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Abstract. In this article we consider the a posteriori error estimation and adaptive mesh
refinement for the numerical approximation of the travel time functional arising in porous media
flows. The key application of this work is in the safety assessment of radioactive waste facilities; in
this setting, the travel time functional measures the time taken for a non-sorbing radioactive solute,
transported by groundwater, to travel from a potential site deep underground to the biosphere. To
ensure the computability of the travel time functional, we employ a mixed formulation of Darcy’s
law and conservation of mass, together with Raviart-Thomas Hpdiv,Ωq-conforming finite elements.
The proposed a posteriori error bound is derived based on a variant of the standard Dual-Weighted-
Residual approximation, which takes into account the lack of smoothness of the underlying functional
of interest. The proposed adaptive refinement strategy is tested on both a simple academic test case
and a problem based on the geological units found at the Sellafield site in the UK.
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1. Introduction. In recent decades the use of numerical simulations in hydro-
geological studies has become commonplace across a range of applications. Amongst
these, modelling the post-closure safety performance of deep geological storage of ra-
dioactive waste is of particular interest for a posteriori error estimation. Efficient and
reliable simulations are required in order to assess the suitability of a specific location
for siting a waste repository. Furthermore, there is a critical need to verify any com-
putational results with rigorous error bounds as the effects of an inaccurate simulation
could be extremely costly. In the safety assessment of radioactive waste facilities, one
of the key quantities of interest is the time taken for a non-sorbing radioactive solute,
transported by groundwater, to travel from a potential site deep underground to the
biosphere [28, 41, 44]. Additionally, accurate computation of the travel time has ap-
plications in streamline methods for modelling other subsurface flows; for instance in
oil and gas reservoir management [36].

The suitability of finite element methods has been demonstrated for many of
the complex geometries and physical effects that are associated with the numerical
approximation of groundwater flow and contaminant transport problems [16, 17, 20,
21, 37, 41, 42]. There are, however, problems associated with the use of nodal-based
elements, such as lack of mass conservation at an elemental level and unphysical
streamlines, as noted in [21, 24, 42, 43]. These problems are not observed when using
a (conforming) mixed finite element method, or finite difference method, in which
pressure and velocity are computed simultaneously. Indeed, when employing the latter
class of methods on triangular meshes, the tracing of streamlines is straightforward
and has been shown to yield physical results, even on very coarse meshes, when nodal-
based approximations may fail [24, 37, 42]. While these works use only the lowest
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order approximation for the Darcy velocity, it is also possible to compute streamlines
to high-order, for divergence-free flows, using a mixed finite element method [36].

A posteriori estimation is a key tool for the control of the discretization error aris-
ing in numerical simulations involving the finite element method [1, 3, 4]. Tradition-
ally, a posteriori error analysis has focussed on estimating the error in global quantities
of the solution. Goal-oriented a posteriori error estimation seeks to determine whether
some physical quantity of interest, calculated using the numerical solution, is within
a given tolerance of the true value. Goal-oriented techniques for a posteriori error es-
timation were introduced in [6, 25]; see also [7, 8, 26, 29, 30, 31, 32, 33, 34, 38, 39, 45],
and the references cited therein. The formulation in [6] constructs an adjoint-weighted
error bound, whilst the alternative formulation in [25] constructs an unweighted error
bound based on exploiting stability estimates. Adjoint-weighted residual techniques
have been applied to a wide range of physical problems including, amongst others,
the Poisson problem [6], elasticity theory [45], incompressible viscous flows [7, Chp.
8], radiative transfer [7, Chp. 11], and non-linear hyperbolic conservation laws [30].
To date, most work has focussed on single target functionals, where, typically, the
functional is either linear or non-linear, but Fréchet differentiable. Simultaneously, a
posteriori estimation of the error in a given set of functionals has been undertaken in
the articles [33, 29]. Finally, we point out that, in the context of our current article,
some limited work has been undertaken in the context of a posteriori error estimation
for the accurate computation of streamlines and the travel time. Indeed, the article
[17] exploits an energy norm error estimate to adaptively refine the computational
mesh in order to increase the accuracy of the computation of streamlines using a
stream function approach. However, whilst there is literature on the application of
adjoint-weighted techniques for contaminant transport [8, 39], there is, to the authors’
knowledge, no literature in which the travel time is directly considered as the quantity
of interest.

The main contribution of this article is the introduction of a goal-oriented a pos-
teriori error estimate for the travel time in groundwater flows. This is a key quantity
of interest in many physical simulations; in particular, post-closure assessment of deep
geological radioactive waste repositories, which has received little attention in the er-
ror estimation literature. Furthermore, there are a limited number of results in the
adjoint-weighted goal-oriented a posteriori error estimation literature concerning non-
Fréchet differentiable functionals. This article introduces a goal-oriented a posteriori
error estimate that does not explicitly require Fréchet differentiability of the quantity
of interest. Moreover, we apply this general approach to compute the travel time for
a simplified model based on the geological units found at the Sellafield site in the UK.

This article is organized as follows. In section 2 we introduce the classical mixed
formulation of Darcy flow and define the travel time functional. In section 3 we pose
the weak formulation of the Darcy flow from section 2 and introduce a suitable mixed
finite element approximation. In section 4 we establish goal-oriented a posteriori error
estimates for linear and non-linear Fréchet differentiable functionals and adapt these
ideas to derive an estimate for the error in the travel time functional. In section
5 we present a series of numerical experiments to demonstrate the efficiency of the
proposed a posteriori error estimator. Finally, in section 6 we make some concluding
remarks and highlight ongoing and future work.

2. Problem Definition. In this section we introduce the first-order system of
partial differential equations (PDEs) that describe saturated groundwater flow. We
then define the travel time functional for a non-sorbing solute in a contaminated
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groundwater plume; an a posteriori estimate is derived in section 4 for this quantity
of interest.

2.1. Primal PDE Problem. Let Ω be an open, bounded, Lipschitz domain in
R2 with polygonal boundary BΩ. Let BΩ be partitioned into two open subsets ΓD
and ΓN , such that Γ̄D Y Γ̄N “ BΩ and ΓD X ΓN “ H. We model groundwater flow
in Ω using Darcy’s law and conservation of mass, cf. [5, 23], to yield a Poisson-type
boundary value problem for the Darcy velocity u and hydraulic head H, given by

u`K∇H “ 0 @x P Ω,
divu “ f @x P Ω,

H “ gD @x P ΓD,
u ¨ n “ gN @x P ΓN ,

,

/

/

.

