g : B → B that allows us to
rewrite our original definition of prog as follows:

prog = abs (fix g)
Here abs is the wrapper function, while fix g is the worker.
The pattern of the worker/wrapper transformation can be
captured by a theorem that expresses necessary and suffi-
cient conditions for its correctness [25]. This theorem has
assumptions that express the required relationship between
the functions abs and rep, and conditions that provide a
specification for the function g in terms of abs, rep and f:



Theorem 1 (Worker/Wrapper Factorisation).
Given

abs : B → A f : A → A
rep : A → B g : B → B

satisfying one of the assumptions
(A) abs ◦ rep = idA
(B) abs ◦ rep ◦ f = f
(C) fix (abs ◦ rep ◦ f) = fix f

and one of the conditions

(1) g = rep ◦ f ◦ abs (1β) fix g = fix (rep ◦ f ◦ abs)
(2) g ◦ rep = rep ◦ f (2β) fix g = rep (fix f)
(3) f ◦ abs = abs ◦ g

we have the factorisation
fix f = abs (fix g)

The different assumptions and conditions allow one to
choose which will be easiest to verify.

3.2 Proving Fast Reverse Correct
Recall once again the naïve definition of reverse:

reverse :: [a ] → [a]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs ++ [x ]

As we mentioned before, this naïve implementation is inef-
ficient due to the use of the append operation ++. We would
like to use worker/wrapper factorisation to improve it. The
first step is to rewrite the function using fix:

reverse = fix rev
rev :: ([a ] → [a ]) → ([a] → [a])
rev r [ ] = [ ]
rev r (x : xs) = r xs ++ [x ]
The next step in applying worker/wrapper is to select

a new type to replace the original type [a] → [a ], and to
write abs and rep functions to perform the conversions. We
can represent a list xs by its difference list λys → xs ++ ys,
as first demonstrated by Hughes [12]. Difference lists have
the advantage that the usually costly operation of ++ can be
implemented with function composition, typically leading to
an increase of efficiency. We write the following functions to
convert between the two representations:

type DiffList a = [a] → [a ]
toDiff :: [a] → DiffList a
toDiff xs = λys → xs ++ ys
fromDiff :: DiffList a → [a ]
fromDiff h = h [ ]

We have fromDiff ◦ toDiff = id:
fromDiff (toDiff xs)

= { definition of toDiff }
fromDiff (λys → xs ++ ys)

= { definition of fromDiff }
(λys → xs ++ ys) [ ]

= { β-reduction }
xs ++ [ ]

= { [ ] is identity of ++ }
xs

From these functions it is straightforward to create the
actual abs and rep functions. These convert between the
original function type [a ] → [a] and a new function type
[a ] → DiffList a where the returned value is represented as
a difference list, rather than a regular list:

rep :: ([a ] → [a ]) → ([a] → DiffList a)
rep h = toDiff ◦ h

abs :: ([a] → DiffList a) → ([a] → [a])
abs h = fromDiff ◦ h

Assumption (A) holds trivially:
abs (rep h)

= { definitions of abs and rep }
fromDiff ◦ toDiff ◦ h

= { fromDiff ◦ toDiff = id }
h

Now we must verify that the definition of revcat that we
calculated in the previous section

revcat [ ] ys = ys
revcat (x : xs) ys = revcat xs (x : ys)

satisfies one of the worker/wrapper conditions. We first
rewrite revcat as an explicit fixed point.

revcat = fix rev′

rev′ h [ ] ys = ys
rev′ h (x : xs) ys = h xs (x : ys)

We now verify condition (2), rev′ ◦ rep = rep ◦ rev, which
expands to rev′ (rep r) xs = rep (rev r) xs. We calculate
from the right-hand side, performing case analysis on xs.
Firstly, we calculate for the case when xs is empty:

rep (rev r) [ ]
= { definition of rep }

toDiff (rev r [ ])
= { definition of rev }

toDiff [ ]
= { definition of toDiff }
λys → [ ] ++ ys

= { [ ] is identity of ++ }
λys → ys

= { definiton of rev′ }
rev′ (rep r) [ ]

and then for the case where xs is non-empty:
rep (rev r) (x : xs)

= { definition of rep }
toDiff (rev r (x : xs))

= { definition of rev }
toDiff (r xs ++ [x ])

= { definition of toDiff }
λys → (r xs ++ [x]) ++ ys

= { associativity and definition of ++ }
λys → r xs ++ (x : ys)

= { definition of toDiff }
λys → toDiff (r xs) (x : ys)

= { definition of rep }
λys → rep r xs (x : ys)

= { definition of rev′ }
rev′ (rep r) (x : xs)

For total correctness on infinite lists we must also verify the
condition holds for the undefined value ⊥:



rep (rev r) ⊥
= { definition of rep }

toDiff (rev r ⊥)
= { rev pattern matches on second argument }

toDiff ⊥
= { definition of toDiff }
λys → ⊥++ ys

= { ++ strict in first argument }
λys → ⊥

= { rev′ pattern matches on second argument }
rev′ (rep r) ⊥

Now that we know our rev′ satisfies condition (2), we have
a new definition of reverse

reverse = abs revcat = fromDiff ◦ revcat
which eta-expands as follows:

reverse xs = revcat xs [ ]

revcat [ ] ys = ys
revcat (x : xs) ys = revcat xs (x : ys)

The end result is the same improved definition of reverse we
had before. Thus the worker/wrapper theory has allowed us
to formally verify the correctness of our earlier transforma-
tion. Furthermore, the use of a general theory has allowed
us to avoid the need for induction which would usually be
needed to reason about recursive definitions.

4. Improvement Theory
Thus far we have only reasoned about correctness. In or-
der to develop a worker/wrapper theory that can prove effi-
ciency properties, we need an operational theory of program
improvement. More than just expressing extensional infor-
mation, this should be based on intensional properties of
resources that a program requires. For the purpose of this
paper, the resource we shall consider is execution time.

