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ABSTRACT 11 

This paper addresses the difficult question of how to perform meaningful comparisons 12 

between neural network-based hydrological models and alternative modelling approaches.  13 

Standard, goodness-of-fit metric approaches are limited since they only assess numerical 14 

performance and not physical legitimacy of the means by which output is achieved.  15 

Consequently, the potential for general application or catchment transfer of such models is 16 

seldom understood.  This paper presents a partial derivative, relative sensitivity analysis 17 

method as a consistent means by which the physical legitimacy of models can be evaluated. 18 

It is used to compare the behaviour and physical rationality of a generalised linear model 19 

and two neural network models for predicting median flood magnitude in rural catchments.  20 

The different models perform similarly in terms of goodness-of-fit statistics, but behave 21 

quite distinctly when the relative sensitivities of their parameters are evaluated.  The neural 22 

solutions are seen to offer an encouraging degree of physical legitimacy in their behaviour, 23 

over that of their generalised linear modelling counterpart, particularly when overfitting is 24 

constrained.  This indicates that neural solutions are preferable models for transferring into 25 

ungauged catchments. Thus, the importance of understanding both model performance and 26 

physical legitimacy when comparing neural models with alternative modelling approaches is 27 

demonstrated. 28 
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INTRODUCTION 33 

This paper presents an approach for delivering greater meaning from the comparison of 34 

artificial neural network (ANN) models with alternative modelling approaches in 35 

hydrological studies.  ANN-based hydrological models are most commonly applied as black-36 

box tools and the internal mechanisms by which the model output is generated are not 37 

normally explored in hydrological terms.  Used in this way, an ANN’s primary purpose is the 38 

optimisation of complex, non-linear relations between a specific set of hydrological input 39 

and output data, and standard goodness-of-fit procedures may, therefore, be considered an 40 

adequate basis by which to compare its performance to that of other models (Klemes, 1986; 41 

Refsgaard and Knusden, 1996).  Indeed, assessments of goodness-of-fit have been widely 42 

used in comparative hydrological modelling studies to argue that ANN models can perform 43 

as well as, or better than alternative modelling approaches (e.g. Shrestha and Nestmann, 44 

2009; Mount and Abrahart, 2011).  However, such arguments are informed solely by the 45 

degree of optimisation that is achieved by each model.  They say nothing about the means 46 

by which different models achieve their performance and the relative merits of these 47 

alternative means.  Indeed, when ANN models are applied solely as black-boxes, their 48 

potential relative to other modelling approaches can never be properly understood in a 49 

generalised or transferrable manner because the extent to which their modelling 50 

mechanisms conform to physically-based, hydrological domain knowledge remains untested 51 

(Howes and Anderson, 1988; Sargent, 2011).  Consequently, critical questions about 52 

whether ANN modelling mechanisms are more or less reflective of real-world hydrological 53 

processes than alternative models are seldom addressed directly (Minns and Hall, 1996; 54 

Abrahart et al., 2011), and the relative extent to which they are able to deliver hydrological 55 



process insights (i.e. Caswell’s (1976) model duality) is not normally evaluated.  The purpose 56 

of this paper is to present a method by which these questions may be addressed.   57 

More informative approaches to model comparison are required that explicitly 58 

consider the internal behaviours of the different models and assess them according to their 59 

conformance with the logical, rational and physical expectations of the modeller (c.f. 60 

Robinson, 1997). This process is termed model legitimisation and is discussed in a 61 

philosophical context by Oreskes et al. (1994) and an applied, hydrological modelling 62 

context by Mount et al. (in press).  Sensitivity analysis (Hamby, 1994) is an important and 63 

effective means by which the legitimacy of a hydrological model may be explored.  It has 64 

been widely applied in conceptual and physically-based modelling over several decades (e.g. 65 

McCuen, 1973; Beven and Binley, 1992; Schulz and Huwe, 1999; Radwan et al., 2004; 66 

Pappenberger et al., 2008; Mishra, 2009; Zhang et al., 2012). A variety of approaches have 67 

been used including local (e.g. Turanayi and Rabitz, 2000; Spruill et al., 2000; Holvoet et al., 68 

2005; Hill and Tiedeman, 2007), regional (e.g. Spear and Hornberger, 1980) and global-scale 69 

methods (Muleta and Nicklow, 2005; Salteli et al., 2008).  By contrast, sensitivity analysis 70 

has not been widely adopted in ANN modelling studies beyond a few, isolated examples 71 

(Sudheer, 2005; Nourani and Fard, 2012).  This is presumably because the equations that 72 

relate inputs and outputs in an ANN are considered complex, inaccessible and difficult to 73 

interpret (Aytek et al., 2008; Abrahart et al., 2009), making exploration of model sensitivity 74 

via direct analysis of the governing equations difficult.  Nonetheless, recent progress has 75 

been made (Yeung et al., 2010) and relative sensitivity analysis techniques for ANNs have 76 

made it possible to assess the internal, mechanistic legitimacy of such models (Abrahart et 77 

al., 2012b; Mount et al., in press).  However, the focus of these studies has so far been 78 

restricted to mechanical considerations.  The application of sensitivity analysis to evaluate 79 



the physical legitimacy of ANN-based hydrological models, and thus the degree to which 80 

they can be generalised and transferred, remains an outstanding task. 81 

In this paper, we apply a sensitivity analysis method that can be used to compare the 82 

physical legitimacy of ANN-based hydrological models and alternative model counterparts in 83 

a direct manner.  We exemplify the method by comparing the performance and physical 84 

legitimacy of a pair of ANN-based models and an established generalised linear model 85 

(GLM) for median flood magnitude prediction in ungauged catchments in the UK.  First 86 

order, partial derivatives of each model’s response function are computed, interpreted and 87 

used as a consistent means by which the physical legitimacy of each model can be evaluated 88 

and compared.  This focus on response function behaviour is distinctly different to past 89 

efforts to assess the physical legitimacy of ANN models, which have traditionally explored 90 

internal structural components, such as weights (Abrahart et al., 1999; Olden and Jackson, 91 

