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Abstract— In this paper, a new fuzzy regression model that
is supported by support vector regression is presented. Type-
2 fuzzy systems are able to tackle applications that have
significant uncertainty. However general type-2 fuzzy systems
are more complex than type-1 fuzzy systems. Support vector
machines are similar to fuzzy systems in that they can also
model systems that are non-linear in nature. In the proposed
model the consequent parameters of type-2 fuzzy rules are
learnt using support vector regression and the computational
cost is reduced with the use of a closed-form type reduction.
Support vector regression improved the generalisation perfor-
mance of the fuzzy rule-based system in which the fuzzy rules
were a set of interpretable IF-THEN rules. The performance
of the proposed model was demonstrated by conducting case
studies for the non-linear system approximation and prediction
of chaotic time series. The model yielded promising results and
the simulation results are compared to the results published in
the area.

I. INTRODUCTION

FUZZY SYSTEMS are used to model various sources
of uncertainties and the uncertainties associated with

linguistic imprecise knowledge [1]. Traditionally, expert
knowledge has been the principal source of a rule-based
fuzzy system. This source of information is difficult to find
and unfeasible to changes in knowledge over time that are
hard to capture and include in the model.

Type-2 fuzzy systems, in certain applications, have often
outperformed type-1 fuzzy systems. The complexity of the
computations of general type-2 fuzzy sets means that many
applications use interval type-2 (IT2) fuzzy sets [2]. Practi-
cally, IT2 fuzzy sets are often easier to manage as compared
to general type-2 fuzzy sets. When using IT2 fuzzy sets
the mathematics is much less complex [3]. A type-reduction
mechanism is used in type-2 fuzzy systems in order to obtain
a type-1 fuzzy set - the type-reduced set [4]. The Karnik-
Mendel (KM) method is a commonly used type-reduction
algorithm and is used to find the centroid of IT2 fuzzy sets
which in turn is a type-reduced set [5]. The main advantages
of KM type-reducer are its consistency with the extension
principle and its strong theoretical ground [6]. Nevertheless,
the KM algorithm can suffer from the computational cost
of iterations, particularly when it is used in fuzzy logic
control systems [7]. There are some type reducers proposed
in the literature alternative to the KM method focused on
simplifying the computations and improving the performance
[8], [9].
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One of the systematical fuzzy modelling and fuzzy iden-
tification methodology is the Takagi-Sugeno-Kang (TSK)
fuzzy system [10], [11]. TSK is a fuzzy system that can
transform human knowledge and experience systematically
into a rule-based fuzzy system. There is a well established
need for learning methods that can enhance the optimisation
of membership functions in fuzzy systems. Least-squares
estimation is a common method used to minimise the output
error of a TSK fuzzy system through training. This type
of learning mostly uses a design approach referred to as
fuzzy neural networks (FNNs) [12]. One main advantage
of FNNs is that a high learning accuracy can be achieved
when the model is less complicated. FNNs use least-square
estimation to minimise the empirical risk and do not tolerate
any structural risk. As a consequence, one disadvantage of
this approach is that it can suffer from overfitting. As to
avoid overfitting, support vector regression (SVR) can be
an alternative regression approach and leads to generalisa-
tion as compared to least-squares estimation for the fuzzy
systems. The fuzzy rules and antecedent parameters can be
obtained using fuzzy C-means and the consequent parameters
are learnt with the ✏-insensitive learning [13]. An SVR-
based fuzzy system approach has been applied to various
research problems including high-dimensional bioinformatics
data sets and yielded promising results [14], [15], [16]. One
main advantage of SVR is that it takes into account the
complexity of the model with use of a cost function. This cost
function can be optimised in order to minimise a bound on
the generalisation error yielding a better blind performance
as well as preventing overfitting in contrast to FNNs.

Showing some of the disadvantages of both least-squares
estimation and KM method separately, the aim of this paper
is to propose a hybrid learning system that is capable of
building a robust fuzzy predictive model through the use of
type-2 TSK fuzzy system. A type-2 SVR-based approach in a
way similar to fuzzy neural networks that replaces SVR with
least-squares for the consequent learning is recently proposed
[17]. Yet, there are still stability issues that are needed to be
resolved [18]. Our approach addresses the computational cost
of a type-reduction process on an SVR-based type-2 fuzzy
system with one of the recent closed-form type reduction and
defuzzification methods. The equation in the consequent part
is described by the weighted inputs obtained by the SVR.