We have two main design goals for our operational theory.
Firstly, it ought to be based on the operational semantics
of a realistic programming language, so that conclusions
we draw from it are as applicable as possible. Secondly,
it should be amenable to techniques such as (in)equational
reasoning, as these are the techniques we used to apply the
worker/wrapper correctness theory.

For the first goal, we use a language with similar syntax
and semantics to GHC Core, except that arguments to
functions are required to be atomic, as was the case in earlier
versions of the language [20]. (Normalisation of the current
version of GHC Core into this form is straightforward.) The
language is call-by-need, reflecting the use of lazy evaluation
in Haskell. The efficiency behaviour of call-by-need programs
is notoriously counterintuitive. Our hope is that providing
formal techniques for reasoning about call-by-need efficiency
we will go some way toward easing this problem.

For the second goal, our theory must be based around
relation R that is a preorder, as transitivity and reflexivity
are necessary for inequational reasoning to be valid. Fur-
thermore, to support reasoning in a compositional manner,
it is essential to allow substitution. That is, given terms M
and N , if M R N then C[M ] R C[N ] should also hold
for any context C. A relation R that satisfies both of these
properties is called a precongruence.

A naïve approach to measuring execution time would be
to simply count the number of steps taken to evaluate a
term to some normal form, and consider that a term M

is more efficient than a term N if its evaluation finishes
in fewer steps. The resulting relation is clearly a preorder;
however it is not a precongruence in a call-by-need setting,
because meaningful computations can be done with terms
that are not fully normalised. For example, just because M
normalises and N does not, it does not follow that M is
necessarily more efficient in all contexts.

The approach we use is due to Moran and Sands [15].
Rather than counting the steps taken to normalise a term,
we compare the steps taken in all contexts, and only say
that M is improved by N if for any context C, the term
C[M ] requires no more evaluation steps than the term C[N ].
The result is a relation that is trivially a precongruence:
it inherits transitivity and reflexivity from the numerical
ordering ⩽, and is substitutive by definition.

Improvement theory [23] was originally developed for
call-by-name languages by Sands [21]. The remainder of this
section presents the call-by-need time improvement theory
due to Moran and Sands [15], which will provide the setting
for our operational worker/wrapper theory. The essential
difference between call-by-name and call-by-need is that the
latter implements a sharing strategy, avoiding the repeated
evaluation of terms that are used more than once.

4.1 Operational Semantics of the Core Language
We shall begin by presenting the operational model that
forms the basis of this improvement theory. The semantics
presented here are originally due to Sestoft [27].

We start from a set of variables Var and a set of construc-
tors Con. We assume all constructors have a fixed arity. The
grammar of terms is as follows:

x, y, z ∈ Var
c ∈ Con
M,N ::= x

| λx → M
| M x
| let {x⃗ = M⃗ } in N
| c x⃗
| case M of {ci x⃗i → Ni}

We use x⃗ = M⃗ as a shorthand for a list of bindings of the
form x = M . Similarly, we use ci x⃗i → Ni as a shorthand
for a list of cases of the form c x⃗ → N . All constructors
are assumed to be saturated, that is, we assume that any
x⃗ that is the operand of a constructor c has length equal
to the arity of c. Literals are represented by constructors of
arity 0. We treat α-equivalent terms as identical.

A term is a value if it is of the form c x⃗ or λx → M . In
Haskell this is referred to as a weak head normal form. We
shall use letters such as V, W to denote value terms.

Term contexts take the following form, with substitution
defined in the obvious way.

C,D ::= [− ]
| x
| λx → C
| C x
| let {x⃗ = C⃗} in D
| c x⃗
| case C of {ci x⃗i → Di}

A value context is a context that is either a lambda abstrac-
tion or a constructor applied to variables.

The restriction that the arguments of functions and con-
structors always be variables has the effect that all bindings



⟨Γ {x = M }, x,S⟩ → ⟨Γ,M,#x : S⟩ { Lookup }
⟨Γ,V,#x : S⟩ → ⟨Γ {x = V},V,S⟩ { Update }
⟨Γ,M x,S⟩ → ⟨Γ,M, x : S⟩ { Unwind }
⟨Γ, λx → M, y : S⟩ → ⟨Γ,M [y / x ],S⟩ { Subst }
⟨Γ, case M of alts,S⟩ → ⟨Γ,M, alts : S⟩ { Case }
⟨Γ, cj y⃗, {ci x⃗i → Ni} : S⟩ → ⟨Γ, Nj [ y⃗ / x⃗j ],S⟩ { Branch }
⟨Γ, let {x⃗ = M⃗ } in N,S⟩ → ⟨Γ {x⃗ = M⃗ }, N,S⟩ { Letrec }

Figure 1. The call-by-need abstract machine

made during evaluation must have been created by a let.
Sometimes we will use M N (where N is not a variable) as
a shorthand for let {x = N } in M x, where x is fresh. We
use this shorthand for both terms and contexts.

An abstract machine for executing terms in the language
maintains a state ⟨Γ,M,S⟩ consisting of: a heap Γ, given by a
set of bindings from variables to terms; the term M currently
being evaluated; the evaluation stack S, given by a list of
tokens used by the abstract machine. The machine works
by evaluating the current term to a value, and then decides
what to do with the value based on the top of the stack.
Bindings generated by let constructs are put on the heap,
and only taken off when performing a Lookup. A Lookup
executes by putting a token on the stack representing where
the term was looked up, and then evaluating that term to
value form before replacing it on the heap. In this way, each
binding is only ever evaluated at most once. The semantics
of the machine is given in Figure 1. Note that the Letrec
rule assumes that x⃗ is disjoint from the domain of Γ; if not,
we need only α-rename so that this is the case.

4.2 The Cost Model and Improvement Relations
Now that we have a semantics for our model, we must
devise a cost model for this semantics. The natural way
to do this for an operational semantics is to count steps
taken to evaluate a given term. We use the notation M↓n to
mean the abstract machine progresses from the initial state
⟨∅,M, ϵ⟩ to some final state ⟨Γ,V, ϵ⟩ with n occurences of the
Lookup step. It is sufficient to count Lookup steps because
the total number of steps is bounded by a linear function of
the number of Lookup steps [15]. Furthermore, we use the
notation M↓⩽n to mean that M↓m for some m ⩽ n.