2002; Anctil et al., 2004; Kingston et al., 2003,2005,2006,2008) and units (Wilby et al., 2003; 92 

Jain et al., 2004; Sudheer and Jain, 2004; See et al., 2008; Fernando and Shamseldin, 2009; 93 

Jain and Kumar, 2009).  However, the uniqueness of ANN structures means that the 94 

information derived from them cannot easily be compared directly with that derived from 95 

alternative models with different internal structures - thus limiting the comparative value of 96 

the information.  To overcome this problem, we here assess the physical legitimacy of an 97 

ANN’s overall response function using a standard relative sensitivity-based method that can 98 

be consistently and directly replicated across a range of alternative model types and that is 99 

widely understood and accepted by hydrologists.  Consequently, an evaluation of the 100 

physical legitimacy of the means by which each model’s performance is obtained 101 

accompanies the usual assessments of output validity; enabling the extent to which each 102 

model delivers a transferable, general solution to be considered. 103 



 104 

COMPARING GLM AND ANN-BASED MODELS FOR UNGAUGED CATCHMENT PREDICTION 105 

IN THE UK 106 

The modelling of hydrological responses in ungauged catchments remains an important 107 

focus of research for hydrologists, especially as the majority of the world’s river catchments 108 

remain ungauged or poorly gauged. In such catchments, the application of distributed 109 

physically-based models and statistical approaches is hampered by a lack of input parameter 110 

knowledge and datasets. Consequently, lumped models which relate broad physiographic, 111 

hydrogeologic and climatologic catchment descriptors to flood frequency curves, have long 112 

been recognised as offering potential (Rodriguez-Iturbe and Valdes, 1979; Grover et al., 113 

2002).   114 

The standard UK method (Natural Environment Research Council, 1975; Vogel and 115 

Kroll, 1992; Schrieber and Demuth, 1997) models the relationship between the median of 116 

the annual flood series (QMED) and a set of regionalised catchment descriptors for rivers in 117 

the national, gauged network.  The modelled relationship is then applied to ungauged 118 

catchments and used to estimate QMED, which is subsequently multiplied by a standard, 119 

dimensionless growth curve to estimate flood frequency (Institute of Hydrology, 1999).   120 

Four catchment descriptors are used in the standard UK methodology: 1) AREA 121 

(catchment area in km
2
); 2) SAAR (standard-period average annual rainfall in mm); 3) FARL 122 

(flood attenuation due to reservoirs and lakes); 4) BFIHOST (baseflow index derived from 123 

HOST data; Boorman et al., 1995).  124 

These catchment descriptors can be thought of as physical controls of QMED potential. 125 

SAAR controls the hydrological inputs to the catchment, AREA controls the scaling of the 126 



catchment response, whilst BFIHOST and FARL control the degree of buffering of the input-127 

output signal. 128 

Of central importance to the above method is the model that is used to relate QMED 129 

and the catchment descriptors.  These relationships are non-linear and not well represented 130 

by standard multiple linear regression.  Therefore, the most recent UK method described 131 

applies a range of non-linear transformations within a generalised linear modelling (GLM) 132 

framework (Kjeldsen et al., 2008; Kjeldsen and Jones, 2009; Kjeldsen and Jones, 2010).  The 133 

end product is a non-linear regression equation (see Equation 1) from which QMED can be 134 

estimated directly from the four catchments descriptors.  135 

ANN models are also very effective at optimising complex, non-linear relations in 136 

hydrological data (American Society of Civil Engineers 2000a,b; Maier and Dandy, 2000; 137 

Dawson and Wilby, 2001; Maier et al., 2010; Abrahart et al., 2010; 2012b) and a number of 138 

studies have highlighted their potential in ungauged catchment prediction (Liong et al., 139 

1994; Muttiah et al., 1997; Hall and Minns, 1998; Hall et al., 2000; Dastorani and Wright, 140 

2001; Dawson et al., 2006; Dastorani et al., 2010). Indeed, the UK relationship between 141 

QMED and catchment descriptors has also been modelled using ANNs and been shown to 142 

deliver comparable levels of fit when compared to GLMs (Dawson et al., 2006).  However, it 143 

remains unclear whether the two modelling approaches are similarly comparable with 144 

respect to their physical legitimacy.  Models with greater physical legitimacy should be more 145 

generally transferrable to new catchment settings.  Therefore, determining the physical 146 

legitimacy of each model is an important element in delivering a physically informed 147 

evaluation of how robustly it can be expected to transfer from the gauged catchments upon 148 

which it is developed, to the ungauged catchments in which it is intended to be applied. 149 



In the following sections, the importance of evaluating both model performance and 150 

physical legitimacy in ANN model comparisons is exemplified by contrasting the 151 

performance and legitimacy of the standard GLM method for QMED prediction with two 152 

different ANN-based model counterparts.  Its use as an example is particularly appropriate 153 

because the model inputs and outputs are all physical-based measurements, meaning that 154 

patterns observed in inputs and output relations can be interpreted directly in physical 155 

terms, also the number of model inputs is relatively small, the first order partial derivatives 156 

can be computed for the GLM and directly compared with those of the ANN-based models, 157 

and the results of the analysis have real-world relevance and application. 158 

 159 

Data 160 

A GLM model and two counterpart ANN models for QMED estimation are developed for 161 

comparison, with the model inputs conforming to the four used in the standard UK 162 

methodology.  These inputs were extracted from a pre-filtered set of HiFlows-UK rural 163 

catchment data, available at (http://www.environment-agency.gov.uk/hiflows/97503.aspx).  164 

AREA values are derived from the Centre for Ecology and Hydrology’s Integrated 165 

Hydrological Digital Terrain Model (based on a 50m grid) and represent surface catchment 166 

area projected onto a horizontal plane, draining to the gauging station (Marsh and 167 

Hannaford, 2008: 5).  SAAR values are derived from UK precipitation records over the 168 

standard period 1961-1990.  FARL provides a guide to the degree of flood attenuation 169 

attributable to reservoirs and lakes above the gauging station.  The index ranges from zero 170 

