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Abstract 

This paper presents an asset model for offshore wind turbine reliability accounting for the 

degradation, inspection and maintenance processes. The model was developed based on the 

Petri Net method which effectively captures the stochastic nature of the dynamic processes 

through the use of appropriate statistical distributions. The versatility of the method allows the 

details of the degradation and maintenance operations to be incorporated in the model. In 

particular, there are dependent deterioration processes between wind turbine subsystems; 

complex maintenance rules; and the incorporation of condition monitoring systems for early 

failure indication to enable replacement prior to failure. The purpose of the model is to predict 

the future condition of wind turbine components and to investigate the effect of a specified 

maintenance strategy. The model outputs are statistics indicating the performance of the wind 

turbine components, these include the probability of being in different condition states, the 

expected number of maintenance actions as well as the average number and duration of system 

downtime under any maintenance strategy. 
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Introduction 

Wind power is becoming the world’s fastest growing renewable energy resource. In the UK, 

as of 2014, there are 1,075 offshore wind turbines and their combined total capacity is 

3,653MW [1]. The UK government has confirmed the support for the wind energy industry 

with an extensive programme of planning and constructing new offshore wind farms [2]. With 

this trend, the total turbine asset portfolio will continue to increase, as will the proportion of 

turbines that have been in lengthy operation and are therefore aging. This provides a significant 

challenge for the management of these assets.  

Offshore wind turbines are located at remote sites which commonly experience harsh 

conditions, therefore the cost of repair is high due to the special equipment and vessels required 

to carry out the task. Additionally, the waiting time for a suitable weather window increases 

the wind turbine downtime resulting in loss of revenue. Thus, the demand for high reliability 

and planned maintenance becomes critical. Condition monitoring systems (CMS) facilitate 

maintenance management and increase system availability [3]. CMSs are used to continuously 

monitor the performance of wind turbine components, and determine the optimal time for 

maintenance or component replacement prior to wind turbine component failures. It can be 

seen that, with the CMS widely deployed in the industry, the incorporation of CMS into the 

asset management model is critical. Despite the benefits of CMSs, the asset management model 

however should also account for CMS failures or malfunctions [4]. 

Several mathematical models have recently been introduced to predict the degradation and 

maintenance of wind turbines. Sayas and Alan [5] proposed a probabilistic model that considers 

the stochastic nature of the failure and repair processes of wind turbines. The model considers 

two states: ‘up’ and ‘down’ of the wind turbines and uses Markov analysis to investigate the 

performance of the wind turbine. Nilsson and Bertling [6] presented a reliability-centered 

maintenance (RCM) method to demonstrate the effect of different maintenance strategies based 

on the system reliability and the total maintenance cost. Besnard and Bertling [7] developed a 

Markov deterioration model in which the component states are: good, minor degradation, 

advanced degradation, major degradation and failure. These condition states are adopted from 

Eggen et al. [8] who categorises a component’s continuous degradation into a generic 5 

condition states. The method was demonstrated by evaluating the expected life cycle 

maintenance costs for the wind turbine blades. McMillan and Ault [4] also proposed that the 

deterioration and maintenance processes of a wind turbine can be captured via the use of a 

Markov Chain, and a Monte Carlo simulation is used to obtain statistical metrics that indicate 

the performance of a system. Three component conditions were adopted in this study which 

are: up (fully up), down (failed) and intermediate (derated); the intermediate state is the state 

where the abnormal condition of the component is observed. There are several models that 

incorporate information from the CMS on the current component states to schedule appropriate 

maintenance actions. They utilise the partially observed Markov decision process and 

stochastic discrete event approaches as presented in Byon, Ntaimo and Ding [9] and Perez, 

Ntaimo, Byon and Ding [10] respectively. The application of these models is limited to only a 

single component, the gearbox, in the wind turbine.  
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This paper proposes a wind turbine asset management model based on the Petri Net method. 

The Petri Net method has been adopted to model maintenance in many applications [11], and 

is well suited to model dynamic processes such as the degradation and maintenance 

experienced in wind turbines. Furthermore, due to the flexibility of the method, interactions 

between subsystems or complexities in the maintenance rules such as those which govern 

opportunistic maintenance can be modelled in a simple manner. The asset model developed 

can be used to investigate the effects of different maintenance strategies, predict future asset 

condition, and also the expected wind turbine downtime due to component failure. The model 

also incorporates CMS in the inspection and monitoring process. For a component where CMS 

is available, the component condition is continuously monitored. This paper also demonstrates 

the application of the model to a wind turbine system.  

Wind turbine system 

 
Figure 1: Wind turbine main subsystems (reprinted/reproduced with permission from [12]) 

Figure 1 illustrates the main subsystems and components in a wind turbine. In this section, the 

description and function of each subsystem and their components are discussed. This section 

also focuses in detail on the degradation conditions, as well as the condition monitoring 

procedure and related maintenance actions. 

1.1 Power generation drivetrain system 

The drivetrain comprises: the main shaft, the gearbox and the main bearings. The main shaft 

transmits torque from the hub to the gearbox. The gearbox increases the rotational speed of the 

main shaft from very low revolutions per minute (rpm) to the higher rpm required to drive the 

electric generator. The main bearings provide support for the main shaft in their positions while 

allowing rotary motion at minimum friction. The gearbox is one of the heaviest and most 

expensive components, its failure is among the failures resulting in the longest average 
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downtime [13], thus, it contributes the highest percentage of failure downtime and has a 

significant impact on wind turbine production availability [14]. The failures of the gearbox 

include inadequate lubrication, gearbox bearing failure or gear teeth detachment [15]. Beside 

these, the majority of failures (60%) of the drivetrain originate from the failure of bearings 

[16]. Lubrication oil is another important component in a wind turbine drivetrain. The main 

functions of the lubricant are to reduce friction and wear by introducing a film between the 

moving parts, to dissipate heat generated by contact friction, and finally to protect components 

from oxidation and corrosion. The condition of the lubrication has a significant effect on the 

degradation process of the drivetrain system [13] and this is taken into account in the modelling 

performed in this paper. 