The rest of the paper is organised as follows: The next
section covers the materials and methods and describes
the characteristics of our approach (Section II). Experimen-
tal studies such as non-linear function approximation and
chaotic time series prediction are given in Section III. Finally,
Section IV concludes the paper.



II. MATERIALS AND METHODS

A. Support Vector Regression

SVM, a statistical learning approach based on structural
risk minimisation, can be used for classification and real-
value estimation tasks [19]. The regression form of SVM is
SVR which uses the ✏-insensitive loss function as depicted
graphically [20] in Fig. 1 that approximates a linear function
h(x) in the following form:

h(x) = w

T

x+ b (1)

where the coefficients w and b are the weight vector and bias
term, respectively. Mathematically, the constrained optimisa-
tion problem is formally defined as follows:

min
1

2
kwk2 + C

X
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where ⇠

+, ⇠� are the two nonzero slack variables in both
directions. The constant parameter C > 0 is the trade-off
that it achieves between the complexity of the function and
toleration up to a value which deviates greater than ✏. The
minimisation function (2) is subject to:
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B. Support Vector based TSK Fuzzy System

TSK is a fuzzy modelling method, proposed by Takagi,
Sugeno and Kang, that can exhibit high-dimensions, non-
linearity, and complexity. Each rule in the structure of the
TSK fuzzy system can be expressed in the following form
[10]:
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where i = 1..r is the number of fuzzy rules; and (x1, x2, ...,
x

n

) are the n input variables; and a fuzzy set for the variable
n and rule i is denoted by A

ni

; and y

i

is the rule output of
the consequent part; and c

ni

represents the coefficient of its
linear equation.

Let the input and real-valued output training data set D is
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scribed with any form of membership functions, commonly
with the following Gaussian membership function:
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where µ(x
j

) is the degree of membership for input variable
x

j

; and c

ij

and �
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are the centre and standard deviation that
characterises a fuzzy set, respectively. The t-norm operation
can be defined as:
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Fig. 1. ✏-insensitive loss function for a linear SVM.

where f

i

is the firing strength determined by using a t-norm
operation defined by the product (*) operator. A normalised
firing strength can be defined in the following form:
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where f

i

denotes normalised firing strength. A defuzzifi-
cation operation is processed by finding the overall output
obtained by weighted sum:
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In order to obtain the coefficients w (weight vector) and
b (bias term) of the SVR linear expression, each data item
~x

i

in the training data set along with its actual output y
i

is
transformed to represent a training data pair (~x

i

0
, y
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) which
is fed into SVR as in the following form:
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Once the w and b are obtained, a defuzzification opera-
tion for the support vector-based Takagi-Sugeno-Kang fuzzy
system (TSK-SVR I) is formulated as:
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where the new defuzzified output formulation of TSK-SVR
I is denoted by y

0. SVR part of the hybrid method is
implemented through the use of LIBSVM package [21].

C. IT2-TSK A2-C0 Fuzzy System

Generally, an interval A2-C0 TSK model can be defined
in the following [22]:
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where i = 1..M represents the IF-THEN rules of the fuzzy
system; x1, x2, ..., x

n

are the input variables; and Ã

ni

is an
interval type-2 fuzzy set for the variable n and rule r; and y

i



is the rule output; and c0, c1, c2, ..., c
n

are the consequent
parameters.

IT2-TSK A2-C0 involves upper and lower membership
functions in the antecedents where the uncertainties may
encountered. The firing strengths of a fuzzy rule can be
defined by use of t-norm operator:
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where f

i

and f

i

represent the lower and upper firing
strengths, respectively; µ(x

j

) is the upper degree of mem-
berships and µ(x

j

) is the lower degree of memberships for
input variable x

j

; and t-norm operation is defined by the
product (*) operator.

The model has an an interval type-1 fuzzy set at the end
which is determined by its left (y

l

) and right (y
r

) end points:
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The end points generally can be calculated through the
iterative KM algorithms and the final output can be calculated
as:

Y = (y
l

+ y

r

)/2 (17)

D. Biglarbegian-Melek-Mendel Type Reduction

Type reduction is processed by finding the end points
generally with the use of iterative KM algorithms and then
these end points are used to calculate the final output.
Due to the high-computational cost of iterative KM algo-
rithms, alternative type-reduction algorithms that are faster
in computation and have closed form expressions have been
proposed recently in the literature. Some of the computa-
tionally effective alternative type-reduction algorithms, many
of them are for the defuzzification of Mamdani IT2 FLSs,
are Liang-Mendel Unnormalised Method [23], Wu-Mendel
Uncertainty Bounds Method [24], Coupland-John Geometric
Method [25], Greenfield-Chiclana-Coupland-John Collapsing
Method [26], Nie-Tan Method [27].