(complete attenuation) to one (no attenuation) with values < 0.8 representing a substantial 171 

influence on flood response. BFIHOST is derived from the HOST (Hydrology of Soil Types) soil 172 

data classification and ranges from zero (impermeable) to one (completely permeable). In 173 



undisturbed catchments, a strong association exists between Baseflow Index (derived from 174 

archived gauged daily mean flows) and BFIHOST. The relationships between QMED and 175 

AREA, SAAR and FARL are positive, whilst that between QMED and BFIHOST is negative. 176 

The data from which our models are derived are almost identical to those from 177 

which the GLM that is published in the revitalised UK Flood Estimation Handbook (Kjeldsen 178 

et al., 2008) has been developed, and full particulars of the Hi-Flows UK data set can be 179 

found in this handbook.  A statistical summary of our dataset is provided in Table 1.   Some 180 

minor discrepancies exist between the data used in this study and that used by Kjeldsen et 181 

al. (2008) due to our use of the public release version of HiFlows-UK 3.02 rather than the 182 

pre-release version originally used.  Specifically, our dataset comprises 597 rural catchment 183 

records rather than the 602 used previously, and we use an unadjusted flood attenuation 184 

variable.  185 

 186 

Model development procedures 187 

Three models were developed for comparison. 188 

1. QMEDGLM – a GLM developed on all 597 catchment records, using the methodology 189 

outlined in Kjeldsen et al. (2008). 190 

2. ANNA – an optimised ANN, selected from 180 candidate solutions of varying 191 

complexity and training iterations according to both its goodness-of-fit performance 192 

and avoidance of evident overfitting.   193 

3. ANNB – a purposely over-trained version of ANNA in which the number of training 194 

iterations was artificially extended to deliver an overfitted solution.  It is included as 195 

a means of exemplifying the impact of ANN overfitting on the physical legitimacy of a 196 

network response function. 197 



QMEDGLM was developed in accordance with the method of Kjeldsen et al. (2008). 198 

Despite the minor differences in the dataset noted above, the resultant regression equation 199 

(Equation 1) remains almost identical to Kjeldsen’s original: 200 

 201 
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 203 

ANNA and ANNB comprise a Multi-Layer Perceptron (MLP), with one hidden layer, 204 

trained using error back propagation (Rumelhart et al., 1986).  The basic structure of these 205 

networks is shown schematically in Figure 1. The ANN consists of a number of units or 206 

neurons arranged in three layers (although additional hidden layers can be incorporated). 207 

The units in the input layer distribute the inputs to the units in the hidden layer, which in 208 

turn pass their outputs to the output layer (usually consisting of a single output neuron).  209 

Each neuron consists of a weighted set of inputs and an activation function – typically the 210 

logistic sigmoid function (Equation 2).  The output from a single unit is calculated by 211 

applying this sigmoid function to the weighted sum of its inputs. 212 

 213 
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 215 

Training such networks using back propagation involves presenting the ANN with 216 

training data, calculating the error of the network’s output with respect to the observed 217 

values, propagating this error backwards through the network and adjusting the input 218 

weights to the neurons accordingly (to reduce this error). This process must be repeated 219 

many times, making minor adjustments to the weights of each cycle (or epoch), until the 220 



ANN begins to map input values to the correct output response.  The amount by which the 221 

weights are adjusted each time can be manipulated by using a learning rate multiplier.  222 

Readers that are unfamiliar with ANN concepts, structures and training methods are 223 

referred to Kattan et al. (2011) or Nelson (2011).   224 

The simplicity of this ANN has enabled the development of computational methods 225 

for delivering first-order partial derivatives of its response function (Hashem, 1992), which 226 

we subsequently use as the basis for our comparative assessment of model legitimacy (see 227 

Section 3).  This standard ANN has been successfully used in many hydrological studies in 228 

the past (Abrahart et al., 2012a) and provides an established non-linear modelling 229 

benchmark for ANN studies and a starting point against which more novel approaches can 230 

subsequently be compared (Mount et al., 2012).  Whilst it is recognised that more advanced 231 

ANN structures might arguably deliver some additional optimisation advantages, the 232 

computational methods required to quantify their response function partial derivatives, and 233 

hence deliver directly comparable assessments of their physical legitimacy, are not readily 234 

available. Their use is thus avoided in this study. 235 

ANNA was developed using the approach described in Dawson et al. (2006) in which 236 

a large number of candidate ANNs are trained on a random subset of the data, partitioned 237 

according to a 60% calibration to 40% cross-validation ratio.  Although there is no agreed 238 

standard for splitting the data, this ratio is widely accepted in hydrological modelling 239 

(Mount and Abrahart, 2011; See and Openshaw, 2000). 180 candidate models containing 2, 240 

3, 4, 5, 6, 7, 8, 9, 10 hidden units were developed with each candidate being trained for up 241 

to 20,000 epochs in steps of 1,000, using a learning rate of 0.1 and a momentum value of 242 

0.9. Each candidate model was cross-validated using the remaining 40% as a means of 243 

preventing overfitting (Giustolisi and Laucelli, 2005; Piotrowski and Napiorkowski, 2013). 244 



Overfitting of each candidate solution was evaluated according to its cross-validation scores, 245 

and the candidate solution displaying the best optimisation performance, whilst avoiding 246 

apparent overfitting, was selected as the final model.   247 

ANNA has nine hidden units, and is trained for 4000 epochs. ANNB, which we adopt 248 

as an example of an overfitted ANN, is structurally identical to ANNA. However its training 249 

epochs have been artificially extended to ten times that of ANNA (i.e. 40,000 epochs) to 250 

promote overfitting.  The network unit weights and biases are provided in Table 2 and are 251 

used as the inputs to Equation 8, from which relative sensitivity can be computed.  252 