1.2 Auxiliary systems (hydraulic, braking, yaw, pitch) 

The three main auxiliary systems are: the pitch, yaw and braking systems. The pitch system 

comprises of hydraulic actuators (hydraulic cylinders and piston rods) and pitch bearings. The 

pitch system function is to adjust the blade pitch angle to optimise the power output based on 

the wind speed, it also feathers the blades to minimise wind loads during stand still under 

extreme wind conditions. The yaw system orientates the rotor to the wind direction to maximise 

the wind energy conversion. The yaw system consists of a yaw driver/actuator, yaw bearing, 

gear, and brake system. The braking system locks the wind turbine position in non-operational 

mode such as under maintenance or stormy weather. In some types of wind turbines, the 

braking system is also used to reduce the power output in high wind conditions where the wind 

speed exceeds the maximum allowable. The brake system consists of a brake disc, brake pads 

and callipers. The hydraulic system powers these three main auxiliary systems. The main 

components of the hydraulic system are: the pumps, valves and pipes. 

1.3 Rotor system 

The wind turbine rotor system includes the blades and the hub. The number of blades varies 

according to different wind turbine designs, however, three blades are the most common. The 

blades are usually made from fibre-reinforced composite materials because of their high 

strength and stiffness with low weight properties. According to Ciang et al. [17], blade failures 

are one of the biggest number of structural incidents recorded. These failures include whole 

blade failures and the break off of pieces of the blade. The breaking of blades also increases of 

risk of failures of the tower and nearby wind turbines in a wind farm. The blades often fail as 

a result of cracks arising from fatigue or material defects [18, 19]. Lightning strikes and ice 

build-up are also common known causes of blade failures. The cost of the blades accounts for 

15-20% of the total turbine cost, thus blade damage requires extensive repair with a long down 

time [20]. Furthermore, even minor blade damages may cause unbalance in the rotating mass 

which induces extra stress that speeds up the degradation process of the wind turbine [21]. The 

hub provides blade attachment and transfers the rotational force from the blades to the main 

shaft and is generally cast from steel. The hub also contains the pitch systems. 

1.4 Power system 

The power system of an offshore wind turbine often comprises: an electrical generator to 

convert mechanical torque to electromagnetic torque, a frequency converter, and a transformer 
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to step up the frequency and voltage levels to match the grid requirements. Many studies [22-

24] show that in the power system, the contribution to the wind turbine failure for the three 

sub-systems: frequency converter, generator and transformer are 13%, 7% and 2% 

respectively. The contributions to the overall downtime are 18%, 11% and 2% respectively, so 

the total contribution of the power system to the wind turbine downtime is significant at 31%. 

For the generators, some of the major faults are: bearing failures, short circuits of a stator or 

rotor winding, dynamic eccentricity, broken rotor bars of cracked end-rings, and air gap 

eccentricities. Furthermore, a study [25] has shown that about 40% of failures are related to 

bearings, 38% to the stator and 10% to the rotor. 

1.5 Structures 

The wind turbine structure includes the tower, the nacelle and the foundation. The tower 

provides support to the nacelle which encases the wind turbine assembly. The tower is a tubular 

steel structure which often has an elevator mechanism to provide access to the nacelle. The 

tower diameter and strength depend on the weight of the nacelle and the expected wind loads, 

typical tower heights for offshore wind turbines are around 60-100m. The nacelle provides 

protection to the wind turbine components from the external environment. These are often 

made from composite materials because of their light weight, good corrosion resistance and 

good electrical insulation. The foundation carries the weight of all wind turbine components, 

in offshore wind turbines, the foundation goes deep into the sea bed. 

1.6 Sensors and condition monitoring systems 

Condition monitoring and fault diagnosis are an important measure for predictive maintenance 

and condition based maintenance of wind turbine operation [26]. Modern wind turbines 

typically have about 2000 sensors [27]. These sensors, applicable for each specific sub-system, 

are connected to control systems where the fault detection algorithms analyse the measurement 

to give the immediate condition of the wind turbine components. In the model developed in 

this paper, each wind turbine sub-system has its own condition monitoring system (CMS), and 

a CMS unit contains both sensors and fault detection algorithms (Figure 3). 

1.7 Component condition states 

Previous sections discussed the main subsystems and components in a wind turbine. In this 

paper, the considered wind turbines components are shown in Figure 3 and are also listed in 

Table A1 in the Appendix. Figure 3 gives an overview of the degradation modes, condition 

monitoring, inspection and maintenance processes related to all the wind turbine sub-systems. 

It can be seen that, for each component, the degradation process is described by several 

degraded condition states, which are derived by the installation of several condition monitoring 

and fault detection methods. The states are defined based on threshold (alarm) levels for when 

the component is considered to change its condition. For example, Figure 2 illustrates the 

degradation process of the generation drivetrain system with the application of condition 

monitoring. The component starts in a normal working condition, excessive vibration detected 

at time T1 provides a pre-warning time until it reaches critical condition (at T2) where excessive 

vibration and heat generation are detected. Ultimately, the component reaches the failure 

condition (at T3). These condition states are adopted, thus, there are four condition states for 
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three drive train components which are: normal, degraded, critical and failed as shown in 

Figure 3. Generally in a real application, the thresholds or events T1-3 are specified in the fault 

classification algorithm which triggers an alarm when the component is exhibiting an abnormal 

condition. The algorithm can be based on several approaches such as neural network, wavelet 

analysis, etc... Moreover, different wind turbine components have different critical 

characteristics (e.g. temperature, vibration, current, etc.), therefore detail definitions of events 

T1-3 should be defined uniquely for each component.  In this paper, the condition of the 

drivetrain components is continuously monitored so that any change in their state is revealed 

immediately. Similarly, the condition states are derived for other components, with the 

exception of components (such as the frequency converter and the transformer) where 

condition monitoring is often not applicable because their failures are sudden, then there are 

only two condition states considered: normal and failed states.  