/

/

-

(2.1)

where n denotes the unit outward normal to BΩ and K is the hydraulic conductivity.
We specify that K is a 2 ˆ 2 positive definite matrix and its smallest eigenvalue is
bounded away from zero uniformly in Ω with respect to x, i.e., there exists α0 ą 0
such that

α0|ξ|
2 ď ξᵀKξ @ξ P R2,@x P Ω,

which implies that K is invertible almost everywhere in Ω. However, K may contain
discontinuous coefficients, which are potentially highly anisotropic. Furthermore, we
make the following assumptions regarding the model data:

f P L2pΩq, gD P H
1
2 pΓDq, and gN P L

2pΓN q.

For the numerical experiments presented in this article, we consider problems
which possess homogeneous Neumann boundary conditions for the Darcy velocity on
certain portions of the boundary, due to the geology and tomography of the region, and
inhomogeneous Dirichlet boundary conditions for the hydraulic head on the remainder
of the boundary. As such, we impose the condition that gN ” 0 throughout this article.
However, we do this without loss of generality, since the numerical treatment of the
homogeneous case does not differ from that of the inhomogeneous one, cf. [12, Chp.
IV.1].

2.2. Quantity of Interest. The physical quantity of interest we consider in
depth in this article is the travel time for a non-sorbing solute from some release
point x0 P Ω to the boundary BΩ of the computational domain. In the context of
deep geological storage of radioactive waste, this corresponds to the time taken for
leaked radioactive material to be transported from the repository to the biosphere.

As the fluid is flowing only through the connected pores in the solid matrix, the
Darcy velocity does not represent the fluid velocity. This transport velocity is instead
given by

vT “
1

φ
u,

where φ is the porosity of the rock.
If we make the assumption that there are no dispersion or sorption effects, then,

since the Darcy velocity is not time-dependent, the motion of a particle simply corre-
sponds to streamlines of the flow. This implies that the particle position X, through
the domain, is governed by the differential equation

dX

dt
“ vT , (2.2)
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subject to the initial condition

Xp0q “ x0. (2.3)

If we denote the path taken through the domain by the particle as P, then the
travel time Tp, is given by

Tp “

ż

P

ds

}vT }2
,

where } ¨ }2 is the Euclidean norm in R2. This then allows us to define the travel time
functional J p¨q, by

J pvq “
ż

Ppvq

φ

}v}2
ds, (2.4)

where Ppvq is the path obtained for the transport velocity given by vT “
1
φv.

Remark 2.1. The dependence on v in the computation of the path over which
the integral is evaluated, in addition to the term in the integrand, leads to significant
challenges in demonstrating Fréchet differentiability of this functional with respect to
v. In fact, it is clear that this functional is not globally continuous and, therefore,
not globally Fréchet differentiable. However, it remains unclear as to whether or not,
for certain data, the functional is Fréchet differentiable, or Gâteaux differentiable, on
some open neighbourhood of the solution, in a suitable Hilbert space. With this in
mind, in section 4.3 we adapt the standard goal-oriented a posteriori error estimates
for Fréchet differentiable functionals to overcome these difficulties, subject to certain
restrictions that are discussed later.

3. Finite Element Discretization. In this section we define the mixed weak
formulation of the first-order system of PDEs introduced in section 2. Given this weak
formulation, we then define a suitable finite element subspace on which the discrete
weak formulation yields a convergent numerical approximation.

3.1. Weak Formulation. We first introduce the function spaces that will be
used in the weak formulation and definition of the finite element discretization. To
this end, we define the Sobolev space Hpdiv,Ωq by

Hpdiv,Ωq “
!

v P
`

L2pΩq
˘2

: div v P L2pΩq
)

,

cf. [12]. Let x¨, ¨yBΩ denote the duality pairing between H
1
2 pBΩq and H´

1
2 pBΩq. Then

the Green’s formula

xv ¨ n,ΦyBΩ “

ż

Ω

Φ div v dx`

ż

Ω

v ¨∇Φ dx @Φ P H1pΩq, (3.1)

allows us to define the normal trace of a function v P Hpdiv,Ωq on BΩ [12, Chp. III.1].
We now proceed by defining the subspace H0,N pdiv,Ωq Ă Hpdiv,Ωq of functions

whose normal trace vanishes on ΓN by

H0,N pdiv,Ωq “
 

v P Hpdiv,Ωq : xv ¨ n,ΦyBΩ “ 0 @Φ P H1
0,DpΩq

(

, (3.2)

where

H1
0,DpΩq “

 

v P H1pΩq : v “ 0 @x P ΓD
(

.
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Given the definition of H0,N pdiv,Ωq in equation (3.2), we now state the weak
formulation of the first-order system of PDEs stated in equation (2.1). Multiplying
the first and second equations in (2.1) by test functions in H0,N pdiv,Ωq and L2pΩq,
respectively, and applying the Green’s formula given in equation (3.1) to the first
equation in (2.1) yields the weak formulation: find u P H0,N pdiv,Ωq and H P L2pΩq
such that

apu,vq ` bpv,Hq “ Gpvq @v P H0,N pdiv,Ωq,
bpu, qq “ F pqq @q P L2pΩq.

*

(3.3)

The bilinear forms ap¨, ¨q and bp¨, ¨q are defined as

apv,wq “

ż

Ω

K´1v ¨w dx, v,w P Hpdiv,Ωq,

and

bpv, qq “ ´

ż

Ω

q div v dx, v P Hpdiv,Ωq, q P L2pΩq,

respectively, and the linear functionals Gp¨q and F p¨q are defined as

Gpvq “ ´ xv ¨ n, gDyBD , v P Hpdiv,Ωq,

and

F pqq “ ´

ż

Ω

fq dx, q P L2pΩq,

respectively.
It is well known that the weak formulation given in equation (3.3), subject to the

restrictions on the data outlined in section 2, possesses a unique solution [12, Chp.
II.1].

3.2. Mixed Finite Element Formulation. We consider shape–regular (con-
forming) meshes Th that partition Ω Ă R2 into disjoint open triangular domains κ,
such that Ω̄ “ YκPTh

κ̄. Here, we implicitly assume that Th respects the decomposition
BΩ = Γ̄D Y Γ̄N of the boundary, in the sense that an edge of a boundary element
κ is solely contained within Γ̄D or Γ̄N . Given κ P Th, we write Bκ to denote the
boundary of κ; the outward unit normal vector to Bκ is given by nκ. By hκ we
denote the element diameter of κ P Th and introduce the mesh function h, defined
by h “ maxthκ : κ P Thu. For k P N0 and κ P Th, we write Pkpκq to denote the
space of polynomials of degree at most k on κ. With this notation, we introduce the
Raviart-Thomas Element [46] given by

RTkpκq “ pPkpκqq
2
` xPkpκq.