Biglarbegian-Melek-Mendel (BMM) method is one of
the recent closed-form type reduction and defuzzification
methods that adapted to design the type-reduction parameters
as well as stability of the IT2-TSK fuzzy system [18].
Closed mathematical form type reduction along with the

defuzzification process for IT2-TSK FLS can be computed
as:
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where q and p are the adjustable coefficients to weight the
outputs of two type-1 FLSs characterised by the lower and
upper membership functions. These parameters are required
to be optimised for the robustness and stability of the IT2-
TSK fuzzy system. The rule outputs denoted by y

i

are not
required to be sorted in BMM type reduction.

E. Support Vector based IT2-TSK Fuzzy System

This section introduces the hybrid learning system that
incorporates SVR with the IT2-TSK A2-C0 fuzzy system.
Generally, least-squares estimation is used to estimate the
consequent parameters of TSK fuzzy systems. As compared
to least-squares estimation, SVR is an alternative regression
approach that leads to generalisation. To address the com-
putational cost, BMM is used as an alternative method to
the KM. Let the input and real-valued output training data
set D is {( ~x1, y1), ( ~x2, y2), ..., ( ~x

N

, y

N

)}, This data set
is transformed into training data pairs {( ~x1

00
, y1), ( ~x2

00
, y2),

..., ( ~x
N

00
, y

N

)} benefiting from the design parameters of
BMM type reduction. Each data item ~x

i

00 in the transformed
training data set D00 along with its actual output y

i

is fed into
SVR in order to obtain the coefficients w (weight vector) and
b (bias term) of the SVR linear expression as in the following
form:
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The optimal design parameters q and p can be optimised
using a grid search and denote to weight the outputs of
two type-1 FLSs characterised by the lower and upper
membership functions. A defuzzification operation for the
support vector based IT2-TSK A2-CO fuzzy system (TSK-
SVR II) is formulated as:
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where the new defuzzified output formulation of TSK-SVR
II is denoted by y

00. SVR part of the hybrid method is
implemented through the use of LIBSVM package.

III. EXPERIMENTS

In this section two simulations will be presented. The first
simulation is an example of nonlinear system approximation
and the second is chaotic time series prediction. The results
of the proposed approach are compared to those of various
methods published in the literature. In order to provide an



Fig. 2. Type-1 fuzzy sets (rule 1) for the non-linear approximation problem
characterised by Gaussian membership functions.

Fig. 3. Interval type-2 fuzzy sets (rule 1) for the non-linear approximation
problem characterised by Gaussian upper and lower membership functions.

objective comparison of the proposed methods a widely used
statistical measure, root mean square (RMSE) is used. RMSE
can be expressed as in the following form:

RMSE =

vuut 1

N

NX

i=1

(y
obs,i

� y

prd,i

)
2 (22)

Fig. 4. Type-1 fuzzy Sets (rule 1) for the chaotic time series prediction
problem characterised by Gaussian membership functions.

Fig. 5. Interval type-2 fuzzy sets (rule 1) for the chaotic time series
prediction problem characterised by Gaussian upper and lower membership
functions.

where y

obs,i

and y

prd,i

are observed data and predicted data
respectively, and N is the number of samples. In addition,
improvement gained through the proposed type-2 method
(IT2) over type-1 (T1) method will also be provided that
can be calculated as:

%IRMSE =
T1 � IT2

T1
⇥ 100% (23)



A. Nonlinear System Approximation

A nonlinear system equation that appeared in many mod-
elling exercises will be used for comparison purposes [28].
This nonlinear system approximation can be defined in the
following:

y = (1.0 + x

0.5
1 + x

�1
2 + x

�1.5
3 )2 (24)

The randomly generated data set as shown in Table I which
consists of 10 input features within [1,5] to approximate the
given non-linear function was from [29] for an unbiased
comparison. The fuzzy rules and antecedent parameters of
the proposed model are obtained using clustering. The model
contained 3 rules. Type-1 fuzzy sets and interval type-2
fuzzy sets for rule 1 characterised by Gaussian membership
functions were depicted in Fig. 2 and 3. The prediction
results of the proposed model are shown in Table II. The
optimal TSK SVR II parameters assessed through the use
of RMSE values are found to be C = 3.00 and ✏ = 0.1.
The comparison of the performance of type-2 TSK A2-
CO systems over type-1 TSK systems is also assessed. The
percentage improvement of the TSK-SVR II over TSK-SVR
I is found to be %25.3. By the use of a grid-search, the
adjustable coefficients of BMM type reduction are obtained
as (q = 2.15 and p = 0.03).