Time

Equipment 
condition Excessive 

vibration 
detected

Normal 
working 

condition

Degraded 
condition

Functional 
failure

Critical 
condition

Excessive vibration
and temperature 

detected

T1 T2 T3  
Figure 2: Degradation process of the drivetrain components and condition threshold triggered 

by vibration and temperature sensors. 

Figure 3 shows, for each sub-system, the condition monitoring systems (CMS) which comprise 

of sensors and fault detection algorithms to detect changes in the component condition. It can 

also be seen from the diagram that some component conditions are not monitored using 

condition monitoring and these conditions are only revealed through onsite inspections. 

Additionally, the CMS may fail to detect degraded conditions or falsely indicate a degraded 

state. This is taken into account in the modelling in this paper. Three condition states of a CMS 

are considered: normal (working), fail, and false indication states. When the CMS fails, the 

component condition is not monitored and its condition is unrevealed until it is next inspected 

or when the CMS starts working again. In the false indication state, the condition monitoring 

system gives the wrong indication of the component condition. The effect of this could be that 

the maintenance is triggered for a problem that does not exist, or maintenance is not applied on 

a component which requires attention. The latter effect is similar to when the CMS has failed. 

Once the wind turbine component conditions are known, appropriate maintenance actions can 

be applied and depending on the condition states. There are several types of maintenance 

considered and they are discussed in the next section. 
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Figure 3: Asset state model 
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1.8 Maintenance categories 

Type Description 

1 Heavy component, requires external crane. 

2 Heavy component, requires internal/external crane (>800-1000kg). 

3 Small parts, requires internal crane (<800-1000kg). 

4 Small parts, inside nacelle. 

5 Small parts, outside nacelle. 

Table 1: Maintenance category 

Depending on the wind turbine components and their condition, different maintenance action 

is required. For offshore wind turbines, maintenance is difficult and requires a lot of planning 

and support. In this paper, these maintenance actions are distinguished mainly due to the size 

of the components and the required supporting equipment. There are 5 maintenance types 

considered as shown in Table 1, they are adopted from the current maintenance categories used 

in the industry [28, 29]. Type 1 contains all types of maintenance which require the lifting of 

heavy and large components, for this purpose, a large crane on a jack-up vessel is required. 

Examples of this requirement are the replacement of the blades or the rotor. Type 2 is 

maintenance which requires the lifting of heavy and large component that usually requires the 

use of the internal crane [30]. This type of maintenance often deals with heavy components 

inside the nacelle such as the gearbox, generator, and transformer. Type 3 is the maintenance 

which requires the normal lifting service of the internal crane, these parts cannot be carried 

manually. Examples of this category of repairs are the replacement of the pitch or yaw 

motor/actuator. Maintenance type 4 and type 5 contain all other types of maintenance, the 

components and equipment can be man carried. The only difference between types 4 and 5 is 

that, type 4 is all the work inside nacelle which is considered a controlled and safe working 

environment, whereas type 5 is the work outside the nacelle and the tower (e.g. patching, 

sealing, loss of sections repair on the blades; corrosion repair and repainting on the outside of 

the towers and nacelle). The appropriate maintenance types and repair actions at different 

degraded states for all components have been illustrated in Figure 3 and are also tabulated in 

Table A1, the Appendix. 

Petri net model for the wind turbine asset 

In this section, the development of the complete wind turbine maintenance model based on the 

Petri net approach is presented. The system level model is built from modules, each module 

models different processes for a sub-system and its components. The complete model is formed 

by linking these modules together. 

1.9 Petri net method 

A Petri net (PN) [31] is a directed bipartite graph with two types of nodes, places and transitions 

and they are linked by arcs. Arcs connect places to a transition and indicate the input places of 

the transition, and arcs from a transition to places indicate the output places of the transition. 

Places, denoted by a circle, represent a particular event or state of the system. Transitions, 

denoted by a rectangle, enable the system to change state and thus model the dynamic 
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behaviour of the system. In this paper, places can be used to indicate the condition of the wind 

turbine components and the dynamic processes such as the deterioration, inspection and 

maintenance are represented by the transitions. Tokens, denoted by a dot, are added to places 

and the marking of tokens in places within the net indicate the current system state. The 

movement of the tokens between places is by the firing of the transitions, and this firing process 

can only happen when the transition is enabled. In a basic PN method, an enabled transition 

requires a token to be present in all of its input places, after the firing process, the appropriate 

number of tokens in the input places is cleared and the appropriate number of tokens is 

deposited in the transition output places. When the firing happens immediately, it is called 

instant transition. When the firing happens after a time t, it is called a delayed transition. In this 

case, the delay time t can be sampled from an appropriate distribution. 

 
Figure 4: Simple PN with arc multiplication and inhibitor arc and the firing process. 

A simple PN is illustrated in Figure 4. The positive integer associated to an arc is called the 

multiplicity [32]. If the arc is an input arc from a place to a transition then the multiplicity 

dictates the number of tokens needed for the transition to be enabled. If the arc is an output arc 

from a transition to a place, the arc multiplicity indicates the number of tokens that will be 

deposited in the output places. An inhibitor arc [33] can only go from a place to a transition 

and is denoted as an arc with a round end. When the input place P3 is marked with a token, the 

transition T2 is inhibited and will not fire as long as the token remains in place P3. This is the 

reason why after time t, the token in place P2 remains as the transition T2 is inhibited from 

firing by a token in place P3. The inhibitor arc may also have a multiplicity, in this case, the 

place must contain at least the number of tokens as indicated by the arc multiplicity for the 

transition to be inhibited. 
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Figure 5: Representation of special transitions 