From this, we can define our improvement relation. We
say that “M is improved by N”, written M ▷∼ N , if the
following statement holds for all contexts C:

C[M ]↓m=⇒ C[N ]↓⩽m

In other words, a term M is improved by a term N if N
takes no more steps to evaluate than M in all contexts.
That this relation is a congruence follows immediately from
the definition, and that it is a preorder follows from the fact
that ⩽ is itself a preorder. We sometimes write M ◁∼ N for
N ▷∼ M . If both M ▷∼ N and M ◁∼ N , we write M ◁▷∼ N and
say that M and N are cost-equivalent.

For convenience, we define a “tick” operation on terms
that adds exactly one unit of cost to a term:

✓M ≡ let {x = M } in x { where x is free in M }
This definition for ✓M takes exactly two steps to evaluate
to M : one to add the binding to the heap, and the other to
look it up. Only one of these steps is a Lookup step, so the
result is that the cost of evaluating the term is increased by
exactly one. Using ticks allows us to annotate terms with in-

dividual units of cost, allowing us to use rules to “push” cost
around a term, making the calculations more convenient.
We could also define the tick operation by adding it to the
grammar of terms and modifying the abstract machine and
cost model accordingly, but this definition is equivalent. We
have the following law: ✓M ▷∼ M .

The improvement relation ▷∼ covers when one term is at
least as efficient as another in all contexts, but this is a very
strong statement. We use the notion of “weak improvement”
when one term is at least as efficient as another within a
constant factor. Specifically, we say M is weakly improved
by N , written M ▷≈ N , if there exists a linear function
f(x) = kx + c (where k, c ⩾ 0) such that the following
statement holds for all contexts C:

C[M ]↓m=⇒ C[N ]↓⩽f(m)

This can be read as “replacing M with N may make pro-
grams worse, but cannot make them asymptotically worse”.
We use symbols ◁≈ and ◁▷

≈
for inverse and equivalence anal-

ogously as for standard improvement.
Because weak improvement ignores constant factors, we

have the following tick introduction/elimination law:
M ◁▷

≈
✓M

It follows from this that any improvement M ▷∼ N can be
weakened to a weak improvement M′ ▷≈ N′ where M ′ and N ′

denote the terms M and N with all the ticks removed.
The last notation we define is entailment, which is used

when we have a chain of improvements that all apply with
respect to a particular set of definitions. Specifically, where
Γ = {x⃗ = V⃗ } is a list of bindings, we write:

Γ ⊢ M1 ▷∼ M2 ▷∼ . . . ▷∼ Mn

to mean:
let Γ in M1 ▷∼ let Γ in M2 ▷∼ . . . ▷∼ let Γ in Mn

4.3 Selected Laws
We finish this section with a selection of laws taken from [15].
The first two are β-reduction rules. The following cost equiv-
alence holds for function application:

(λx → M) y ◁▷∼ M [y / x ]
This holds because the abstract machine evaluates the left-
hand-side to the right-hand-side without performing any
Lookups, resulting the same heap and stack as before. Note
that the substitution is variable-for-variable, as the grammar
for our language requires that the argument to function
application always be a variable.

In general, where a term M can be evaluated to a term
M ′, we have the following relationships:

M ▷∼ M′

M′ ◁▷
≈

M



The latter fact may be non-obvious, but it holds because
evaluating a term will produce a constant number of ticks,
and tick-elimination is a weak cost-equivalence. In this man-
ner we can see that partial evaluation by itself will never save
more than a constant-factor of time.

The following cost equivalence allows us to substitute a
variable for its binding. However, note that this is only valid
for values, as bindings to other terms will be modified in the
course of execution. We thus call this rule value-β.

let {x = V, y⃗ = C⃗[x ]} in D[x ]
◁▷∼

let {x = V, y⃗ = C⃗[✓V ]} in D[✓V ]

The following law allows us to move let bindings in and
out of a context when the binding is to a value. Note that
we assume that x does not appear free in C, which can be
ensured by α-renaming, and that no free variables in V are
captured in C. We call this rule value let-floating.

C[let {x = V} in M ] ◁▷∼ let {x = V} in C[M ]

We also have a garbage collection law allowing us to
remove unused bindings. Assuming that x is not free in N⃗
or L, we have the following cost equivalence:

let {x = M ; y⃗ = N⃗ } in L ◁▷∼ let { y⃗ = N⃗ } in L
The final law we present here is the rule of improvement

induction. The version that we present is stronger than the
version in [15], but can be obtained by a simple modification
of the proof given there. For any set of value bindings Γ and
context C, we have the following rule:

Γ ⊢ M ▷∼ ✓C[M ] Γ ⊢ ✓C[N ] ▷∼ N

Γ ⊢ M ▷∼ N

This allows us to prove an M ▷∼ N simply by finding a
context C where we can “unfold” M to ✓C[M ] and “fold”
✓C[N ] to N . In other words, the following proof is valid:

Γ ⊢ M
▷∼
✓C[M ]

▷∼ { hypothesis }
✓C[N ]

▷∼
N

In this way the technique is similar to proof principles
such as guarded coinduction [4, 28].

As a corollary to this law, we have the following law for
cost-equivalence improvement induction. For any set of value
bindings Γ and context C, we have:

Γ ⊢ M ◁▷∼ ✓C[M ] Γ ⊢ ✓C[N ] ◁▷∼ N

Γ ⊢ M ◁▷∼ N

The proof is simply to start from the assumptions and make
two applications of improvement induction: first to prove
M ▷∼ N , and second to prove N ▷∼ M .

5. Worker/Wrapper and Improvement
In this section, we prove a factorisation theorem for im-
provement theory analogous to the worker/wrapper fac-
torisation theorem given in section 3.1. Before we do this,
however, we must prove two preliminary results: a rolling
rule and a fusion rule. Rolling and fusion are central to
the worker/wrapper transformation [7, 13], so it is only
natural that we would need versions of these to apply
worker/wrapper transformation in this context.