It can be shown, cf. [12], for example, that v P RTkpκq may be fully characterized
by the moments of up to order k of v ¨ nκ on the edges of κ and the moments of
up to order k ´ 1 of v on the interior of κ. Given the definition of RTkpκq, and
the characterization of its degrees of freedom, we may now build a finite-dimensional
subspace of Hpdiv,Ωq from the spaces RTkpκq, κ P Th. To this end, we define the
following finite dimensional subspace of Hpdiv,Ωq by

RTkpΩ, Thq “ tv P Hpdiv,Ωq : v|κ P RTkpκq @κ P Thu ,
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cf. [12]. Thereby, setting

V 0
h,k “ tv P RTkpΩ, Thq : v P H0,N pdiv,Ωqu

and

Qh,k “
 

p P L2pΩq : p|κ P Pkpκq @κ P Th
(

,

the discrete mixed formulation is defined by: find uh,k P V
0
h,k and Hh,k P Qh,k such

that

apuh,k,vq ` bpv,Hh,kq “ Gpvq @v P V 0
h,k,

bpuh,k, qq “ F pqq @q P Qh,k.

*

(3.4)

Remark 3.1. It can be shown, cf. [10, 12], that for a given k ě 0 the choice
of the finite element spaces V 0

h,k and Qh yields a convergent approximation defined by
the discrete mixed formulation given in equation (3.4).

We stress that the exploitation of the mixed formulation introduced in section
3.1 for the first-order system of PDEs given in equation (2.1) and the subsequent
discretization based on employing Hpdiv,Ωq-conforming elements is crucial for the
computation of streamlines and travel times. Indeed, if the system is solved as a single
second-order Poisson-type PDE using standard H1pΩq-conforming or discontinuous
Galerkin finite element methods, for example, then there is no guarantee that the nor-
mal trace of the numerical Darcy velocity has consistent sign with respect to adjacent
elements; this may then lead to non-physical streamlines and non-computable travel
times. The continuity of normal traces is a key property of Hpdiv,Ωq-conforming
finite elements that is demonstrated in the following lemma.

Lemma 3.2. Let Y pΩ; Thq Ă
`

L2pΩq
˘2

be the broken Sobolev space defined by

Y pΩ; Thq “
!

v P
`

L2pΩq
˘2

: v P Hpdiv, κq @κ P Th
)

.

Then

H0,N pdiv,Ωq “

#

v P Y pΩ; Thq :
ÿ

κPTh

xv ¨ nκ, qyBκ “ 0 @q P H1
0,DpΩq, @κ P Th

+

.

Proof. See [12, Chp. III.1]

Remark 3.3. We point out that alternative choices of Hpdiv,Ωq-conforming
elements, such as BDM [11], may also be employed. Indeed, the proceeding a poste-
riori error estimation naturally holds for any appropriate choice of stable Hpdiv,Ωq-
conforming finite element spaces.

4. A Posteriori Error Estimation. In this section we follow the standard
theory of adjoint-weighted goal-oriented a posteriori error estimation to derive error
estimates for both linear and non-linear Fréchet differentiable functionals. We then
present the a posteriori error estimate for the travel time functional based on employ-
ing a one-sided difference approximation of the Gâteaux derivative of the functional.
Finally, we discuss the limitations on the applicability of this estimate with regards
to round off error and the truncation error in a generalized Taylor expansion.
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4.1. Linear Functionals. We first derive a goal-oriented a posteriori error es-
timate for the discrete mixed formulation given in equation (3.4) for some contin-
uous linear functional J : Hpdiv,Ωq ˆ L2pΩq ÞÑ R. To this end, we rewrite the
weak formulation given in equation (3.3) in the following compact manner: find
ru,Hs P H0,N pdiv,Ωq ˆ L2pΩq such that

A
`

ru,Hs, rv, qs
˘

“ `
`

rv, qs
˘

@rv, qs P H0,N pdiv,Ωq ˆ L2pΩq, (4.1)

where

A
`

rw, rs, rv, qs
˘

“ apw,vq ` bpv, rq ` bpw, qq

and

`
`

rv, qs
˘

“ Gpvq ` F pqq.

Similarly, the (primal) finite element approximation may be written in the equiv-
alent form: find ruh,k,Hh,ks P V

0
h,k ˆQh,k such that

A
`

ruh,k,Hh,ks, rv, qs
˘

“ `
`

rv, qs
˘

@rv, qs P V 0
h,k ˆQh,k.

Since V 0
h,k Ă H0,N pdiv,Ωq and Qh,k Ă L2pΩq, respectively, the following Galerkin

orthogonality property holds

A
`

ru´ uh,k,H´Hh,ks, rv, qs
˘

“ 0 @rv, qs P V 0
h,k ˆQh,k. (4.2)

We may now proceed as in [4, 7] by defining the following adjoint problem, corre-
sponding to the quantity of interest J , as follows: find rz, rs P H0,N pdiv,Ωq ˆ L2pΩq
such that

A
`

rv, qs, rz, rs
˘

“ J
`

rv, qs
˘

@rv, qs P H0,N pdiv,Ωq ˆ L2pΩq. (4.3)

Exploiting the linearity of J and the Galerkin orthogonality property (4.2), we
may derive the following error representation formula for the error in the linear func-
tional J :

J
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘

“ J
`

ru´ uh,k,H´Hh,ks
˘

“ A
`

ru´ uh,k,H´Hh,ks, rz, rs
˘

“ A
`

ru´ uh,k,H´Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

“ `
`

rz ´ zh,k, r ´ rh,ks
˘

´A
`

ruh,k,Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

” R
`

ruh,k,Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

(4.4)

for all rzh,k, rh,ks P V
0
h,k ˆ Qh,k. Here, Rp¨, ¨q is referred to as the weighted residual,

defined by

R
`

α,β
˘

“ `
`

β
˘

´A
`

α,β
˘

,

for α, β P H0,N pdiv,Ωq ˆ L2pΩq.
The error representation formula (4.4) requires knowledge of the adjoint solution

rz, rs of the continuous problem (4.3). In practice, this will not be available and we
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are therefore required to compute a numerical approximation rẑĥ,k̂, r̂ĥ,k̂s to rz, rs,

based on employing a mesh of granularity ĥ with polynomials of degree k̂. Notice
that the Galerkin orthogonality property necessitates that rẑĥ,k̂, r̂ĥ,k̂s R V

0
h,k ˆ Qh,k,

otherwise the error estimate will be identically zero. Therefore, we adopt the approach
of computing a finite element approximation to rz, rs with Tĥ “ Th and k̂ “ k ` 1,
i.e., rẑĥ,k̂, r̂ĥ,k̂s ” rẑh,k`1, , r̂h,k`1s P V

0
h,k`1 ˆQh,k`1, cf. [4].