In addition to the traditional PN features, new types of transitions (Figure 5) are used in this 

paper to accommodate certain tasks to produce an efficient model. A reset transition [34], when 

it fires, resets the marking of specified places in the PN to the desired number of tokens. This 

feature is useful for when maintenance action has happened and component condition is 
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restored. A place conditional transition [35] is a transition in which the delay time is sampled 

from different distributions depending on the number of tokens residing in a specific place in 

the network to which they are linked by a dashed arc. This transition allows easy modelling of 

dependent deterioration processes. An inspection transition [36] only fires when the system 

time is at a specific time. This transition is used to model the inspection process where the 

component condition is revealed after a specified time interval. An opportunistic transition 

[36] is used in the modelling of opportunistic maintenance action and each component is 

modelled by different types/colours of token. Opportunistic maintenance is applicable when 

the condition of a component to be maintained permits work to be carried out on a component 

yet to reach this condition. A condition transition deposits the token in only one of its output 

places according to a set probability. This feature is used when malfunctioning condition 

monitoring systems (CMSs) could falsely indicate the component condition i.e. the revealed 

condition could be better or worse that the true condition. 

1.10 Petri net for modelling the degradation process 

Lubrication
condition

P13
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Degraded

β2,η2 β3,η3 

P.C P.C

Critical 
conditionDRIVETRAIN

P3P2 P4
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P.C P.C

Shaft

P11P10
T9T8

β7,η7 

P.C
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T7

β10,
η10 

T10

P8
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Figure 6: PN for the degradation process of the drivetrain system. 

Figure 6 illustrates the PN modelling the condition degradation process of the drivetrain 

components. The component states are represented by places P1 to P12. The degradation 

processes between these states are represented by transitions T1 to T9. These transitions govern 

the transition times between the condition states, and follow specific distribution functions 

which statistically model the degradation characteristics of a component. The failure 

characteristic of the drivetrain components has an increasing failure rate over time as damage 

accumulates [14], this is accommodated in the model by using the appropriate distribution. In 

particular, the transition times follow a Weibull distribution with parameters (βi,ηi) for each 

transition i. Places P13 and P14 represent the good and the degraded state of the drivetrain 
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lubrication oil, and transition T10 represents the degradation process between these states. The 

condition of the lubrication has a significant effect on the degradation process of the drivetrain 

system [13] and this is taken into account in the modelling performed in this paper. As the 

lubrication condition degrades, this has effects on the degradation processes of the drivetrain 

components. The effect is captured in the net with the use of place condition transitions (marked 

with P.C). With these transitions, the transition times are dependent upon the marking of token 

in place P14. Therefore, when P14 is marked, the transition times governed by transitions T1-

9 are sampled from the appropriate distributions so that it reflects the degradation of the 

drivetrain components when the lubrication oil has degraded. For other wind turbine sub-

systems and their components (Figure 3), the PNs modules modelling the degradation 

processes follow similar structure. 

1.11 Petri net for modelling the condition monitoring and inspection process 
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 Figure 7: PN for the inspection process   

Inspection of wind turbine items is typically performed around every 6 months or every year. 

This process is modelled using the inspection transitions as illustrated in the net in Figure 7. 

For a component with four condition states as represented by P1-4, the firing of transitions 

T52-55 will deposit a token into places P73-76 as appropriate. This is the process by which the 

condition state is revealed following an inspection. The reset properties in transitions T52-55 

also ensure that the previous known condition, obtained at the last inspection or from the last 

reading of the condition monitoring system is updated to the current condition. The net also 

allows the deterioration process to continue after the inspection process has revealed the 

component condition at that time. This section of the net is then repeated for all components. 

Condition monitoring process 
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Beside onsite inspection which is periodical, condition monitoring systems (CMS) are 

employed in some parts of the wind turbine to continuously monitor the component conditions. 

This continuous monitoring process reveals changes in the system state immediately. The PN 

module that models the process is illustrated in Figure 8. When the CMS is in the normal 

working condition, any changes in the component’s true condition is immediately updated by 

the firing of transitions T124-127 and the token is deposited into P73-76 to reveal the new 

component’s known condition. These transitions have zero firing time i.e. instant transitions. 

They also have the reset (RT) property so that when they fire, any token in places P73-76 would 

be cleared before the depositing of the token action to represent the new known condition is 

updated. 
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Figure 8: PN for the condition monitoring process 

The CMS is also subject to failure and error, these states are presented by places P167 and 

P168 respectively. When transition T196 fires, the token is removed from P166 and deposited 

in P167, this means the CMS has failed. When this happens the component is no longer 

continuously monitored and the component known condition remains the last known condition 

before the CMS failure. It is assumed that the CMS condition is checked following onsite 

inspection and its condition is restored to the normal condition if it is found to be in the 

malfunction or failed condition. When the CMS is in the error state, the component known 

condition might be wrong i.e. different from the true condition. Transition T198 has the 

conditional property (marked by CT) so that when it fires, a token is deposited into one of its 

output places (P73-P76) according to a set probability. This feature models the process in which 

a malfunctioning CMS could falsely reveal the component condition that could be either better 
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or worse than the true component condition. This net structure is applied to other wind turbine 

components whose condition states are monitored by condition monitoring systems. 

1.12 Petri net for modelling the maintenance process 

Enabling correct maintenance actions 

Figure 9 illustrates the part of the net that models the enabling of the necessary maintenance 

process after an inspection. When the maintenance is enabled, the marking of places P250 and 

P251 indicates that the component now requires repair and the type of repair that is required. 