It should be noted that the GLM and ANN models utilise the available data records 253 

differently during model development.  Whilst the GLM uses all 597 records to define the 254 

model, each candidate ANN uses only the first 400 records to refine the model, and the 255 

remaining 197 records to constrain it via cross-validation.  Indeed, the apparent 256 

inconsistency with which the GLM and ANN models use the available data could be cited as 257 

an argument to negate the fairness of a direct comparison between them.  However, this 258 

stance fails to credit that both models do use all of the data in the model development 259 

process; they just use it in a characteristically different manner that reflects the 260 

fundamental differences between each method.  In this sense, the models are comparable; 261 

not because they use the same data in the same way, but rather because each one’s use of 262 

the data is equally appropriate and justifiable in the context of its own model development 263 

method. 264 

 265 

MODEL PERFORMANCE AND PHYSICAL LEGITIMACY ASSESSMENT 266 

Model performance evaluation 267 



Each model’s performance was evaluated using standard goodness-of-fit metrics to deliver 268 

output validation. To ensure a consistent approach the metrics were generated using 269 

HydroTest (http://www.hydrotest.org.uk), a standardised, open access web site that 270 

performs the required numerical calculations (Dawson et al. 2007,2010). Each model’s 271 

performance is evaluated using RMSE (root mean squared error) and R
2
 (R-squared – the 272 

coefficient of determination) providing an overall measure of model performance; MSRE 273 

(mean squared relative error) and MSLE (mean squared logarithmic error) providing two 274 

additional measures of performance which place greater emphasis on errors occurring in 275 

lower magnitude predictions. These comparative performance statistics are defined as 276 
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where Qi is observed index flood value i (of n values), �1 i is the modelled value i, �2  is the 281 

mean of the observed data, and �3  is the mean of the modelled data. 282 

 283 



Physical legitimacy 284 

Following the recent studies of Abrahart et al. (2012b) and Mount et al. (in press), the 285 

physical legitimacy of each model was assessed by means of relative, first-order partial 286 

derivative sensitivity analysis (see Hamby, 1994 for an overview of sensitivity analysis 287 

approaches).  Partial derivative sensitivity analysis elucidates the patterns of influence that 288 

each model input has on the output (and vice versa) across the output range, thus revealing 289 

the internal behaviour of the model response function.  First order derivatives reveal the 290 

separate behaviours associated with each model input.  When using partial derivatives in 291 

model comparison studies, it is necessary to standardise derivative values to rates to avoid 292 

the difficulties associated with comparing absolute values derived from different inputs with 293 

different ranges (Nourani and Fard, 2012).  Patterns of relative sensitivity can then be used 294 

to directly compare the internal response function behaviour of different models, and 295 

legitimacy of these behaviours can then be evaluated according to how well the relative 296 

sensitivity patterns conform to the logical, rational and physical expectations of the 297 

modeller.  The relative sensitivity (RSi) of the output from a model (O) with respect to input 298 

(Ii) can be calculated as: 299 

 300 
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 302 

Partial derivatives can be computed for ANNs via the application of a backward 303 

chaining partial differentiation rule as outlined in Hashem (1992). Adapted from Hashem’s 304 

more general rule, for an ANN with sigmoid activation functions (i.e. of standard type, as 305 

used in our case study), one hidden layer, i input units, j hidden units and one output unit 306 



(O), the partial derivative of a network’s output can be calculated with respect to each of its 307 

inputs as: 308 

 309 
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 311 

where, wij is the weight from input unit i to hidden unit j, wjO is the weight from hidden unit 312 

j to the output unit O, hj is the output of hidden unit j, and O is the output from the 313 

network. 314 

One important difference between calculating partial derivatives for multiple input, 315 

single output GLMs and ANN models should, however, be noted. When computing partial 316 

derivatives of a GLM, there is no need to vary the values of the other inputs to investigate 317 

the range of sensitivity responses under different input conditions. This is because GLMs 318 

deliver a simple additive response function, such that the relative sensitivity for any one 319 

variable will involve only that variable, given that all other parts of the expression will cancel 320 

out, during the process of scaling the other variables.  Hence, relative sensitivity values for 321 

each input to the QMEDGLM model (Equation 1) can be computed according to Equations 322 

(9)–(12).  The final relative sensitivities of the QMEDGLM model are provided in Equations 323 

(13)–(16). 324 
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FARL

QMED

FARL

QMED 3662.3
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∂

∂
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RSAREA = 0.8568 (13) 330 

RSSAAR = 1864.05 / SAAR (14) 331 

RSFARL = 3.3662 (15) 332 

RSBFIHOST = -6.5385 BFIHOST
2 

(16)
 

333 

 334 

The same is not true for ANNs, which are not constrained to produce simple, 335 

additive response functions. When computing partial derivatives for an ANN it is therefore 336 

necessary to isolate the pattern of relative sensitivity of each input variable in turn by 337 

holding the other inputs at fixed values so that the patterns of sensitivity associated with 338 

each variable can be interpreted within the context of the other variable states. To this end 339 

we adopt a simple three-step methodology. 340 

 341 

Step 1: Compute 25
th

 percentile, median and 75
th

 percentile values for each input variable in 342 

the data set. 343 

Step 2: Holding all other variables at either 25
th

 percentile, median or 75
th

 percentile, vary 344 

each input variable in turn from across the range of observed values. 345 

Step 3: Plot results and interpret the resultant graphs. 346 

 347 

Thus, physically speaking, if variable states in our study are held at the 25
th

 348 

percentile (or the 75
th

 percentile in the case of the inverse BFIHOST measure), the resultant 349 

scenario under test is representative of relatively small, dry catchments with high 350 



permeability and high flood attenuation: i.e. low catchment QMED potential. Conversely, 351 

when variables states are held at the 75
th

 percentile (with BFIHOST at the 25
th

 percentile), 352 

the resultant scenario under test will be representative of relatively large, wet catchments 353 

with low permeability and low attenuation: i.e. high catchment QMED potential. 354 

 355 

RESULTS 356 

Independence 357 

Figure 2 and Table 3 present an overview of the data showing the relationships that exist 358 

between each of the five variables. AREA is not correlated with any of the other three 359 

parameters (correlation coefficient ranging from -0.07 to -0.02). There is a negative 360 

correlation between SAAR and BFIHOST (correlation coefficient of -0.42) and a similar 361 

strength negative relationship between SAAR and FARL (correlation coefficient of -0.39). The 362 

only positive correlation is that between BFIHOST and FARL (correlation coefficient of 0.11). 363 