Replacing rz, rs with rẑh,k`1, r̂h,k`1s in (4.4) then yields the (approximate) error
estimate

J
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘

« R
`

ruh,k,Hh,ks, rẑh,k`1 ´ zh,k, r̂h,k`1 ´ rh,ks
˘

. (4.5)

Rewriting the above error estimate as a summation of local error indicators ηκ,
over the elements κ of the mesh Th, we arrive at the following (approximate) a poste-
riori bound.

Proposition 4.1. Under the foregoing notation, the following (approximate) a
posteriori bound holds:

ˇ

ˇJ
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘
ˇ

ˇ À
ÿ

κPTh

|ηκ|,

where ηκ “ R
`

ruh,k,Hh,ks, rẑh,k`1 ´ zh,k, r̂h,k`1 ´ rh,ks
˘

|κ is the weighted residual
evaluated on a single element κ P Th.

4.2. Non-Linear Functionals. Suppose now that the quantity of interest cor-
responds to a non-linear functional Jp¨q, that is Fréchet differentiable with derivative
at rv, qs denoted by J 1

“

rv, qs
‰

p¨q. We define the mean value linearization of J by

J̄
“

ru,Hs
‰“

ruh,k,Hh,ks
‰

pv, qq “

ż 1

0

J 1
“

θru,Hs ` p1´ θqruh,k,Hh,ks
‰`

rv, qs
˘

dθ.

In this case, the formal adjoint problem corresponding to the quantity of interest
J is then given by : find rz, rs P H0,N pdiv,Ωq ˆ L2pΩq such that

A
`

rv, qs, rz, rs
˘

“ J̄
“

ru,Hs
‰“

ruh,k,Hh,ks
‰`

rv, qs
˘

@rv, qs P H0,N pdiv,Ωq ˆ L2pΩq.
(4.6)

On the basis of this adjoint problem, together with the mean value linearization of J ,
cf. above, we deduce the following error representation formula:

J
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘

“ J̄
“

ru,Hs
‰“

ruh,k,Hh,ks
‰

pu´ uh,k,H´Hh,kq

“ A
`

ru´ uh,k,H´Hh,ks, rz, rs
˘

“ A
`

ru´ uh,k,H´Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

“ `
`

rz ´ zh,k, r ´ rh,ks
˘

´A
`

ruh,k,Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

” R
`

ruh,k,Hh,ks, rz ´ zh,k, r ´ rh,ks
˘

for all rzh,k, rh,ks P V
0
h,k ˆQh,k.

In practice, however, as the solution to the weak formulation given in equation
(3.3) is unknown, we make the assumption that the underlying linearization error is
small and employ the (approximate) adjoint problem: find rz, rs P H0,N pdiv,Ωq ˆ
L2pΩq such that

A
`

rv, qs, rz, rs
˘

“ J 1
“

ruh,k,Hh,ks
‰`

rv, qs
˘

@rv, qs P H0,N pdiv,Ωq ˆ L2pΩq; (4.7)
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for simplicity of notation, we use rz, rs to denote the solution to both adjoint problems
(4.6) and (4.7), though we stress that these are clearly not identical, in general.
Writing rẑh,k`1, r̂h,k`1s P V

0
h,k`1 ˆ Qh,k`1 to denote the numerical approximation

to (4.7) computed on the mesh Th, with polynomials of degree k ` 1, proceeding as
above, we deduce that

J
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘

« R
`

ruh,k,Hh,ks, rẑh,k`1 ´ zh,k, r̂h,k`1 ´ rh,ks
˘

”
ÿ

κPTh

ηκ ď
ÿ

κPTh

|ηκ|,

where ηκ is defined in analogous manner to the case when J is a linear functional.

4.3. Travel Time Functional. For notational convenience, we rewrite the
travel time functional defined in (2.4) in the following equivalent manner:

J
`

rv, qs
˘

” J pvq “
ż

Ppvq

φ

}v}2
ds.

As noted in Remark 2.1, the smoothness of the travel time functional is unclear;
the key technical difficulty stems from integrating the quantity of interest on a path
which is unknown a priori. Given the difficulty in demonstrating Fréchet differentia-
bility of the travel time functional in some neighbourhood of the solution ru,Hs, we
adopt a different approach to that presented in section 4.2 for Fréchet differentiable
functionals. With this in mind, we exploit a numerical approximation of the Gâteaux
derivative in the definition of the corresponding adjoint problem. The idea of numer-
ically approximating these derivatives has been used in a range of applications, such
as inexact Newton methods [14, 18], the numerical solution of stiff systems of ODEs
[13] and minimization techniques [27].

Employing a generalized Taylor expansion and neglecting terms that are Opεq, we
may approximate the Gâteaux derivative of J , evaluated at ru,Hs, in the direction
rv, qs, based on employing the one sided difference formula

J 1
“

ru,Hs
‰`

rv, qs
˘

« J 1ε
“

ru,Hs
‰`

rv, qs
˘

“
J
`

ru` εv,H` εqs
˘

´ J
`

ru,Hs
˘

ε
, (4.8)

where 0 ă ε ! 1. With this approximation, we formally consider the following adjoint
problem corresponding to the travel time functional: find rz, rs P H0,N pdiv,ΩqˆL2pΩq
such that

A
`

rv, qs, rz, rs
˘

“ J 1ε
“

ruh,k,Hh,ks
‰`

rv, qs
˘

@rv, qs P H0,N pdiv,Ωq ˆ L2pΩq. (4.9)

The adjoint solution may be interpreted as a generalized Green’s function relating the
partial differential equation given in (2.1) and (the linearization of) the travel time
functional in equation (4.3). In the current setting, the linearization of the travel
time functional is approximated by (4.8). However, we stress that this approximation
leads to the formulation of an approximate adjoint problem (4.9), whose right-hand
side functional, i.e., J 1ε

“

ruh,k,Hh,ks
‰`

rv, qs
˘

is nonlinear with respect to the test func-
tion rv, qs; thereby, we may not apply a standard Galerkin finite element method to
approximate the adjoint solution rz, rs defined by (4.9). To overcome this issue, we
introduce a further approximate discrete adjoint problem which is defined based on
employing a linear functional approximation of J 1ε

“

ruh,k,Hh,ks
‰`

rv, qs
˘

. To this end,
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we define the unique linear functional Jε : V 0
h,k`1 ˆQh,k`1 Ñ R which precisely co-

incides with the nonlinear functional J 1ε when evaluated/sampled at each of the basis
functions which form the spanning set for the finite element space V 0

h,k`1 ˆ Qh,k`1.
Thereby, we proceed by defining the approximate discrete adjoint problem by: find
rẑh,k`1, r̂h,k`1s P V

0
h,k`1 ˆQh,k`1 such that

A
`

rv, qs, rẑh,k`1, r̂h,k`1s
˘

“ Jε

“

ruh,k,Hh,ks
‰`

rv, qs
˘

@rv, qs P V 0
h,k`1 ˆQh,k`1.