The arc multiplicities connecting T259-261 to P251 indicate the number of tokens in P251 

which corresponds to the maintenance categories presented in Table 1, e.g. 4 tokens means the 

component requires type 4 maintenance action. One important feature of the net is that 

maintenance actions are based on true component condition. This is critical since the CMS may 

indicate the wrong condition or the component might have deteriorated to a worse condition 

whilst awaiting repair. This is modelled by the marking of P252 which is when the actual repair 

begins, the marking of P251 will be updated accordingly to the component true condition with 

the firing of transitions T310-313.  
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4
1
1

2
1Known condition

P2

P3

P4
Functional 

failure

Critical 
condition

Degraded 
condition

True condition
P1
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RST

RST

RST

RST

P252
Component 
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Figure 9: PN for enabling the maintenance actions for a component 

Maintenance strategy and opportunistic maintenance 

Different maintenance strategies can be implemented (turned on or off) in the model by placing 

the correct number of tokens in place P253 in Figure 9. Effectively, the appropriate number of 

tokens sets the degraded component condition that will trigger maintenance. For example, with 

1 token in P253, the component will be maintained as soon as it reaches the critical condition. 
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The option for degradation levels which trigger maintenance is set for each component 

individually. 

Opportunistic maintenance is also implemented in the model. Opportunistic maintenance is 

applicable when the condition of a wind turbine component to be maintained permits work to 

be carried out on another component yet to reach this condition. To efficiently model the 

opportunistic maintenance process, a special transition (marked with OPP) is used. The net for 

this process was presented and discussed in [36]. Opportunistic maintenance triggers the repair 

process for a component in a deteriorated condition but would not normally trigger 

maintenance. This is process is modelled by placing tokens into the places indicate repair is 

required for the components (e.g. depositing a token into P250 in Figure 9). The opportunistic 

transitions are instantaneous to ensure that opportunistic maintenance is implemented when the 

maintenance process starts. 

Maintenance process 

T(logistic) T(wait for good 
weather)

T(travel and 
access to site)

T(actual 
repair)

Maintenance 
scheduled

Maintenance 
finished

 
Figure 10: Composition of the repair process 

The maintenance process starts once the repair actions are determined and the process includes 

the key stages: planning/logistics, waiting time for a good weather window, travelling and 

access to site, and actual repair time as shown in Figure 10. The planning time includes the 

time to order spare parts, arrange technicians, tools and transport means. Whilst the logistic 

time and repair time are dependent upon the specific component and the severity of failure, the 

waiting time for a good weather and the travelling/access to site are a common factor for the 

whole wind turbine. Figure 11 shows the PN for the maintenance process that applies to each 

component. The net ensures that each component would have appropriate logistic and repair 

times, whilst the waiting time and the mission time (travel/access) are common for the whole 

asset. The maintenance process only starts after the longest logistic time has elapsed so that all 

the replacement parts and equipment are ready before the maintenance crew perform the works. 

Once the repair has been carried out, the restored component conditions are represented by 

placing tokens into places P1 and P70. This part of the net for modelling the performance of 

the maintenance process is linked with the PN for enabling the maintenance action (Figure 9) 

using the common place P252. This completes the maintenance process model for a wind 

turbine.  
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Figure 11: PN for the maintenance process of a wind turbine 

Model results and discussions 

The PN model provides a simulation frame work for all the stochastic processes considered. 

The wind turbine PN is then solved using the Monte Carlo simulation [37]. The transition times 

in the model are generated by random samplings [34] from the appropriate Weibull 

distributions. A computer program was written to accommodate the generation and solution of 

the developed PN model. The model could be used to illustrate a maintenance strategy required 

to operate the wind turbine over a specified lifetime. In this section, the model is simulated to 

predict the wind turbine condition over a 40 year life period. As the number of simulations 

increases, statistics are collected to allow the investigation of relevant metrics, including the 

probability of the asset being in any of the condition states, the expected number of 

interventions and associated costs and future asset condition profile under a specific 

maintenance strategy. In this section all the wind turbine components are assumed to be in the 

good, working, condition initially, and maintenance actions restore the condition of a 

component to this condition. In the results given the maintenance strategy that has been 

assumed is to carry out maintenance as soon as any component deterioration is revealed. Other 

maintenance strategies can be applied however the results are not presented. 

The model inputs are given in Table A2, A3 the appendix. The parameters of the input 

degradation distributions of the wind turbine components are estimated using failure 

information provided in a number of studies in the literature, these failure parameters are 

therefore indicative. In order to obtain good Weilbull parameters for a particular wind farm, 

the parameters can be estimated using the condition data recorded for wind turbines in the 

particular wind farm. Along with condition data, historical repairs, costs and 
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logistic/travel/access/repair times can also be gathered for the Weibull distribution parameters 

estimation. In the case of limited data, estimation using data from similar wind turbine types 

operating under similar conditions combining with expert knowledge would also give a good 

estimation. Initial estimates could be updated using Bayesian methods as the more 

representative data collected from this wind farm became available.  In many studies, the 

weather waiting time, before maintenance can take place, is often expressed as a function of 

the wave height and maximum wind speed that the maintenance support vessels can operate 

under. However, for simplicity, the model developed in this paper assumes a distribution that 

governs the weather delay times. 

There are three key performance statistics that are presented in this section as described below. 

These statistics are obtained for each component (component analysis) and can be combined 

to give the performance of the whole system (system analysis). 

1. Condition prediction: the probability or the time a component residing in any condition 

state. 