These weak relationships indicate a reasonable degree of linear independence between the 364 

four variables. The strength of the linear relationship between each of the parameters and 365 

QMED ranges from a correlation coefficient score of 0.76 for AREA to -0.07 for FARL. The 366 

strong linear relationship between QMED and AREA, contrasts with the relative sensitivity 367 

scores presented later in this paper for the multiple linear regression model, and in so doing 368 

emphasises the additional insights provided by sensitivity analysis over basic statistical 369 

measures. 370 

 371 

 372 

Model skill 373 



Figures 3– 5 present scatter diagrams of observed versus modelled index flood values for 374 

the GLM, ANNA and ANNB models. The full dataset is depicted in each scatter plot. Figures 3 375 

and 4 reveal comparable amounts of predictive skill for the GLM and ANNA model. Both 376 

plots, indeed, appear to show a reasonable degree of model performance at lower levels, 377 

but typically under-estimate the higher magnitude flood events. In contrast the ANNB model 378 

appears to perform well across the range of flood event magnitudes and seems very close to 379 

correctly modelling the two largest flood events. 380 

Although Figures 3, 4, and 5 provide an interpretive view of the accuracy of the three 381 

models, Table 4 provides a more objective, numerical contrast by providing comparative 382 

performance statistics for each of the models. It shows that while the ANNB model is 383 

undoubtedly the most accurate overall according to the RMSE and R
2
 measures, the GLM is 384 

more accurate at modelling low flood indices. Although there appears to be a significant 385 

difference between the MSRE statistics of the GLM and the ANNA model (0.19 and 16.12, 386 

respectively) these results need to be treated with caution. A very basic model, that simply 387 

predicts the index flood for every catchment as 1 m
3
 s

-1
, results in a MSRE statistic of 0.93 – 388 

better than both the ANN models and not too dissimilar from the GLM. One would not 389 

seriously contemplate using such a simple model as a prediction of the index flood in an 390 

ungauged catchment so it brings into question the suitability of the MSRE as an appropriate 391 

measure of performance. It indicates that a model needs to make only a handful of errors at 392 

lower levels (which may not be too far from the observed values) to result in a poor MSRE 393 

result.  This emphasises the importance of using multiple evaluation criteria and 394 

understanding the limitations of individual error measures. 395 

Although the scatter diagrams show reasonably similar performance at lower levels, 396 

one or two over/under predictions have skewed the results. A more appropriate measure of 397 



performance at lower levels is perhaps the MSLE used by Pokhrel et al. (2012), the results of 398 

which are also presented in Table 4. In this case, although the GLM outperforms the ANNA 399 

and ANNB models, the results are not too dissimilar. For the simple model (producing 1 m
3
s

-1
 400 

for each case) the MSLE is calculated as 15.36 – significantly higher than the more complex 401 

models. Given that the ANNB performs reasonably well for low QMED values and better 402 

than the GLM at large QMED values where prediction is normally more problematic, the 403 

goodness-of-fit statistics suggest that ANNB could be considered a reasonable alternative to 404 

GLM. 405 

 406 

SENSITIVITY ANALYSIS AND PHYSICAL INTERPRETATION OF MODELS 407 

GLM 408 

Relative sensitivity plots for the GLM are provided in Figure 6 are calculated using Equations 409 

(13)–(16). AREA and FARL are both used as simple scaling variables in the model such that 410 

the index flood magnitude increases proportionally for larger catchments with lower flood 411 

attenuation. The model behaves in a manner that larger catchments produce consistently 412 

larger floods, but the overall significance of this behaviour is relatively small. In a simplistic, 413 

conceptual sense, this is physically legitimate behaviour and one would expect the 414 

catchment area to act as a proportionally consistent driver of flood magnitude with a ratio 415 

close to unity, as a larger catchment will have proportionally greater hydrological inputs. 416 

Importantly, FARL as a driver, is shown to be around four times more important than AREA; 417 

a pattern that perhaps highlights the overriding importance of in-channel buffering of flood 418 

peaks by lakes and reservoirs in the model.  419 

SAAR and BFIHOST function as more complex drivers of QMED and their relative 420 

sensitivities vary considerably. Indeed, in certain data ranges each has the potential to 421 



become the most influential driver of index flood magnitude. However, their specific 422 

patterns of relative sensitivity prove difficult to legitimise in simplified, physical terms. The 423 

proportionally greater sensitivity of index flood magnitude to increases in wetness in low 424 

rainfall catchments, as opposed to ones possessing high rainfall, does not correspond well 425 

with broad hydrological notions. The expectation would be to find low antecedent moisture 426 

in low rainfall catchments to result in enhanced infiltration, reduced propensity for 427 

Hortonian overland flow and correspondingly lower index flood sensitivity compared to 428 

higher rainfall catchments. This suggests that there is a substantive runoff buffering 429 

mechanism in wet catchments that is not present in dry ones. Whilst one may postulate that 430 

factors such as different vegetation types in dry and wet catchments may buffer flood 431 

responses differently, it is difficult to envisage their impact being sufficient to produce the 432 

magnitude of difference observed in the relative sensitivity plot. Moreover, the pattern 433 

appears counter to notions of antecedent moisture which would be expected to be lower in 434 

dry catchments and, therefore, would act to proportionally reduce catchment runoff and 435 

index flood magnitude. 436 

Similarly, the sensitivity of the index flood to catchment permeability is counter to 437 

basic physical principles with index floods seen to be an order of magnitude more sensitive 438 

to a unit change in permeability in a highly permeable catchment when compared with the 439 

same proportional change in an impermeable one. Whilst the overall negative relative 440 

sensitivity of QMED to BFIHOST is conceptually legitimate, the specific pattern is difficult to 441 

legitimise physically as is the magnitude of the relative sensitivity observed relative to that 442 

of the other variables. 443 



The sensitivity analysis thus indicates only partial physical legitimacy of the GLM, 444 

with the pattern of sensitivity of QMED to SAAR and BFIHOST being particularly difficult to 445 

rationalise. 446 

 447 

 448 

ANNA 449 

Relative sensitivity plots for the ANNA model are provided in Figure 7. Importantly, none of 450 

the plots exhibit the extreme, localised sensitivity variability that one would expect from an 451 

over-fitted model (see ANNB below), which in the context of the model skill statistics 452 

reported above, suggests ANNA offers a reasonable solution. ANNA is characterised by 453 

generally lower relative sensitivity values in comparison to those observed for the GLM, 454 

coupled with enhanced complexity in the sensitivity responses across each variable’s data 455 

range, the form of which is strongly influenced by the values of the other variables.  456 