(4.10)
The study of the well–posedness of the approximate adjoint problem (4.9) and its
approximation by the discrete (approximate) counterpart (4.10) are beyond the scope
of this article; for the purposes of the proceeding analysis, we assume that the for-
mer is indeed the case and that (4.10) provides a suitably accurate approximation
of the analytical solution of (4.9). In particular, we demonstrate numerically that
the resulting (approximate) error representation formula, cf. (4.11) below, leads to
highly efficient estimation of the discretization error in the travel time functional on
optimized computational meshes.

Under the assumption that the error committed in the approximation of the
Gâteaux derivative of J is small compared to the discretization error in the com-
putation of the primal solution, measured in terms of the travel time functional, in
practice we compute the following approximate error representation formula

J
`

ru,Hs
˘

´ J
`

ruh,k,Hh,ks
˘

« R
`

ruh,k,Hh,ks, rẑh,k`1 ´ zh,k, r̂h,k`1 ´ rh,ks
˘

”
ÿ

κPTh

ηκ ď
ÿ

κPTh

|ηκ|, (4.11)

where rẑh,k`1, r̂h,k`1s satisfies (4.10); as before, we exploit the same mesh Th employed
for the computation of the primal approximation ruh,k,Hh,ks, using the enriched
polynomial degree k ` 1. The local (weighted) elementwise error indicators ηκ are
defined in a similar manner as in the previous two subsections.

For a heuristic choice of ε, we follow the arguments presented in [22]. When the
functional is evaluated on a computer with finite precision, the computed value of the
functional is only evaluated to a relative accuracy of εm; for double precision IEEE
arithmetic, εm « 10´16. Writing J‹ to denote the numerical evaluation of J , then
for some δ “ Opεmq, we note that

J‹
`

rv, qs
˘

“ p1` δqJ
`

rv, qs
˘

, (4.12)

where rv, qs P H0,N pdiv,ΩqˆL2pΩq. Thereby, the numerator in the approximation of
J 1, cf. the right-hand side of (4.8), may be computed to a relative accuracy of Opεmq.
Hence, the approximation of the derivative of the travel time functional involves two
error terms: one corresponding to the round off error in the evaluation of J , and the
other corresponding to the truncation of the Taylor series expansion of the derivative.
Taking both of these error contributions into account, we deduce that

J 1
“

ru,Hs
‰`

rv, qs
˘

“
J‹

`

ru` εv,H` εqs
˘

´ J‹
`

ru,Hs
˘

ε
`Opεq `O

´εm
ε

¯

. (4.13)

To control the error in the evaluation of J 1ε , and thereby also Jε, ε should be chosen
in order to balance the two error terms arising in (4.13). With this in mind, we require
that ε «

?
εm; for double precision arithmetic, a suitable choice is to select ε « 10´8.

This implies that this approach will not be able to provide a good representation of
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the discretization error to full precision and will become polluted by either truncation
or round off error once the discretization error is of the same order. However, for the
engineering applications of interest in this article, this level of precision is more than
sufficient.

5. Numerical Experiments. In this section we present a series of numerical
experiments to demonstrate the quality of the computed error representation formula
(4.11) within an automatic adaptive mesh refinement algorithm. Here, the elements
are marked for refinement/derefinement based on the size of the local error indicators
|ηκ| using the fixed fraction refinement strategy, with refinement and derefinement
fractions REF% and DEREF%, respectively. The computations presented in this section
have been undertaken based on employing the AptoFEM finite element package [2].
Here, the primal finite element solutions are computed using RT0 elements for the
Darcy velocity, with a piecewise-constant approximation of the hydraulic head, i.e.,
k “ 0, while the corresponding adjoint finite element solutions are computed with k “
1; i.e., RT1 elements are employed for the adjoint Darcy velocity, with a discontinuous
piecewise linear approximation to the adjoint hydraulic head. We point out that with
the restriction to piecewise-constant pressures, we can link the mixed finite element
method employed here to commonly used finite volume methods [15, 49, 48].

Finally, we discuss the numerical evaluation of the travel time functional J rvh,k, qh,ks,
for a given rvh,k, qh,ks P V

0
h,k ˆQh,k, k ě 0. Firstly, we note that, for divergence-free

flows, the exploitation of RT0 elements, i.e., k “ 0, implies that the numerical approx-
imation of the Darcy velocity is constant elementwise and, as such, the computation
of the path Ppvh,0q and travel time are trivial. In examples in which the velocity is
not divergence-free, the method proposed in [37] may be employed for the compu-
tation of the path involved in the evaluation of the travel time functional. For the
assembly of the discrete adjoint solution, we must compute the approximation to the
derivative of J given in (4.8). This requires the computation of the path and travel
time for each degree of freedom corresponding to an element that intersects the primal
path, i.e., Ppuh,0q. In this case, it is necessary to compute the path and travel time
functional for a Darcy velocity that lies in RT1 and, as such, the method employed
for RT0 Darcy velocities is no longer applicable. For the divergence-free case it should
be possible to use the streamline method proposed in [36] to compute an approxima-
tion to the path. For simplicity, however, we employ a forward Euler discretization
with sufficiently small time steps that any discretization error is negligible and may
be ignored. It should be noted, however, that this will occur only for the elements
corresponding to the degree of freedom for which the numerical approximation of the
derivative is being evaluated; this will be at most two elements per path, with the
remainder of the path being either pre-computed or computed as required using the
method in [37].

Example 1. In this first example, we consider a problem that has a known
analytical solution, which is sufficiently simple that we may compute an exact value for
the travel time functional for a given release point x0. To this end, we let Ω “ p0, 1q2,
ΓD “ BΩ, ΓN “ H, K ” I, f “ ´6px` 1q, and gD “ px` 1q3 ` y ` 3; thereby, the
analytical solution to the system of PDEs (2.1) is given by

u “ ´

ˆ

3px` 1q2

1

˙

and H “ px` 1q3 ` y ` 3. (5.1)

Setting φ “ 1 and x0 “ p0.9, 0.2q, the exact value of the travel time functional may be
evaluated as follows. The x–component of the path satisfies the ordinary differential
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(d) rh,1 obtained on T p1qh .

Fig. 5.1: Example 1. The primal and adjoint data obtained on the initial mesh.

equation

dx

dt
“ ´3px` 1q2, xp0q “ 0.9,

cf. (2.2), (2.3). This implies that

ż x

x0

dx1

´3px1 ` 1q2
“

ż t

0

dt1.