2. Failure prediction: 

o The average number of component failures over the system life time 

o The number of early component replacements prior to their failure 

o The distribution of the wind turbine or the component downtimes  

o The contribution of all components to the total system downtime 

3. Maintenance prediction: 

o The number of repairs required given a specific maintenance strategy 

o The maintenance costs given a specific maintenance strategy 

o The number of site visits for maintenance and the number of vessels required 

1.13 Component analysis 

1.13.1 Component condition prediction 

Figure 12 shows the probabilities of the drivetrain gearbox being in the different condition 

states over the 40 years prediction period. The expected probability of the gearbox being in a 

normal condition is just above 0.8, less than 0.2 of being in a degraded condition and it is very 

unlikely to be in a critical or a failed condition. With a maintenance strategy which conducts 

repair as soon as component deterioration is detected, it is likely the gearbox will be operating 

in its normal condition over its lifetime. 
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Figure 12: Probabilities of the drivetrain gearbox being in different condition states over the 

simulated life time 

1.13.2 Component maintenance prediction 

 
Figure 13: Average number of repairs on the drivetrain gearbox over 40 years period 

Figure 13 plots the average number of repairs on the drivetrain gearbox over its lifetime. As 

discussed in previous sections, three types of repairs are considered on the gearbox: type 4 – 

small part repairs inside the nacelle; type 3 – small part repairs which require the internal crane; 

and type 2 - heavy component repairs which require the internal crane. The expected number 

of repairs over 40 years prediction period for type 4 maintenance is around 5 times, for type 3 

is 0.4 times and nothing for type 2. This shows that, with this maintenance strategy, it is 

expecting to carry out gear tooth repairs (type 4) about 5 times, however there would be no 

gearbox replacement (type 2). The plot also shows that the results convergence is found prior 

to 400 simulations. 
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1.14 System analysis 

1.14.1 System condition prediction 

By combining the results for component performances, the system performance can be 

predicted. Assuming all components are of equal importance, Figure 14 shows the probabilities 

of the wind turbine being in different condition states over 40 years prediction period. The 

effect of the chosen maintenance strategy is clearly demonstrated with a very high probability 

that the asset will be operating in a normal condition. The probability of the wind turbine 

reaches the failure state due to any of its components’ failures is around 4% at every year.  

 
Figure 14: Probability of the wind turbine being in different condition states over the 

simulated life time 

1.14.2 System failure prediction 

By tracking the number of times a component reaches the failed states in the PN model, the 

average number of failures for all components over their simulated lives can be shown as 

illustrated in Figure 15. The number of failures of the power generation system clearly 

contributes the most to the failure of the whole wind turbine where more than 10 are failures 

are expected over the 40 years for the frequency converter and the transformer. The reason why 

other components are expecting much less failures is because of the use of CMSs. With the 

CMS, component condition is continuously monitored, repair is carried out as soon as the 

component condition has degraded, thus reducing the probability of component failure. In 

contrast, the CMS is not applicable on electrical systems thus there is a higher number of 

failures due to electrical equipment. 
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Figure 15: Average number of component failures over its lifetime. 

 
Figure 16: Average number of component replacements prior to failure. 

The key feature of the condition monitoring systems is the early failure indication so that an 

early component repair or replacement can be made to minimise service disruption. Figure 16 

shows the number of early repairs/replacements for components on which the CMSs are 

installed. It can be seen that, as expected, the number of preventive component replacements 

are significantly higher that the number of component replacements due to failure. This 

indicates that a significant number of component failures is prevented with the use of the CMS 

0

1

2

3

4

5

6

B
e
a
ri
n
g
 

G
e
a
rb

o
x
 

S
h
a
ft

 

H
y
d
ra

u
lic

 p
u
m

p
 

H
y
d
ra

u
lic

 v
a
lv

e
s
/p

ip
e
s
 

B
ra

k
e
 c

a
lli

p
e
rs

/p
a
d
s
 

B
ra

k
e
 d

is
c
s
 

Y
a
w

 a
c
tu

a
to

r 

Y
a
w

 b
e
a
ri
n
g
,g

e
a
r 

Y
a
w

 b
ra

k
e
 

P
it
c
h
 a

c
tu

a
to

r 

P
it
c
h
 b

e
a
ri
n
g
/g

e
a
r 

H
u
b
 

B
la

d
e
 

G
e
n
e
ra

to
r 

F
re

q
u
e
n
c
y
 c

o
n
v
e
rt

e
r 

T
ra

n
s
fo

rm
e
r 

T
o
w

e
r 

N
a
c
e
lle

 

F
o
u
n
d
a
ti
o
n
 

N
u
m

b
e
r 

o
f 

fa
ilu

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
e
a
ri
n
g
 

G
e
a
rb

o
x
 

S
h
a
ft

 

Y
a
w

 a
c
tu

a
to

r 

Y
a
w

 b
e
a
ri
n
g
,g

e
a
r 

P
it
c
h
 a

c
tu

a
to

r 

P
it
c
h
 b

e
a
ri
n
g
/g

e
a
r 

H
u
b
 

B
la

d
e
 

T
o
w

e
r 

N
a
c
e
lle

 

F
o
u
n
d
a
ti
o
n
 

N
u
m

b
e
r 

o
f 

re
p
a
ir
s

 

 

Number of early component replacements before failure

Number of component replacements due to failure



20 

 

and the early replacement maintenance strategy. The average number of early component 

replacements is calculated by tracking the average number of times that a component is 

repaired/replaced when it is in the critical condition. The number of component replacements 

due to failures is the same as the number of component failures as shown in Figure 15, this is 

because the component is always replaced when it fails. 

By tracking the times a token resides in a particular state, the distribution of times for which a 

component, or the entire system, is predicted to be in any condition state can be obtained. 

Figure 17 shows the distribution of times that the wind turbine resides in the failed condition, 

in other words, the figure shows the distribution of wind turbine downtimes. The wind turbine 

downtime is a function of the time until when the failure is revealed, the logistic time to prepare 

parts and equipment, the time to wait for a good weather window, the time to travel/access to 

site and the actual repair and despatch time. The distribution obtained shows that 90% of time, 

the wind turbine downtime is less than 31.3 days. This information is useful to estimate the 

energy production loss due to component failures. The key difference between the model 

presented in the paper and other probabilistic models available is that the downtime is explicitly 

expressed as a function of the time when the component failed until its condition is revealed, 

the logistic time to prepare parts and equipment, the time to wait for good weather window, the 

time to travel/access to site and the actual repair and despatch time. In contrast, this level of 

details is not captured in other models, instead the wind turbine downtime is often a linear 

relationship with the number of wind turbine component failures. Effectively, the PN model 

presents the downtime results as a distribution of times and the results can be analysed further 

at component level. For other models, the results often only present an average downtime. 