The relatively high sensitivity of QMED to AREA highlights the central importance of 457 

catchment size as a determinant of index flood magnitude in this model. This pattern of 458 

behaviour is an approximate counterpart of the GLM plot. Relative sensitivity remains 459 

roughly consistent at a value close to 1 and AREA is seen to act as a scaling variable in a 460 

physically-legitimate manner. However, the same degree of legitimacy is not observed in 461 

either the low or high QMED potential plots. Here opposing trends in the relative sensitivity 462 

are observed. When all other inputs are set to high QMED potential, proportional changes in 463 

catchment area of small catchments is seen to have almost 10 times the impact on QMED 464 

than the same proportional change in large catchments. The pattern reverses when inputs 465 

are set to low QMED potential. This model behaviour is very difficult to legitimise in physical 466 

terms.  467 



 Low values associated with BFIHOST highlight the general insensitivity of QMED 468 

to catchment permeability in this model. As expected, BFIHOST has a generally negative 469 

influence on QMED such that as permeability increases, QMED reduces. A general increase 470 

in QMED’s sensitivity to BFIHOST is observed as the other inputs are set to increasing levels 471 

of QMED potential. This indicates an increased importance of permeability as a constraint 472 

on index flood magnitude in catchments with high potential for generating large index 473 

floods. However, the very low magnitude of the sensitivities observed makes it difficult to 474 

draw any clear conclusions about the physical legitimacy of the patterns observed beyond 475 

the fact that BFIHOST is clearly not a particularly important driver of QMED. 476 

 In contrast to the GLM, FARL acts as a relatively modest driver of QMED, 477 

indicating that the ANNA model is less heavily influenced by in-channel controls of peak 478 

discharge magnitude than the GLM. In simplistic physical terms, one would expect a 479 

reduction in flood attenuation to drive a proportional increase in QMED, and the positive 480 

relative sensitivity plots confirm this basic assumption. However, the precise form of the 481 

sensitivity relationship between QMED and FARL is more difficult to legitimise. The GLM 482 

represents the relationship as one of simple scaling and this same basic pattern exists for 483 

low and median QMED potential plots across medium to high FARL data ranges (i.e. medium 484 

to low levels of attenuation) where relative sensitivity is consistently about 0.5. However, at 485 

lower FARL data ranges the proportional response of QMED to change in FARL reduces 486 

substantially to 0.1. When other inputs are set to high QMED potential, the decreasing trend 487 

is consistent across all FARL ranges. This is less easily rationalised and is most likely 488 

attributable to the scarcity of catchments with low FARL values in the data resulting in a lack 489 

of data constraint on the form of the ANN model covering this data range, irrespective of 490 

the values of the other inputs.  491 



 The pattern of sensitivities observed for SAAR can only be partially legitimised in 492 

generalised physical terms. At a very simplistic level, the scaling behaviour of SAAR observed 493 

in the low QMED potential plot is perhaps reasonable given that proportionally wetter 494 

catchments should indeed result in proportionally greater floods. However, the patterns 495 

observed in the median and high QMED potential plots possess elements that are both 496 

physically rational and irrational. The increasing sensitivity to SAAR at low and mid data 497 

ranges could feasibly be explained in terms of antecedent moisture. Indeed, the on-average 498 

lower antecedent moisture in dry catchments could be expected to result in a smaller 499 

proportion of the rainfall contributing to runoff; leading to reduced hydrograph flashiness 500 

and proportionally lower QMED sensitivity to SAAR in dryer catchments. Similarly, the 501 

decline in sensitivity in the upper data ranges could be argued to be due to the fact that the 502 

catchment is already so wet that any additional rainfall makes relatively little difference to 503 

the index flood. However, this explanation ignores the role of overland, Hortonian flow in 504 

saturated, wet catchments which one would expect to drive an increase in the relative 505 

sensitivity in the upper data ranges. Finally, the negative relative sensitivity observed in the 506 

extreme upper ranges of the high QMED potential plot is physically-irrational as it suggests 507 

that proportionally increasing the catchment wetness will reduce the proportional response 508 

in QMED; in extreme cases even resulting in a reduction in QMED.  509 

For each of the model inputs the behaviour of the ANNA model is seen to be 510 

particularly influenced by the states of the input variables. When these are set to their 511 

median values (i.e. indicative of median QMED potential), the majority of the relative 512 

sensitivity plots indicate that the response function produces a model behaviour that can be 513 

physically-legitimised. However, this legitimacy is less certain when other variables are set 514 

at their 25
th

 percentile values (i.e. indicative of low QMED potential) and completely breaks 515 



down when set at their 75
th

 percentile value (i.e. indicative of high QMED potential). Indeed, 516 

under the latter condition, AREA, FARL and SAAR drive QMED in a manner that is particularly 517 

difficult to explain in hydrological terms. Crucially then, a link can be made between the lack 518 

of physical legitimacy in the model’s behaviour in the upper and lower quartiles of the 519 

solution space and a lack of coincident data points which exist there to constrain the form of 520 

the ANN model.  521 

 522 

 523 

ANNB 524 

Relative sensitivity plots for the ANNB model are provided in Figure 8. This ANN model is 525 

intentionally over-fitted and the impact of this over-fitting is clearly seen in the relative 526 

sensitivity plots. The degree of local variability in relative sensitivity is highly exaggerated 527 

when compared to ANNA with variables switching between both negative and positive 528 

responses in QMED at different data ranges. QMED responds to AREA and SAAR (the most 529 

influential drivers in the model) in an irrational manner with high magnitude, localised 530 

variation in relative sensitivity being particularly characteristic of the patterns observed. The 531 

relative sensitivity plots of QMED to AREA and SAAR are characterised by complex 532 

polynomial forms with no consistent trends in the relationship. The patterns observed are 533 

indicative of data over-fitting and lack any physical legitimacy. 534 

 Relative sensitivity of QMED to FARL behaves in a more constrained manner 535 

than AREA or SAAR, ranging from +0.8 to -0.3 indicating the relative lack of sensitivity to this 536 

variable in ANNB. However, the sensitivity plots for low and median QMED potential show 537 

both positive and negative responses at different data ranges. Indeed, these plots suggest 538 

that in certain data ranges, a proportional decrease in flood attenuation will see a 539 



proportional reduction in flood magnitude: a result that lacks physical legitimacy. The high 540 