Assuming that the path intersects the boundary of Ω at x “ 0, gives

t “ 1{3 p1´ 1{p0.9`1qq “ 3{19;

i.e., J
`

ru,Hs
˘

“ 3{19. Repeating this process for y demonstrates that X p3{19q “

p0, 23{95q, confirming our assumption that the path intersects the boundary of Ω at
x “ 0.
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Fig. 5.2: Example 1. The third mesh and path obtained using the adaptive algorithm.

We point out that this problem is not of physical relevance, but serves as a useful
testcase to demonstrate the practical performance of the proposed a posteriori error
indicator on adaptively refined computational meshes. With this in mind, we define
the effectivity index θ, as follows:

θ “

ř

κ ηκ

J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘ . (5.2)

For this example, we set ε “ 10´8, and refinement and derefinement percentages to
REF “ 20% and DEREF “ 10%, respectively.

In Figure 5.1 we show the finite element solutions ruh,0,Hh,0s and rzh,1, rh,1s

computed on the initial mesh, denoted by T p1qh . From the plots of the adjoint solu-
tion rzh,1, rh,1s, we can observe that there is an apparent discontinuity in rh,1 along
the path Ppuh,0q. The adjoint velocity zh,1 is zero almost everywhere in the domain
and only non-zero in the vicinity of Ppuh,0q. Interpreting the adjoint solution as a
generalized Green’s function for the travel time functional and the system of PDEs
given in equation (2.1), we observe that the computed numerical approximation cor-
responds to a δ´function type source, or sink, along Ppuh,0q. This is, in a sense,
qualitatively similar in character to the adjoint solutions computed for first–order
hyperbolic conservation laws, when the functional of interest is a point evaluation of
the primal solution, cf. [30, 32], for example. However, in this setting, we do observe
some growth in the height of the δ´type adjoint solution along the path of interest,
as we move from the release point to the boundary of the computational domain Ω.

In Figure 5.2 we plot the third mesh T p3qh , and the corresponding path, obtained
using the proposed adaptive mesh refinement strategy. Here, we observe that the
adaptive algorithm has refined elements in the region surrounding the path, with
more refinement taking place around the release point x0, and the point at which
the path intersects BΩ. The induced mesh refinement is due to the presence of the
weighting terms involving the difference between the (approximated) adjoint solution
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DOFS J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

ř

κPTh
ηκ θ

38941 ´3.104ˆ 10´05 ´3.026ˆ 10´05 0.97
67332 1.938ˆ 10´05 1.899ˆ 10´05 0.98
118983 9.271ˆ 10´06 9.006ˆ 10´06 0.97
212280 8.372ˆ 10´07 8.461ˆ 10´07 1.01
363647 ´3.607ˆ 10´07 ´3.698ˆ 10´07 1.03
616105 ´4.739ˆ 10´07 ´4.855ˆ 10´07 1.02

Table 5.1: Example 1. Error data obtained from the adaptive algorithm.

rẑh,k`1, r̂h,k`1s and rzh,k, rh,ks, which multiply the computable residual terms involv-
ing the numerical solution ruh,k,Hh,ks in the definition of the local error indicators
|ηκ|. These weights represent the sensitivity of the relevant error quantity with respect
to variations of the local element residuals.

Finally, in Table 5.1 we demonstrate the performance of the proposed adaptive
strategy; here, we show the number of degrees of freedom in underlying finite element
space V 0

h,0 ˆ Qh,0, the true error in the functional J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

, the
computed error representation formula

ř

κPTh
ηκ, and the effectivity index θ. Here, we

see that the quality of the computed error representation formula is extremely good,
in the sense that the effectivity indices are very close to unity on all of the meshes
employed.

Example 2. In this example, we consider a more complex testcase in order
to demonstrate the applicability of the proposed error estimation techniques for the
travel time functional for a more realistic groundwater flow example. To this end,
we model the flow in a two-dimensional domain consisting of six rock strata, each
with greatly differing hydrogeological properties. The geological units considered are
based on those found at the Sellafield site in the UK; for details, we refer to [41, 44].
Note that, since we only intend to demonstrate the applicability of the proposed a
posteriori estimate, we consider a greatly simplified geometry; in particular, this does
not represent the geometry considered in any hydrogeological assessment. Moreover,
we neglect any faults or other complex geological or topographical features. With this
in mind, the results presented here are not of direct relevance to the results presented
in [41, 44].

Here, we let the computational domain Ω be as shown in Figure 5.3. We partition
this domain into a series of sub-domains Ωi, i “ 1, . . . , 6, that correspond to each of
the geological units shown, and are enumerated from the top of the domain to the
bottom, i.e., Ω1 corresponds to Calder sandstone, and so on. In order to prescribe
boundary conditions for this problem we make the following modelling assumptions:

i) The rock below the Borrowdale Volcanic Group (BVG) stratum is of a much
lower permeability than the other geological units;

ii) There is a flow divide on both the left and right edges of the domain; and
iii) The atmospheric pressure along the top of the domain patm, is 1.013ˆ 105 Pa.

Given these assumptions, we set ΓD be the top of the boundary and ΓN be the
remainder. We define the Dirichlet boundary data gD by

gD “
patm
ρg

` z, (5.3)
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Fig. 5.3: Example 2. The geometry of the region.

Permeability Porosity

Geological Unit mplog10pkqq σplog10pkqq mplog10pφqq σplog10pφqq

Calder Sandstone ´13.967 1.084 ´0.697 0.088
St. Bees Sandstone ´14.987 0.719 ´1.022 0.107
St. Bees Evaporites ´16.437 1.160 ´1.434 0.184
Brockram Breccia ´17.324 0.657 ´1.519 0.248
Carboniferous Limestone ´15.333 1.027 ´1.875 0.354
BVG ´13.070 0.604 ´1.978 0.401

Table 5.2: Example 2. Geological data taken from [44, Vol. 2].

Quantity Value

Acceleration due to gravity, g 9.807 ms´2

Kinematic viscosity of water, µ 1.002ˆ 10´3 N sm´2

Density of water, ρ 1.000ˆ 103 kgm´3

Table 5.3: Example 2. Values for physical constants that are used to compute the hydraulic
conductivity.

where z is the distance above the vertical datum shown at 0 in Figure 5.3, ρ is the
density of water, and g is acceleration due to gravity. In addition, the right-hand side
forcing function f is set equal to zero.

The data for permeability k and porosity φ are taken from [44] and are summa-
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(d) rh,1 obtained on T p1qh .