 
Figure 17: Distribution of wind turbine downtimes 

Considering the wind turbine downtimes, shown in Figure 18, they can be broken down 

according to the failed components which caused the system failures.  Figure 18 shows the 

contribution of the component failures to the auxiliary sub system downtime. The auxiliary 

system comprises of the hydraulic, pitch, yaw and braking systems and this subsystem is 

chosen for this analysis because it better demonstrates the results obtained rather than including 
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other components such as the structure tower, nacelle and foundation where their contributions 

to the wind turbine down time are almost negligible. Figure 18 clearly shows that the hydraulic 

system has the longest failure duration compared with other systems. This agrees with the fact 

that the hydraulic system powers the other three systems (yaw, pitch and brake) thus it is more 

likely to fail and often contributes to the longest down time in the auxiliary system. 

 
Figure 18: Contribution component failure to the downtime of the auxiliary system 

(hydraulic, pitch, yaw, braking systems). 

1.14.3 System maintenance prediction 

Table 2 tabulates the expected number of repairs for all modelled components in the wind 

turbine. These statistics are gathered from the component analyses, as discussed in section 

1.13.2.  

WT components Maintenance description Min. Max. Avg. Std. 

Drivetrain 

Bearing 
Type 1 Bearing replacement 0 1 0.01 0.10 

Type 4 Repair of pitting, misalignment 0 4 0.75 0.96 

Gearbox 

Type 2 Gearbox replacement 0 1 0.03 0.16 

Type 3 Gear replacement 0 3 0.40 0.65 

Type 4 Gear tooth repair 1 12 4.89 2.00 

Shaft 

Type 1 Shaft replacement 0 0 0.00 0.00 

Type 4 
Minor repair, alignment 
adjustment 

0 4 0.75 0.90 

Lubrication Type 4 Lubrication change 0 11 4.37 1.79 

Hydraulic 

Hydraulic 
pump 

Type 3 Part replacement 1 14 6.58 2.24 

Hydraulic 
valves/pipes 

Type 4 Replacement 1 15 6.58 2.40 

Braking 

Brake 
callipers/pads 

Type 3 Replace worn components 0 7 2.16 1.54 

Brake discs Type 3 Replacement 0 9 2.16 1.44 

Yaw 
Yaw actuator 

Type 3 Part replacement 0 2 0.15 0.38 

Type 4 Minor repair 0 9 3.00 1.68 

Type 1 Complete replacement 0 1 0.01 0.07 

Hydraulic pump 33%

Hydraulic valves/pipes 36%

Brake callipers/pads 3%

Brake discs 6%

Yaw actuator 2%

Yaw bearing,gear < 1%

Yaw brake 7%

Pitch actuator 5%

Pitch bearing/gear 8%
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Yaw 
bearing/gear 

Type 3 Gear tooth repair 0 2 0.13 0.36 

Type 4 Corrective repair 0 10 3.08 1.83 

Yaw brake Type 3 Replacement 0 9 3.22 1.70 

Pitch 

Pitch actuator 
Type 3 Part replacement 0 3 0.47 0.64 

Type 4 Minor repair 0 13 5.28 2.18 

Pitch 
bearing/gear 

Type 3 Gear tooth repair/replacement 0 3 0.52 0.67 

Type 4 Corrective repair 1 12 5.29 2.11 

Rotor 

Hub 
Type 1 Replacement 0 3 0.28 0.56 

Type 4 Minor corrosion repair 0 9 3.79 1.82 

Blade 

Type 1 Replacement 0 3 0.49 0.65 

Type 5 
Minor repair (patching, 
sealing) 

1 12 5.21 2.08 

Power 

Generator 
Type 2 Part replacement 0 8 2.67 1.59 

Type 3 Complete replacement 0 2 0.06 0.24 

Frequency 
converter 

Type 2 Part/complete replacement 1 13 5.92 2.27 

Transformer Type 3 Part/complete replacement 0 12 5.90 2.12 

Structure 

Tower 
Type 1 Replacement 0 1 0.01 0.07 

Type 5 Corrosion repair 0 5 0.84 0.96 

Nacelle 
Type 1 Replacement 0 0 0.00 0.00 

Type 5 Loss of section, crack repair 0 5 0.84 0.96 

Foundation 
Type 1 Replacement 0 0 0.00 0.00 

Type 5 
Corrosion/repaint/remove 
marine growth 

0 5 0.75 0.98 

Table 2: Statistics of the expected number of repairs for the wind turbine components 

For offshore wind turbines, performing maintenance requires offshore access services which 

are usually provided by different types of ship or vessel. In this paper, there are appropriate 

vessels for each of the 5 maintenance types considered. The costs for these are also different 

and this information is given in Table A5 in the appendix. By tracking the number of times the 

token passes through place P356 in the model which represents the state where a ship is 

travelling to the site, the total of number of visits to the wind turbine for maintenance can be 

obtained. Figure 19 shows the average number of site visits for maintenance over a 40 year 

period for each type of maintenance (this does not include the number of visits for an 

inspection). It can also be seen that Crew Transfer Vessels (CTVs) (for type 4 and 5) are 

required for almost 41.04 times which is 57% out of the total number of site visits. 
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Figure 19: Total number of site visits for maintenance. 

1.14.4 Maintenance cost prediction 

Figure 20 shows the maintenance costs for each type of wind turbine component over the 

simulated life time. The maintenance cost is calculated based on the average cost of the repair 

action (Table A4), the typical cost of the offshore access service required for different 

maintenance actions (Table A5) and the number of repairs required over the component 

simulated lifetime (Table 2). Note that the average costs given in Table A4 in the appendix are 

estimated from several studies in the literature, these costs are assumed to cover the logistic 

cost, the material and the labour cost for that particular type of repair actions. It can be seen 

from the graph that the large contributions of the cost are from components with high failure 

rates (hydraulic pump, power system – generator, frequency converter and transformer) and 

from components with high replacement costs which  require heavy lifting vessels to carry out 

maintenance tasks (blades, gearbox).  