5.1 Preliminary Results
The first rule we prove is the rolling rule, so named because
of its similarity to the rolling rule for least-fixed points. In
particular, for any pair of value contexts F, G, we have the
following weak cost equivalence:

let {x = F[G[x ]]} in G[x ] ◁▷
≈

let {x = G[F[x ]]} in x

The proof begins with an application of cost-equivalence
improvement induction. We let Γ = {x = F[✓G[x ]], y =
G[✓F[y ]]}, M = ✓G[x ], N = y, C = G[✓F[−]]. The
premises of induction are proved as follows:

Γ ⊢ M
≡ { definitions }
✓G[x ]

◁▷∼ { value-β }
✓G[✓F[✓G[x ]] ]

≡ { definitions }
✓C[M ]

and

Γ ⊢ ✓C[N ]
≡ { definitions }
✓G[✓F[y]]

◁▷∼ { value-β }
y

≡ { definitions }
N

Thus we can conclude Γ ⊢ M ◁▷∼ N , or equivalently
let Γ in M ◁▷∼ let Γ in N . We expand this out and ap-
ply garbage collection to remove the unused bindings:

let {x = F[✓G[x ]]} in✓G[x ] ◁▷∼ let {y = G[✓F[y ]]} in y

By applying α-renaming and weakening we obtain the de-
sired result. The second rule we prove is letrec-fusion, anal-
ogous to fixed-point fusion. For any value contexts F, G, we
have the following implication:

H[✓F[x ]] ▷∼ G[✓H[x ]]
⇒

let {x = F[x ]} in H[x ] ▷≈ let {x = G[x ]} in x

For the proof, we assume the premise and proceed by
improvement induction. Let Γ = {x = F[x ], y = G[y ]},
M = ✓H[x], N = y, C = G. The premises are proved by:

Γ ⊢ M
≡ { by definitions }
✓H[x ]

◁▷∼ { value beta }
✓H[✓F[x ]]

▷∼ { by assumption }
✓G[✓H[x ]]

≡ { definition }
✓C[M ]

and

Γ ⊢ ✓C[N ]
≡ { by definitions }
✓G[y]

◁▷∼ { value beta }
y

≡ { definition }
N



Thus we conclude that Γ ⊢ M ▷∼ N . Expanding and applying
garbage collection, we obtain the following:

let {x = F[x ]} in✓H[x ] ▷∼ let y = G[y ] in y
Again we obtain the desired result via weakening and α-
renaming. As improvement induction is symmetrical, we
can also prove the following dual fusion law, in which the
improvement relations are reversed:

H[✓F[x ]] ◁∼ G[✓H[x] ]
⇒

let {x = F[x ]} in H[x] ◁≈ let {x = G[x ]} in x
For both the rolling and fusion rules, we first proved

a version of the conclusion with normal improvement, and
then weakened to weak improvement. We do this to avoid
having to deal with ticks, and because the weaker version is
strong enough for our purposes.

Moran and Sands also prove their own fusion law. This
law requires that the context H satisfy a form of strictness.
Specifically, For any value contexts F, G and fresh variable x,
we have the following implication:

H[F[x] ] ▷∼ G[H[x ]] ∧ strict (H)
⇒

let {x = F[x ]} in C[H[x ]] ▷∼ let {x = G[x ]} in C[x]
This version of fusion has the advantage of having a stronger
conclusion, but its strictness side-condition and lack of sym-
metry make it unsuitable for our purposes.

5.2 The Worker/Wrapper Improvement Theorem
Using the above set of rules, we can prove the follow-
ing worker/wrapper improvement theorem, giving conditions
under which a program factorisation is a time improvement:
Theorem 2 (Worker/Wrapper Improvement).
Given value contexts Abs, Rep, F, G for which x is free
satisfying one of the assumptions

(A) Abs[Rep[x ]] ◁▷
≈

x
(B) Abs[Rep[F[x] ]] ◁▷

≈
F[x ]

(C) let x = Abs[Rep[F[x ]] ] in x ◁▷
≈

let x = F[x ] in x
and one of the conditions

(1) G[x ] ◁≈ Rep[F[Abs[x] ]]
(2) G[✓Rep[x ]] ◁∼ Rep[✓F[x ]]
(3) Abs[✓G[x ]] ◁∼ F[✓Abs[x ]]
(1β) let x = G[x ] in x ◁≈ let x = Rep[F[Abs[x ]] ] in x
(2β) let x = G[x ] in x ◁≈ let x = F[x ] in Rep[x ]

we have the improvement
let x = F[x ] in x ▷≈ let x = G[x] in Abs[x]

Given a recursive program let x = F[x ] in x and abstrac-
tion and representation contexts Abs and Rep, this theorem
gives us conditions we can use to derive a factorised program
let x = G[x] in Abs[x ]. This factorised program will be at
worst a constant factor slower than the original program, but
can potentially be asymptotically faster. In other words, we
have conditions that guarantee that such an optimisation is
“safe” with respect to time performance.

The proof given in [25] for the original factorisation
theorem centers on the use of the rolling and fusion rules.
Because we have proven analogous rules in our setting, the
proofs can be adapted fairly straightforwardly, simply by
keeping the general form of the proofs and using the rules

of improvement theory as structural rules that fit between
the original steps. The details are as follows.

We begin by noting that (A) ⇒ (B) ⇒ (C), as in the
original case. The first implication (A) ⇒ (B) no longer
follows immediately, but the proof is simple. Leting y be a
fresh variable, we reason as follows:

Abs[Rep[F[y]] ]
◁▷
≈

{ garbage collection, value-β }
let x = F[y] in Abs[Rep[x ]]

◁▷
≈

{ (A) }
let x = F[y] in x

◁▷
≈

{ value-β, garbage collection }
F[y]

The final step is to observe that as both x and y are fresh, we
can substitute one for the other and the relationship between
the terms will remain the same. Hence, we can conclude (B).