Fig. 5.4: Example 2. The primal and adjoint data obtained on the initial mesh with the
geometry of the rock strata superimposed.

rized in Table 5.2, where the permeability has units of m2. The data corresponds
to the mean mp¨q and standard deviation σp¨q of log normally distributed random
variables that represent the upscaled permeabilities and porosities of the geological
units shown in Figure 5.3. As we are considering deterministic flow in this article,
we simply take the mean value as the permeability. This yields piecewise-constant
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Fig. 5.5: Example 2. The initial mesh and the meshes obtained after the first three appli-
cations of the adaptive algorithm together with the path obtained using the primal solution
corresponding to the mesh.

permeability and porosity throughout Ω. We make the simplifying assumption that
the permeability is isotropic. The hydraulic conductivity K is then related to the
permeability k by

K “
ρ g

µ
k, (5.4)
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DOFS J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

ř

κPTh
ηκ θ

14641 ´8.447ˆ 10´04 ´1.15ˆ 10´03 1.36
27906 6.576ˆ 10´04 6.20ˆ 10´04 0.94
53415 ´6.827ˆ 10´05 ´2.96ˆ 10´05 0.43
101354 8.070ˆ 10´06 9.87ˆ 10´06 1.22
191266 ´1.615ˆ 10´05 ´1.51ˆ 10´05 0.94
357773 ´8.019ˆ 10´06 ´8.74ˆ 10´06 1.09
665789 ´1.723ˆ 10´06 ´1.72ˆ 10´06 1.00

Table 5.4: Example 2. Error data obtained from the adaptive algorithm.

DOFS J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

ř

κPTh
ηκ θ

1253 1.02ˆ 10´02 1.69ˆ 10´02 1.65
2536 1.55ˆ 10´03 1.88ˆ 10´03 1.21
5085 2.00ˆ 10´04 6.19ˆ 10´05 0.31
10368 ´2.98ˆ 10´04 ´3.06ˆ 10´04 1.03
21128 ´4.93ˆ 10´05 ´7.25ˆ 10´05 1.53
42858 6.07ˆ 10´05 4.94ˆ 10´05 0.79
86386 1.79ˆ 10´05 1.76ˆ 10´05 0.89
173137 ´4.82ˆ 10´06 ´4.82ˆ 10´06 1.66

Table 5.5: Example 2. Error data obtained from the adaptive algorithm, based on starting
from a coarse initial mesh.

where µ is the kinematic viscosity of the groundwater. The values for these quantities
used in the numerical experiments is contained in Table 5.3.

Whilst the hydraulic conductivity is piecewise constant, it is highly discontinuous
at the boundaries of the geological units, varying across all geological units by three
orders of magnitude. Throughout this section, we ensure that the computational
mesh Th respects the boundaries of these geological units. Additionally, we choose
appropriate units such that the resultant travel time is Op1q, enabling the choice
of ε “ 10´8 in the computation of the approximate adjoint solution. Finally, we
choose refinement and derefinement percentages to be REF “ 25% and DEREF “ 15%,
respectively, and select x0 “ p5.0,´2.0q.

Figure 5.4 shows the finite element solutions ruh,0,Hh,0s and rzh,1, rh,1s computed

on the initial mesh T p1qh , yielding a finite element space V 0
h,kˆQh,k of dimension 14641

degrees of freedom. The geometry of the rock strata is superimposed to demonstrate
the differences in the solutions between the different regions. Considering the adjoint
solution rzh,1, rh,1s, we observe that there is an apparent discontinuity in rh,1 along
the path Ppuh,0q, as was the case in Example 1, in the strata of BVG, Carboniferous
Limestone and Brockram Breccia. Again, the adjoint velocity zh,1 is zero in the
majority of the domain and only non-zero close to Ppuh,0q, cf. Example 1. However,
in this example, there are interesting features in the adjoint velocity close to the
release point x0 and close to Ppuh,0q in the stratum of BVG; here, the velocity along
the path is in the opposite direction to the primal velocity, however, the velocity
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Fig. 5.6: Example 2. The initial mesh and the fourth, fifth, and sixth meshes generated
after the application of the adaptive algorithm together with the path obtained using the
primal solution corresponding to the mesh.

surrounding the path is in the same direction.

Figure 5.5 shows the first four meshes generated by the proposed adaptive algo-

rithm, denoted by T p1qh ´T p4qh , and the paths computed based on exploiting the primal
solution computed on this mesh. Here, we can clearly observe that the adaptive algo-
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Fig. 5.8: Example 2. Final adaptive mesh, based on employing an energy norm error
indicator.

rithm has refined elements in the region surrounding the path, with more refinement
taking place around the release point x0, as well as in the strata of Carboniferous
Limestone, Brockram Breccia, and St. Bees evaporites. From the plot of the path we
can see there are rapid changes in direction of the path and, as such, it is reasonable
to expect that these could be a significant potential cause of discretization error.

In Table 5.4 we present the performance of the proposed adaptive algorithm
for the estimation of the travel time functional. Here, the effectivity indices are
computed based on evaluating the travel time functional on a very fine adaptively
refined computational mesh, which yields J

`

ru,Hs
˘

« 0.49 ˆ 105 years. As for the
previous example, we again observe that the effectivity indices computed on all of the
meshes generated by our adaptive refinement strategy are very close to one, which
indicates that reliable and efficient estimation of the error in the computed travel time
functional has been attained for this physically motivated example.

To test the robustness of the proposed goal-oriented a posteriori error indicator,
we now consider the application of the underlying adaptive algorithm starting from a
very coarse mesh. To this end, we construct a mesh so that the resulting finite element
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space V 0
h,kˆQh,k consists of only 1253 degrees of freedom, cf. Figure 5.6(a). The final

three meshes generated by the our adaptive algorithm, together with the computed
path, are also depicted in Figure 5.6. Once again, we observe that the mesh is refined
in the vicinity of the computed path. The performance of the approximate error
representation formula computed on this sequence of meshes is given in Table 5.5.
Here, we observe that while there is some degradation in the quality of the computed
effectivity indices, compared with those presented in Table 5.4, which were computed
based on starting from a finer initial mesh, the computed error representation formula
still provides a highly accurate approximation to the error in the computed travel time
functional, even on much coarser finite element meshes.

Finally, in Figure 5.7 we compare the performance of the goal–oriented a posteri-
ori error indicator proposed in this article with a standard energy norm error estima-
tor; for the latter, we refer to [9]. Here we clearly observe the superiority of the goal–
oriented a posteriori error indicator; on the final mesh, the true error in the travel time
functional is over two orders of magnitude smaller than J

`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

computed on the sequence of meshes produced using the energy indicator. Moreover,
we note that the true error in the computed travel time functional does not converge
to zero when the latter refinement indicator is employed; indeed, the energy indicator
concentrates the mesh in the regions of Brockram Breccia and St. Bees Evaporates,
where the inverse of the hydraulic conductivity is smallest, cf. Figure 5.8.