B. Time-Series Prediction

The Mackey-Glass equation is a kind of time series which
has chaotic and non-linear characteristics and its data is
produced by a time-delay differential equation expressed as:

dx(t)

dt

=
ax(t� ⌧)

1 + x

n(t� ⌧)
� bx(t) (25)

where the constants a, b, and n are used for the generation
of chaotic time series values and t denotes the time. The
chaotic behaviour comes from the delay parameter, ⌧ , where
⌧ > 16.8.

This equation was initially proposed for modelling the
blood cell regulation [30] and was used as benchmark for
decades in literature to assess particularly the performance
of prediction methods. The data set, given as x, consists of

TABLE I
INPUT-OUTPUT VARIABLES OF THE NON-LINEAR SYSTEM

APPROXIMATION

x1 x2 x3 y

4.0664 3.5022 2.7773 12.3772
1.6605 4.9647 2.6929 6.3236
4.1088 2.4369 6.3236 6.4103
1.8334 3.7125 4.7763 7.3940
2.0071 3.0351 4.6483 8.0997
2.5861 2.1074 4.2599 10.2168
2.9228 3.3154 3.7585 9.9129
3.0372 4.2913 2.2346 10.7265

TABLE II
PREDICTION RESULTS OF THE PROPOSED MODELS FOR NON-LINEAR

SYSTEM APPROXIMATION

Prediction Methods RMSE

TSK1 [29] 0.618
TSK2 [29] 0.374
TSK-SVR I 0.119
TSK-SVR II 0.095

TABLE III
RESULTS OF THE PROPOSED MODELS FOR THE PREDICTION OF

CHAOTIC TIME SERIES AND THOSE REPORTED IN THE LITERATURE

Prediction Methods RMSE

FALCON-ART [31] 0.040
GA-Ensemble [32] 0.026
SONFIN [33] 0.018
SVR based Fuzzy Modeling [34] 0.013
WNN-HLA [35] 0.006
ANFIS [12] 0.007
SVD [36] 0.012
SA-T1FLS [37] 0.016
SA-T2FLS [38] 0.009

TSK-SVR I 0.008
TSK-SVR II 0.007

1200 data samples which produced as in the form of x(t-
18), x(t-12), x(t-6) and x(t) for the input samples and x(t+6)
for the output samples. The input-output mappings are used
to predict future values of x at x(t+6). The discretisized
data is formed using the fourth order Runga-Kutta method
and 1000 samples were generated by the (25). The samples
were divided into two equal sized groups each contained 500
samples. The former was for the training data and the latter
was for the testing the proposed model. The parameters learnt
through the training was used to construct a rule-based fuzzy
logic system. To measure the outcome of training and testing
prediction performances, RMSE was used.

Table III shows the prediction results given as test errors
(RMSE values) of the proposed model and those reported in
the literature. The fuzzy rules and antecedent parameters of
the proposed model are obtained using clustering. The model
contained 32 rules. Type-1 fuzzy sets and interval type-2
fuzzy sets for rule 1 characterised by Gaussian membership
functions were depicted in Fig. 4 and 5. The optimal TSK-
SVR II parameters assessed through the use of RMSE
measure are found to be C = 17.75 and ✏ = 0.01. The
percentage improvement of the TSK-SVR II over TSK-
SVR I is found as %12.5. By the use of a grid-search, the
adjustable coefficients of BMM type reduction are obtained
as (q = 1.50 and p = 0.01).



IV. CONCLUSIONS AND FUTURE WORK

This paper proposed a hybrid system for the IT2-TSK
A2-CO fuzzy system. The consequent parameter learning
of the fuzzy system with the assistance of SVR regression
yielded good performance improvement for the given re-
gression tasks. Computational cost is also become efficient
with the use of one the recent closed-form type reduction
and defuzzification methods which is adapted to design
the type-reduction parameters as well as stability of the
IT2-TSK fuzzy systems. One advantage of the proposed
fuzzy system is that it can benefit from the interpretable
rules in comparison with the published papers that employ
black-box models. Additionally, the generalisation of the
overall system is increased and yielded improvement on the
prediction performance for the unseen data. In future work,
bioinformatics data sets will be studied in order to find out
how our approach can cope with such data sets which have
high-dimensional and complex characteristics.
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