As in the original theorem, we have that (1) implies
(1β) by simple application of substitution, (2) implies (2β)
by fusion and (3) implies the conclusion also by fusion.
Under assumption (C), we have that (1β) and (2β) are
equivalent. We show this by proving their right hand sides
cost-equivalent, after which we can simply apply transitivity.

let x = F[x ] in Rep[x]
◁▷
≈

{ value-β }
let x = F[x ] in Rep[F[x ]]

◁▷
≈

{ value let-floating }
Rep[F[let x = F[x ] in x ]]

◁▷
≈

{ (C) }
Rep[F[let x = Abs[Rep[F[x ]] ] in x ]]

◁▷
≈

{ value let-floating }
let x = Abs[Rep[F[x ]]] in Rep[F[x ]]

◁▷
≈

{ rolling }
let x = Rep[F[Abs[x ]]] in x

Finally, we must show that condition (1β) and assump-
tion (C) together imply the conclusion. This follows exactly
the same pattern of reasoning as the original proof, with the
addition of two applications of value-let floating:

let x = F[x ] in x
◁▷
≈

{ (C) }
let x = Abs[Rep[F[x ]]] in x

◁▷
≈

{ rolling }
let x = Rep[F[Abs[x ]]] in Abs[x ]

◁▷
≈

{ value let-floating }
Abs[let x = Rep[F[Abs[x ]] ] in x ]

▷≈ { (1β) }
Abs[let x = G[x] in x ]

◁▷
≈

{ value let-floating }
let x = G[x ] in Abs[x ]

We conclude this section by discussing a few important
points about the worker/wrapper improvement theorem and
its applications. Firstly, we note that the condition (A) will
never actually hold. To see this, we let Ω be a divergent
term; that is, one that the abstract machine will never
finish evaluating. By substituting into the context let x =
Ω in [−], we obtain the following cost-equivalence:

let x = Ω in Abs[Rep[x ]] ◁▷
≈

let x = Ω in x
This is clearly false, as the left-hand side will terminate
almost immediately (as Abs is a value context), while the
right-hand side will diverge. Thus we see that assumption
(A) is impossible to satisfy. We leave it in the theorem



for completeness of the analogy with the earlier theorem
from section 3.1. In situations where (A) would have been
used with the earlier theory, the weaker assumption (B)
can always be used instead. As we will see later with the
examples, frequently only very few properties of the context
F will be used in the proof of (B). A typed improvement
theory might allow these properties to be assumed of x
instead, thus making (A) useful again.

Secondly, we note the restriction to value contexts. This
is not actually a particularly severe restriction: for the com-
mon application of recursively-defined functions, it is fairly
straightforward to ensure that all contexts be of the form
λx → C. For other applications it may be more difficult to
find Abs and Rep contexts with the required relationship.

Finally, we note that only conditions (2) and (3) use nor-
mal improvement, with all other assumptions and condi-
tions using the weaker version. This is because weak im-
provement is not strong enough to permit the use of fusion,
which these conditions rely on. This makes these conditions
harder to prove. However, when these conditions are used,
their strength allows us to narrow down the source of any
constant-factor slowdown that may take place.

6. Examples
6.1 Reversing a List
In this section we shall demonstrate the utility of our theory
with two practical examples. We begin by revisiting the
earlier example of reversing a list. In order to apply our
theory, we must first write reverse as a recursive let:

reverse = let {f = Revbody [f ]} in f
Revbody[M ] = λxs → case xs of

[ ] → [ ]
(y : ys) → M ys ++ [y ]

The abs and rep functions from before give rise to to the
following contexts:

Abs[M ] = λxs → M xs [ ]

Rep[M ] = λxs → λys → M xs ++ ys

We also require some extra theoretical machinery that
we have yet to introduce. To start with, we must assume
some rules about the append operation ++. The following
associativity rules were proved by Moran and Sands [15].

(xs ++ ys) ++ zs ▷∼ xs ++ (ys ++ zs)
xs ++ (ys ++ zs) ▷≈ (xs ++ ys) ++ zs

We assume the following identity improvement as well,
which follows from theorems also proved in [15]:

[ ] ++ xs ▷∼ xs

We also require the notion of an evaluation context. An
evaluation context is a context where evaluation is impossi-
ble unless the hole is filled, and have the following form:

E ::= A
| let {x⃗ = M⃗ } in A
| let { y⃗ = M⃗ ;

x0 = A0[x1 ];
x1 = A1[x2 ];
. . .
xn = An}

in A[x0 ]

A ::= [− ]
| A x
| case A of {ci x⃗i → Mi}

Note that a context of this form must have exactly one hole.
The usefulness of evaluation contexts is that they satisfy
some special laws. We use the following in this example:

E[✓M ]
◁▷∼ { tick floating }
✓E[M ]

E[case M of {ci x⃗i → Ni} ]
◁▷∼ { case floating }

case M of {ci x⃗i → E[Ni ]}

E[let {x⃗ = M⃗ } in N ]
◁▷∼ { let floating }

let {x⃗ = M⃗ } in E[N ]

We conclude by noting that while the context [−]++ys is not
strictly speaking an evaluation context (as the hole is in the
wrong place), it is cost-equivalent to an evaluation context
and so also satisfies these laws. The proof is as follows:

[−] ++ ys
≡ { desugaring }
(let {xs = [− ]} in (++) xs) ys

◁▷∼ { let floating [− ] ys }
let {xs = [− ]} in (++) xs ys

◁▷∼ { unfolding ++ }
let {xs = [− ]} in

✓case xs of
[ ] → ys
(z : zs) → let {rs = (++) zs ys} in z : rs

◁▷∼ { desugaring tick and collecting lets }
let {xs = [− ];

r = case xs of
[ ] → ys
(z : zs) → let {rs = (++) zs ys} in z : rs

} in r
Now we can begin the example proper. We start by

verifying that Abs and Rep satisfy one of the worker/wrapper
assumptions. While earlier we used (A) for this example, the
corresponding assumption for worker/wrapper improvement
is unsatisfiable. Thus we instead verify assumption (B). The
proof is fairly straightforward:

Abs[Rep[Revbody[f]] ]
≡ { definitions }
λxs → (λxs → λys → Revbody[f] xs ++ ys) xs [ ]

◁▷∼ { β-reduction }
λxs → Revbody[f] xs ++ [ ]

≡ { definition of Revbody }
λxs → (λxs → case xs of

[ ] → [ ]
(y : ys) → f ys ++ [y ]) xs ++ [ ]

◁▷∼ { β-reduction }
λxs → (case xs of

[ ] → [ ]
(y : ys) → f ys ++ [y ]) ++ [ ]

◁▷∼ { case floating [− ] ++ [ ] }
λxs → case xs of

[ ] → [ ] ++ [ ]
(y : ys) → (f ys ++ [y]) ++ [ ]



◁▷
≈

{ associativity is weak cost equivalence }
λxs → case xs of
[ ] → [ ] ++ [ ]
(y : ys) → f ys ++ ([y ] ++ [ ])

◁▷
≈

{ evaluating [ ] ++ [ ], [y ] ++ [ ] }
λxs → case xs of
[ ] → [ ]
(y : ys) → f ys ++ [y]

≡ { definition of revbody }
Revbody [f]

As before, we use condition (2) to derive our G. The deriva-
tion is somewhat more involved than before, requiring some
care with the manipulation of ticks.

Rep[✓Revbody[f]]
≡ { definitions }
λxs → λys →
(✓λxs → case xs of

[ ] → [ ]
(z : zs) → f zs ++ [z]) xs ++ ys

◁▷∼ { float tick out of [−] xs ++ ys }
λxs → λys →
✓((λxs → case xs of

[ ] → [ ]
(z : zs) → f zs ++ [z]) xs ++ ys)

◁▷∼ { β-reduction }
λxs → λys → ✓((case xs of

[ ] → [ ]
(z : zs) → f zs ++ [z]) ++ ys)

◁▷∼ { case floating [−] ++ ys }
λxs → λys → ✓(case xs of

[ ] → [ ] ++ ys
(z : zs) → (f zs ++ [z ]) ++ ys)

▷∼ { associativity and identity of ++ }
λxs → λys → ✓(case xs of

[ ] → ys
(z : zs) → f zs ++ ([z ] ++ ys))

▷∼ { evaluating [y] ++ ys }
λxs → λys → ✓(case xs of

[ ] → ys
(z : zs) → f zs ++ (z : ys))

◁▷∼ { case floating tick (⋆) }
λxs → λys → case xs of

[ ] → ✓ys
(z : zs) → ✓(f zs ++ (z : ys))

▷∼ { removing a tick }
λxs → λys → case xs of

[ ] → ys
(z : zs) → ✓(f zs ++ (z : ys))

◁▷∼ { desugaring }
λxs → λys → case xs of

[ ] → ys
(z : zs) →

✓(let ws = (z : ys) in
f zs ++ ws)

◁▷∼ { β-expansion }
λxs → λys → case xs of

[ ] → ys
(z : zs) →

✓let ws = (z : ys) in
(λas → λbs → f as ++ bs) zs ws

◁▷∼ { tick floating [− ] zs ws }

λxs → λys → case xs of
[ ] → ys
(z : zs) →

let ws = (z : ys) in
(✓λas → λbs → f as ++ bs) zs ws

≡ { definition of Rep }
λxs → λys → case xs of

[ ] → ys
(z : zs) →

let ws = (z : ys) in
(✓Rep[f ]) zs ws

≡ { taking this as our definition of G }
G[✓Rep[f ]]

The step marked ⋆ is valid because ✓[−] is itself an eval-
uation context, being syntactic sugar for let x = [−] in x.
Thus we have derived a definition of G, from which we create
the following factorised program:

reverse = let {rec = G[rec]} in Abs[rec]
G[rec] = λxs → λys → case xs of

[ ] → ys
(z : zs) → let ws = (z : ys) in

rec zs ws
Expanding this out, we obtain:

reverse = let {rec =
λxs → λys → case xs of

[ ] → ys
(z : zs) → let ws = (z : ys) in

rec zs ws}
in λxs → rec xs [ ]

The result is an implementation of fast reverse as a recursive
let. The calculations here have essentially the same structure
as the correctness proofs, with the addition of some admin-
istrative steps to do with the manipulation of ticks.

To illustrate the performance gain, we have graphed
the performance of the original reverse function against
the optimised version in Figure 2. We used the Criterion
benchmarking library [18] with a range of list lengths to
compare the performance of the two functions The resulting
graph shows a clear improvement from quadratic time to
linear. We chose to use relatively small list lengths for our
graphs, but the trend continues for larger values.

6.2 Tabulating a Function
Our second example is that of tabulating a function by
producing a stream (infinite list) of results. Given a function
f that takes a natural number as its argument, the tabulate
function should produce the following result:

[f 0, f 1, f 2, f 3, . . .
This function can be implemented in Haskell as follows:

tabulate f = f 0 : tabulate (f ◦ (+1))
This definition is inefficient, as it requires that the argument
to f be recalculated for each element of the result stream.
Essentially, this definition corresponds to the following cal-
culation, involving a significant amount of repeated work:

[f 0, f (0 + 1), f ((0 + 1) + 1), f (((0 + 1) + 1) + 1), . . .
We wish to apply the worker/wrapper technique to im-

prove the time performance of this program. The first step
is to write it as a recursive let in our language:



Figure 2. Performance comparisons of reverse and tabulate

tabulate = let {h = F[h ]} in h
F[M ] = λf → let {f′ = λx →

let {x′ = x + 1} in f x′}
in f 0 : M f′

Next, we must devise Abs and Rep contexts. In order to
avoid the repeated work, we hope to derive a version of the
tabulate function that takes an additional number argument
telling it where to “start” from. The following Abs and Rep
contexts convert between these two versions:

Abs[M ] = λf → M 0 f
Rep[M ] = λn → λf → let {f′ = λx →

let {x′ = x + n}
in f x′}

in M f′

Once again, we must introduce some new rules before we
can derive the factorised program. Firstly, we require the
following two variable substitution rules from [15]:

let {x = y} in C [x ] ▷∼ let {x = y} in C [y]
let {x = y} in C [y ] ◁▷

≈
let {x = y} in C [x ]