Example 3. In this final example, we consider a more challenging version of the
problem considered in Example 2. To this end, we consider the same geometry and
boundary conditions as set out in the previous example, but introduce variability in
k within each stratum by modelling the permeability as a realization of a spatially
correlated log-normal random field, cf. [35, 47]. On the initial finite element mesh

T p1qh , we compute a realization of k, based on evaluating the Karhunen–Loève (KL)
decomposition of the random permeability field in each stratum, cf. [40]. To this end,

for a given stratum l, 1 ď l ď 6, let T p1qh,l denote the finite element submesh consisting

of elements from T p1qh which lie within the current stratum. For ease of presentation,

we assume that the elements within T p1qh,l are numbered consecutively from 1 to Ml.
Writing xi, i “ 1, . . . ,Ml, to denote the centroids of each element in the submesh

T p1qh,l , consider the exponential covariance function in stratum l given by

Clpx,yq “ σ2
l exp

ˆ

´
}x´ y}2

λ

˙

, (5.5)

where λ “ 1 denotes the correlation length and σl is the standard deviation of the log-
arithm of the permeability of the lth stratum. We decompose the MlˆMl covariance
matrix for the element centroids, pClqij “ Clpxi,xjq, i, j “ 1, . . . ,Ml, into

Cl “ ΦlΛlΦ
J
l , (5.6)

where Φl is the matrix of eigenvectors of Cl and Λl is the (ordered) matrix of eigen-

values. Then in the lth stratum the value of k ” kl in the ith element κi P T p1qh,l is
given by

kl|κi
“ exppZiq, (5.7)
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Fig. 5.9: Example 3. Permeability data.

DOFS J
`

ru,Hs
˘

´ J
`

ruh,0,Hh,0s
˘

ř

κPTh
ηκ θ

3263 7.85ˆ 10´02 5.88ˆ 10´02 0.75
6492 ´7.24ˆ 10´02 ´2.12ˆ 10´02 0.29
13253 ´1.91ˆ 10´02 ´1.52ˆ 10´02 0.80
27397 ´6.27ˆ 10´03 ´6.40ˆ 10´03 1.02
54624 1.84ˆ 10´03 1.34ˆ 10´03 0.73
106527 ´6.28ˆ 10´04 ´6.28ˆ 10´04 1.00

Table 5.6: Example 3. Error data obtained from the adaptive algorithm.

i “ 1, . . . ,Ml, where Zi is defined by

Zi “ ml `

Ml
ÿ

j“1

ΦijΛ
1
2
jjξj , (5.8)

where ξj are iid random variables with ξj „ Np0, 1q, j “ 1, . . . ,Ml, and ml is the mean
of the logarithm of the permeability of the lth stratum. The computed realization,
evaluated on the initial finite element mesh, is depicted in Figure 5.9; here, we observe
that the minimum and maximum of the permeability vary by 6 orders of magnitude.

The performance of the proposed goal–oriented adaptive refinement algorithm is
presented in Table 5.6. As for the previous examples, we again observe that the quality
of the computed error representation formula is extremely good, even for this more
complex and demanding problem; indeed, the effectivity indices are very close to unity
on all of the meshes generated by our adaptive algorithm. Figure 5.10 shows the first

four meshes generated by the proposed adaptive algorithm, denoted by T p1qh ´ T p4qh ,
and the paths computed based on exploiting the primal solution computed on this
mesh. Here, we can clearly observe that the adaptive algorithm has refined elements
in the region surrounding the path, with more refinement taking place around the
release point x0. In particular, we see that the trajectory of the path has changed
dramatically, compared with the path computed in Example 2. Moreover, here we
observe some small ‘wiggles’ in the path generated by the variation in the permeability
field.

6. Conclusions. In this article we have introduced a goal-oriented a posteriori
error estimate for the travel time functional for a non-sorbing solute transported by
groundwater from some release point deep underground to the biosphere. On the basis
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(d) The fourth mesh, T p4qh , and resultant path.

Fig. 5.10: Example 3. The initial mesh and the meshes obtained after the first three
applications of the adaptive algorithm together with the path obtained using the primal
solution corresponding to the mesh.

on this error bound, we have designed and implemented the corresponding adaptive
finite element mesh refinement strategy. This general approach has been validated for
both a simple problem with a known analytical solution, together with a more realistic
example based on the hydrogeology of the Sellafield site in the UK, cf. [41, 44].
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There are several natural extensions to the work considered in this article; indeed,
the robustness of the error estimate under more demanding conditions is crucial for
more realistic applications. This verification could include, for instance, testing the
error estimate in a domain that includes a fracture network or other complex topo-
graphical features or using a standard permeability-porosity data set. Application of
this method to random porous media will be considered in our forthcoming article
[19]; of course, the consideration of three-dimensional problems is also of significant
interest. Finally, there are also important questions related to the analysis of the
underlying adjoint problem; indeed, the well-posedness of both the continuous weak
formulation and its discrete counterpart needs to be addressed, together with the
regularity of the adjoint solution.
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[43] R. Mosé, P. Siegel, P. Ackerer, and G. Chavent. Reply to comment on “application of the mixed
hybrid finite element approximation in a groundwater flow model: Luxury or necessity?”.
Advances in Water Resources, 32(6):1911 – 1913, 1996.

[44] Nirex. An Assessment of the Post-closure Performance of a Deep Waste Repository at Sellafield
(4 Vols). UK Nirex Ltd., Harwell, UK, 1997.

[45] R. Rannacher and F.T. Suttmeier. A feed-back approach to error control in finite element
methods: Application to linear elasticity. Computational Mechanics, 19(5):434 – 446,
1997.

[46] P. A. Raviart and J. M. Thomas. A mixed finite element method for second order elliptic
problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of the Finite
Element Method, Lectures Notes in Math. 606. Springer-Verlag, New York, 1977.

[47] D. Russo and M. Bouton. Statistical analysis of spatial variability in unsaturated flow param-



26 K.A. CLIFFE, J. COLLIS, P. HOUSTON

eters. Water Resources Research, 28(7):1911 – 1925, 1992.
[48] A. Weiser and M. F. Wheeler. On convergence of block-centered finite differences for elliptic

problems. SIAM J. Numer. Anal., 25(2):351 – 375, 1988.
[49] M. F. Wheeler and I. Yotov. A multipoint flux mixed finite element method. SIAM J. Numer.

Anal., 44(5):2082 – 2106, 2006.