QMED potential plot is very similar to that of ANNA 541 

 Relative sensitivity of BFIHOST to QMED is very muted with this variable being an 542 

almost irrelevant driver of index flood magnitude when other variables are set to low and 543 

median QMED potential. Localised complexity in the relative sensitivity is observed, 544 

particularly across low BFIHOST values where low and median QMED potential plots switch 545 

between positive and negative relative sensitivity values in a physically-irrational manner. 546 

The high QMED potential plot is perhaps more rational as it displays a flatter, negative 547 

response which indicates a negative scaling behaviour. 548 

In contrast with ANNA, local variation in relative sensitivity for AREA and SAAR 549 

becomes highly exaggerated when other variables are held at their low QMED potential 550 

values. This again highlights difficulties of fitting a ‘bottom heavy’ physically-legitimate ANN 551 

model, through upper regions of a solution space that lack sufficient coincident higher 552 

magnitude data points to constrain the form of the model.  553 

 554 

Physical legitimacy 555 

The broad physical legitimacy of the different model sensitivity plots are compared in Table 556 

5. It is clear that none of the models behave in a manner that can be physically rationalised 557 

for all input variables. The GLM displays a basic level of physical legitimacy in the behaviour 558 

of AREA and FARL but this is lacking for SAAR and BFIHOST drivers. ANNA displays varying 559 

degrees of physical legitimacy in the sensitivity between QMED and each of the input 560 

variables, with the least rational responses occurring when other variables are set to the 561 

high QMED potential values. However, in all cases, when other variables are set to their 562 

median values, the relative sensitivities of the ANN are physically legitimate at least in part. 563 



Indeed, in this sense ANNA arguably performs better than its GLM counterpart albeit 564 

delivering slightly less favourable goodness-of-fit.  ANNB is over-fitted and the patterns 565 

observed in its relative sensitivity plots cannot be legitimised in a physical sense.  However, 566 

this lack of model legitimacy is in contrast to the goodness-of-fit statistics which indicate 567 

ANNB to be the best model. Thus, developing techniques that can deliver a clear physical or 568 

mechanistic interpretation of input relative sensitivity analysis patterns in ANN modelling 569 

scenarios represents an important consideration for future research. Indeed, the presented 570 

results serve as a clear demonstration of the dangers associated with evaluating models on 571 

the basis of statistical performance validation approaches alone. 572 

 573 

SUMMARY AND CONCLUSIONS 574 

This paper has addressed the difficult question of how to make meaningful comparisons 575 

between artificial neural network-based hydrological models and alternative modelling 576 

approaches.  Comparisons which are based solely on goodness-of-fit metrics (i.e. the 577 

standard black-box approach presented in much of the literature) are very limited because 578 

they only consider model performance and not the means by which the performance is 579 

obtained.  The commonly encountered limitation of metric equifinality, in which metric 580 

scores for the models being compared are insufficiently different to enable conclusive 581 

differentiation of the best or preferred model, is evident in our results.  Our example of 582 

median flood modelling provides a clear demonstration of this with the fit scores obtained 583 

by the ANN and GLM models delivering inconclusive evidence about relative overall model 584 

performance.  585 

However, the limitations of goodness-of-fit metrics are arguably more fundamental 586 

if there is a requirement to compare the transferability of each model from one hydrological 587 



context to another.  In such cases, the physical legitimacy of each model must also be 588 

evaluated and compared in a direct manner.  Models used in ungauged catchment 589 

prediction are a good example of those that must ultimately be transferred, and that 590 

therefore require evaluation of their physical legitimacy.   This study has presented a 591 

consistent means by which the physical legitimacy of ANN models can be evaluated and 592 

compared with alternative modelling approaches.  The application of relative sensitivity 593 

analysis in our median flood modelling example has enabled the physical legitimacy of two 594 

ANN-based models to be compared directly with the GLM counterpart used as standard in 595 

the UK.  Tables 4 and 5 provide clear evidence that a general ANN modelling approach can 596 

deliver models as good as the GLM approach currently used in the UK Flood Estimation 597 

Handbook, both in terms of their performance and their legitimacy.  Whilst the paper does 598 

not purport to be a competition between ANNs and GLMs, in this isolated case the evidence 599 

does lend some support to the view that ANN-based models may have some advantages 600 

over their GLM counterparts. However, one can only build good physically-legitimate ANN 601 

models if ample data of sufficient quality exist, and if the model development process is 602 

sound.  It is also evident from this evaluation that ANN solutions can only deliver physical 603 

legitimacy if issues such as overfitting are avoided.   604 

To conclude it is clear that comparing ANN models to alternative approaches on the 605 

basis of goodness-of-fit is insufficient, and that sensitivity analysis offers an important 606 

means by which the physical legitimacy of ANN models can be compared with that of 607 

counterpart models.  Indeed, hydrological modellers using ANNs can and should be striving 608 

to evaluate the physical legitimacy of their models as well as their performance.  By applying 609 

sensitivity analysis to ANN models a sense of trust is introduced that goes part of the way to 610 

addressing one of the key issues in the international ANN river forecasting research agenda 611 



of Abrahart et al. (2012a), specifically the need for advanced diagnostic techniques that can 612 

help counter criticisms of the black-box nature of such models (e.g. Babovic, 2005). It is, 613 

therefore, surprising that it remains almost entirely absent from ANN studies and highlights 614 

the importance of a broader research agenda to develop robust, computational sensitivity 615 

analysis methods across the range of data-driven techniques currently being used in 616 

hydrological modelling. Such an agenda should include additional investigations that more 617 

fully explore the impact of different architectural structures in ANN models especially the 618 

potential bearing that internal complexity might have on the relative sensitivity of solutions 619 

to particular types of hydrological modelling problem. 620 
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Table 1. Statistical summary of catchment descriptors 859 