Next, we must use some properties of addition. Firstly, we
have the following identity properties:

x + 0 ◁▷∼ x
0 + x ◁▷∼ x

We also use the following property, combining associativity
and commutativity. We shall refer to this as associativity
of +. Where t is not free in C, we have:

let {t = x + y} in
let {r = t + z} in C [r]

◁▷∼
let {t = z + y} in

let {r = x + t} in C [r]

Finally, we use the fact that sums may be floated out of
arbitrary contexts. Where z does not occur in C, we have:

C [let {z = y + x} in M ] ◁▷∼ let {z = y + x} in C [M ]

Now we can begin to apply worker/wrapper. Firstly, we
verify that Abs and Rep satisfy assumption (B). Again, this
is relatively straightforward:

Abs[Rep[F[h] ]]
≡ { definitions }
λf → (λn → λf → let {f′ = λx →

let {x′ = x + n}
in f x′}

in F[h ] f) 0 f′
◁▷∼ { β-reduction }
λf → let {f′ = λx →

let {x′ = x + 0}
in f x′}

in F[h] f′
◁▷
≈

{ x + 0 ◁▷
≈

x }
λf → let {f′ = λx →

let {x′ = x}
in f x′}

in F[h] f′
◁▷
≈

{ variable substitution, garbage collection }
λf → let {f′ = λx → f x}

in F[h] f′
≡ { defintion of F }
λf → let {f′ = λx → f x}

in (λf → let {f′′ = λx →
let {x′ = x + 1} in f x}

in f 0 : h f′′) f′
◁▷∼ { β-reduction }
λf → let {f′ = λx → f x}

in let {f′′ = λx →
let {x′ = x + 1} in f′ x′}
in f′ 0 : h f′′

◁▷
≈

{ value-β on f′ }
λf → let {f′′ = λx →

let {x′ = x + 1} in (λx → f x) x′}
in (λx → f x) 0 : h f′′

◁▷∼ { β-reduction }
λf → let {f′′ = λx →

let {x′ = x + 1} in f x′}
in f 0 : h f′′



≡ { definition of F }
F[h]

Now we use condition (2) to derive the new definition of
tabulate. This requires the use of a number of the properties
that we presented earlier:

Rep[✓F[h]]
≡ { definitions }
λn → λf → let {f′ = λx →

let {x′ = x + n}
in f x′}

in (^\f → let {f′′ = λx →
let {x′′ = x + 1} in f x′′}

in f 0 : h f′′) f′
◁▷∼ { tick floating [− ] f′ }
λn → λf → let {f′ = λx →

let {x′ = x + n}
in f x′}

in✓(λf → let {f′′ = λx →
let {x′′ = x + 1} in f x′′}

in f 0 : h f′′) f′
◁▷∼ { β-reduction }
λn → λf → let {f′ = λx →

let {x′ = x + n}
in f x′}

in✓let {f′′ = λx →
let {x′′ = x + 1} in f′ x′′}
in f′ 0 : h f′′

◁▷∼ { value-β on f′, garbage collection }
λn → λf → ✓let {f′′ = λx →

let {x′ = x + 1} in
(✓λx →

let {x′′ = x + n}
in f x′′) x′}

in (✓λx → let {x′′ = x + n}
in f x′′) 0 : h f′′

▷∼ { removing ticks, β-reduction }
λn → λf → ✓let {f′′ = λx →

let {x′ = x + 1} in
let {x′′ = x′ + n}

in f x′′}
in (let {x′′ = 0 + n}

in f x′′) : h f′′
◁▷∼ { associativity and identity of + }
λn → λf → ✓let {f′′ = λx →

let {n′ = n + 1} in
let {x′′ = x + n′}

in f x′′}
in (let {x′′ = n}

in f x′′) : h f′′
▷∼ { variable substitution, garbage collection }
λn → λf → ✓let {f′′ = λx →

let {n′ = n + 1} in
let {x′′ = x + n′}

in f x′′}
in f n : h f′′

◁▷∼ { value let-floating }
λn → λf → f n :
✓let {f′′ = λx →

let {n′ = n + 1} in
let {x′′ = x + n′}

in f x′′}

in h f′′
◁▷∼ { sums float }
λn → λf → f n :

let {n′ = n + 1} in
✓let {f′′ = λx →

let {x′′ = x + n′}
in f x′′}

in h f′′
◁▷∼ { β-expansion, tick floating }
λn → λf → f n :

let {n′ = n + 1} in
(✓λn → λf → let {f′′ = λx →

let {x′ = x + n}
in f x′}

in h f′′) n′ f
≡ { definition of Rep }
λn → λf → f n :

let {n′ = n + 1} in
(✓Rep[h ]) n′ f

≡ { taking this as our definition of G }
G[✓Rep[h ]]

Thus we have derived a definition of G, from which we create
the following factorised program:

tabulate = let {h = G[h ]} in Abs[h ]
G[M ] = λn → λf → f n : let {n′ = n + 1} in M n′ f

This is the same optimised tabulate function that was
proved correct in [10], and the proofs here have a similar
structure to the correctness proofs from that paper, except
that we have now formalised that the new version of the
tabulate function is indeed a time improvement of the orig-
inal version. We note that the proof of (B) is complicated
by the fact that η-reduction is not valid in this setting. In
fact, if we assumed η-reduction then our proof of (B) here
could be adapted into a proof of (A).

We demonstrate the performance gain in Figure 2, again
based on Criterion benchmarks. This time, we keep the same
input (in this case the function λn → n ∗ n), but vary
how many elements of the result stream we evaluate. Once
again, we have an improvement from quadratic to linear
performance, and the trend continues for larger values.

7. Related Work
We divide the related work into three sections. Firstly, we
discuss various approaches to the operational semantics of
lazy languages. Secondly, we discuss the history of improve-
ment theory. Finally, we discuss other approaches that have
been used to formally reason about efficiency.

7.1 Lazy Operational Semantics
The notion of call-by-need evaluation was first introduced
in 1971 by Wadsworth [30]. However, the semantics most
widely regarded as the definition of call-by-need is the natu-
ral semantics due to Launchbury [14], which was later used
by Sestoft to derive the virtual machine semantics we use
in this paper [27]. Ariola, Felleisen, Maraist, Odersky and
Wadler presented a call-by-need lambda calculus [1], with
operational semantics based on reductions between terms in
the source language. This calculus supports an equational
theory. However, Moran and Sands showed that this equa-
tional theory is subsumed by weak cost-equivalence [15].



7.2 Improvement Theory
Improvement theory was originally developed in 1991 by
Sands [21], and applied in a call-by-name setting. In 1997
this was generalised to a wide class of call-by-name and call-
by-value languages, also by Sands [22]. This theory was also
applicable to a general class of resources, rather than just
space and time. The theory for lazy languages was developed
by Moran and Sands for time efficiency [15] and Gustavsson
and Sands for space efficiency [8, 9]. Since the last of these
papers was published in 2001, there does not seem to have
been much work on improvement theory. We hope that this
paper can help to regenerate interest in this topic.

7.3 Formal Reasoning About Efficiency
Okasaki [17] uses techniques of amortised cost analysis to
reason about the asymptotic time complexity of lazy func-
tional data structures. This is achieved by modifying anal-
ysis techniques such as the Banker’s Method, where the no-
tion of credit is used to spread out the notional cost of an
expensive but infrequent operations over more frequent and
cheaper operations. The key idea in Okasaki’s work is to
invert such techniques to use the notion of debt. This al-
lows the analyses to deal with the persistence of data struc-
tures, where the same structure may exist in multiple ver-
sions at once. While credit may only be spent once, a single
debt may be paid off multiple times (in different versions
of the same structure) without risking bankruptcy. These
techniques have been used to analyse the asymptotic per-
formance of a number of functional data structures.

Sansom and Peyton Jones [24] give a presentation of
the GHC profiler, which can be used to measure time as
well as space usage of Haskell programs. In doing so, they
give a formal cost semantics for GHC Core programs based
around the notion of cost centres. Cost centres are a way
of annotating expressions, so that the profiler can indicate
which parts of the source program cost the most to execute.
The cost semantics is used as a specification to develop
a precise profiling framework, as well as to prove various
properties about cost attribution and verify that certain
program transformations do not affect the attribution of
costs, though they may of course reduce cost overall. Cost
centres are now widely-used in profiling Haskell programs.

Hope [11] applies a technique based on instrumenting an
abstract machine with cost information to derive a cost se-
mantics for call-by-value functional programs. More specifi-
cally, starting from a denotational semantics for the source
language, one derives an abstract machine for this language
using standard program transformation techniques, instru-
ments this machine with cost information, and then reverses
the derivation to arrive at an instrumented denotational se-
mantics. This semantics can then be used to reason about
the cost of programs in the high-level source language with-
out reference to the details of the abstract machine. This
approach was used to calculate the space and time cost of a
range of programming examples, as well as to derive a new
deforestation theorem for hylomorphisms.

8. Conclusion
In this paper, we have shown how improvement theory can
be used to justify the worker/wrapper transformation as a
program optimisation, by formally proving that, under cer-
tain natural conditions, the transformation is guaranteed
to preserve or improve time performance. This guarantee
is with respect to an established operational semantics for

call-by-need evaluation. We then verified that two examples
from previous worker/wrapper papers met the preconditions
for this performance guarantee, demonstrating the use of our
theory while also verifying the validity of the examples. This
work appears to be the first time that rigorous performance
guarantees have been given for a general purpose optimisa-
tion technique in a call-by-need setting.

8.1 Further Work
As well as for fixed points, worker/wrapper theories also ex-
ist for more structured recursion operators such as folds [13]
and unfolds [10]. Though the theory we present here can
be specialised to such operators, it may be beneficial to in-
vestigate this more closely, as doing so may reveal more
interesting and subtle details yet to be uncovered.

As we mentioned earlier in this paper, a typed theory
would be more useful, allowing more power when reasoning
about programs. This would also match more closely with
the original worker/wrapper theories, which were typed.
The key barrier to this is that there is currently no typed
improvement theory, so such a theory would have to be
developed before the theory here could be made typed.

The theory we present here only applies to time efficiency.
Gustavsson and Sands have developed an improvement the-
ory for space [8, 9], so this would be an obvious next step
for developing our theory. More generally, we could apply a
technique such as that used by Sands [22] to develop a the-
ory that applies to a large class of resources, and examine
which assumptions must be made about the resources we
consider for our theory to apply.

Assumptions (A), (B) and (C) are written as weak cost-
equivalences, which limits the scope of our theory to cases
where Abs and Rep are fairly simple. We would like to also
be able to cover cases where the Abs and Rep contexts cor-
respond to expensive operations, but the extra cost is made
up for by the overall efficiency gain of the transformation.
To cover such cases, we would require a richer version of im-
provement theory that is able to quantify how much better
one program is than another.

As our examples show, the calculations required to de-
rive an improved program can often be quite involved. The
HERMIT system, devised by a team at the University of
Kansas [6, 26], facilitates program transformations by pro-
viding an interactive interface for program transformation
that verifies correctness. If improvement theory could be in-
tegrated into such a system, it would be significantly easier
to apply our worker/wrapper improvement theory.

Finally, we are working on a general worker/wrapper the-
ory that will apply to any operator with the property of
dinaturality [5]. It is also interesting to consider whether
such a general categorical approach can be applied to an
operational theory. If this is the case, dinaturality may also
provide the necessary machinery to unify the denotational
(correctness) and operational (efficiency) theories, which as
we have already observed in this paper are very similar in
terms of their formulations and proofs. Voigtländer and Jo-
hann used parametricity to justify program transformations
from a perspective of observational approximation [29]. It
may be productive to investigate whether their techniques
can be applied to a notion of improvement.
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