 860 

 Median Minimum Maximum 25
th

 Percentile 75
th

 Percentile 

AREA (km
2
) 148.70 1.63 4586.97 68.00 327.81 

BFIHOST 0.47 0.20 0.97 0.40 0.57 

FARL 0.99 0.65 1.00 0.96 1.00 

SAAR (mm) 1096 558 2848 830 1375 

QMED 43.54 0.14 992.85 12.92 117.71 

 861 

  862 



 863 

Table 2. Network weights and biases. Input neurons I1 - I4 (AREA, BFIHOST, FARL, SAAR, 864 

respectively); Hidden neurons H1 – H9; Output neuron O (QMED) 865 

ANNa 866 

 

 
Weight   Weight   Weight   Weight 

  
Weight 

I1 H1 2.112 I2 H1 1.287 I3 H1 -1.858 I4 H1 -4.078 H1 O -2.004 

I1 H2 -0.211 I2 H2 -0.392 I3 H2 -1.591 I4 H2 -0.154 H2 O -0.797 

I1 H3 2.907 I2 H3 -6.502 I3 H3 2.196 I4 H3 4.048 H3 O 4.901 

I1 H4 -1.170 I2 H4 2.792 I3 H4 -0.347 I4 H4 -3.403 H4 O -1.904 

I1 H5 0.245 I2 H5 -0.337 I3 H5 -2.473 I4 H5 0.521 H5 O -1.001 

I1 H6 0.009 I2 H6 -1.236 I3 H6 -1.627 I4 H6 0.087 H6 O -0.533 

I1 H7 -13.412 I2 H7 -4.484 I3 H7 1.478 I4 H7 2.806 H7 O -7.586 

I1 H8 -1.236 I2 H8 0.008 I3 H8 -0.782 I4 H8 -0.284 H8 O -0.921 

I1 H9 -6.588 I2 H9 -2.458 I3 H9 0.998 I4 H9 1.157 H9 O -3.972 

 867 

ANNb 868 

 

 
Weight   Weight   Weight   Weight 

  
Weight 

I1 H1 -1.877 I2 H1 20.295 I3 H1 0.185 I4 H1 -14.475 H1 O -2.575 

I1 H2 -16.987 I2 H2 -3.354 I3 H2 1.693 I4 H2 2.498 H2 O -13.556 

I1 H3 -3.798 I2 H3 -0.008 I3 H3 -2.085 I4 H3 -7.115 H3 O 4.112 

I1 H4 5.559 I2 H4 -0.845 I3 H4 1.849 I4 H4 -18.273 H4 O -4.311 

I1 H5 -2.996 I2 H5 4.687 I3 H5 -6.742 I4 H5 6.914 H5 O -1.337 

I1 H6 8.318 I2 H6 -8.377 I3 H6 2.917 I4 H6 8.574 H6 O 4.750 

I1 H7 8.324 I2 H7 -3.983 I3 H7 -3.674 I4 H7 10.392 H7 O 3.969 

I1 H8 11.702 I2 H8 -19.838 I3 H8 -2.518 I4 H8 16.069 H8 O -2.763 

I1 H9 1.210 I2 H9 -3.488 I3 H9 -3.777 I4 H9 6.853 H9 O -3.085 

 869 

Biases 870 

Neuron Bias ANNa Bias ANNb 

H1 -0.596 -0.708 

H2 -0.175 -1.927 

H3 -3.240 0.049 

H4 -0.315 -1.594 

H5 0.413 2.982 

H6 -0.098 -7.794 

H7 -1.459 -0.996 

H8 -0.508 0.627 

H9 -0.720 0.278 

O 0.282 1.707 

 871 
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 873 

 874 

Table 3. Correlation matrix for model variables 875 

 876 

 AREA BFIHOST FARL SAAR QMED 

AREA 1.00 -0.02 -0.07 -0.05 0.76 

BFIHOST  1.00 0.11 -0.42 -0.27 

FARL   1.00 -0.39 -0.07 

SAAR    1.00 0.24 

  877 



 878 

Table 4. Numerical accuracy of different models under test 879 

 880 

 881 

  GLM ANNA ANNB 

RMSE (m
3
 s

-1
) 43.09 47.49 33.18 

R
2
 0.89 0.88 0.94 

MSRE 0.19 16.12 1.91 

MSLE 0.13 0.51 0.33 
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  884 

Table 5. Physical legitimacy of GLM and ANN models 885 

 886 

Input 

Variable 

QMED potential 

of other 

catchment 

variables 

Does the pattern of sensitivity response conform to 

conceptual notions of physically-rationality? 

GLM ANNA ANNB 

 

AREA 

Low  

    

    

Yes 

No No 

Median Yes No 

High No No 

 

SAAR 

Low  

No 

Yes No 

Median In Part No 

High No No 

 

FARL 

Low  

 Yes 

In Part No 

Median In Part No 

High No No 

 

BFIHOST 

Low  

 No 

No No 

Median In Part No 

High In Part In Part 
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Figure 1. Typical feed forward ANN structure 912 
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Figure 2. Scatter plot matrix of model variable with linear regression lines fitted 915 
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 923 

Figure 3. GLM versus QMED 924 
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 930 
Figure 4. ANNA model versus QMED 931 
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Figure 5. ANNB model versus QMED 938 
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Figure 6. Relative sensitivity of QMED to model inputs: GLM 
 



 

Low QMED Potential

Median

High QMED Potential
 

 

 

Figure 7. Relative sensitivity of QMED to model inputs: ANNA 
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Figure 8. Relative sensitivity of QMED to model inputs: ANNB 

 