Type 1= 0.79 times

1%

Type 2= 8.61 times

12%

Type 3= 21.74 times

30%

Type 4= 33.40 times

46%

Type 5= 7.64 times

11%

Total number of visits to WT = 72.17
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Figure 20: Maintenance costs for wind turbine components 

Conclusions 

This paper presents a wind turbine asset management model based on the Petri Net modelling 

method. The model captures stochastic processes relating to the degradation, maintenance and 

inspection processes of wind turbine components. The degradation processes of wind turbine 

subsystems and their components are considered to have different levels of degradation before 

functional failure. The use of condition monitoring systems is incorporated in the model for 

applicable components so that their condition is being continuously monitored. The effect of 

the early indication on the component failure is captured and maintenance action can be 

scheduled to prevent actual failure resulting in a wind turbine downtime. A Monte Carlo 

simulation procedure is applied to the model and relevant statistics are collected enabling 

various maintenance scenarios to be investigated. In particular, the model can be used to predict 

future component conditions, expected numbers of repairs, maintenance costs, number of 

component failures and failure times. A system level analysis also allows the average wind 

turbine downtime to be estimated as well as the contribution of the components to the wind 

turbine downtime and failure. The application of the model to a wind turbine is also presented 

in this paper, and this can be extended to model a complete wind farm. With the flexibility and 

power of the Petri Net modelling technique, the developed model presents an efficient method 

of managing wind turbine assets. 
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Appendix 

 

 Components Condition states Maintenance type and action 

Drivetrain Main bearings Degraded condition 

Critical condition 

Functional failure 

4-repair of the pitting, misalignment 

1-bearing replacement 

1-bearing replacement 

Gearbox Degraded condition 

Critical condition 

Functional failure 

4-gear tooth repair 

3-gear replacement 

2-gearbox replacement 

Main shafts Degraded condition 

Critical condition 

Functional failure 

4-minor repair 

4-minor repair, adjust alignment 

1-shaft replacement 

Hydraulic 

system 

Motor/gear pump Degraded condition 

Functional failure 

3-part replacement 

3-pump replacement 

Valves/pipes Degraded condition 

Functional failure 

4-tightenning/replacement 

4-replacement 

Brake system Callipers/pads Degraded condition 

Functional failure 

3-replace worn components 

3-replacement 

Brake discs Degraded condition 

Functional failure 

3-replacement 

3-replacement 

Yaw system Hydraulic actuator Degraded condition 

Critical condition 

Functional failure 

4-minor repair 

3-part replacement 

3-complete replacement 

Bearing/gear Degraded condition 

Critical condition 

Functional failure 

4-corrective repair 

3-gear tooth repair 

1-complete replacement 

Yaw brake Degraded condition 

Functional failure 

3-part replacement 

3-complete replacement  

Pitch system Hydraulic actuator Degraded condition 

Critical condition 

Functional failure 

4-minor repair 

3-part replacement 

3-complete replacement 

Bearing/gear Degraded condition 

Critical condition 

Functional failure 

4-corrective repair 

3-gear tooth repair 

3-complete replacement 

Hub  Degraded condition 

Critical condition 

Functional failure 

4-minor corrosion repair 

1-replacement 

1-replacement 

Blades  Degraded condition 

Critical condition 

Functional failure 

5-minor repair (patching, sealing) 

1-replacement 

1-replacement 

Power 

system 

Generator Degraded condition 

Functional failure 

3-part replacement 

2-complete replacement 

Frequency converter Functional failure 2-part/complete replacement 

Transformer Functional failure 3-part/complete replacement 

Structure Tower Degraded condition 

Critical condition 

Functional failure 

5-corrosion repair 

1-replacement 

1-replacement 

Nacelle Degraded condition 

Functional failure 

5-loss of section, crack repair 

1-replacement 

Foundation Degraded condition 

Functional failure 

5-corrosion/repaint/remove marine growth 

1-replacement 

Table A1: Maintenance actions applied to different wind turbine components at different 

condition states. 
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Subsystem Component 

Annual 

Failure 

Rate 

Degraded 

Condition 

(year) 

Critical 

Condition 

(year) 

Functional 

Failure 

(year) 

Drivetrain Main bearings 0.0050 β=1.2, η=160 β=1.5, η=20 β=1.5, η=20 

 Gearbox 0.0500 β=1.3, η=16 β=1.2, η=2 β=1.4, η=2 

 Main shafts 0.0050 β=1.2, η=160 β=1.5, η=20 β=1.5, η=20 

Hydraulic system Motor/gear pump 0.0500 - - β=1.2, η=20 

 Valves/pipes 0.0610 β=1.2, η=13.11 - β=1.2, η=3.28 

Brake system Callipers/pads 0.0610 β=1.2, η=13.11 - β=1.2, η=3.28 

 Brake discs 0.0189 β=1.2, η=42.28 - β=1.2, η=10.57 

Yaw system Hydraulic actuator 0.0189 β=1.2, η=42.28 - β=1.2, η=10.57 

 Bearing/gear 0.0275 β=1.2, η=29.12 β=1.2, η=3.64 β=1.2, η=3.64 

 Yaw brake 0.0275 β=1.2, η=29.12 β=1.2, η=3.64 β=1.2, η=3.64 

Pitch system Hydraulic actuator 0.0275 β=1.2, η=29.12 - β=1.2, η=7.28 

 Bearing/gear 0.0520 β=1.2, η=15.38 β=1.2, η=1.92 β=1.2, η=1.92 

Hub Hub 0.0520 β=1.2, η=15.38 β=1.2, η=1.92 β=1.2, η=1.92 

Blades Blades 0.0348 β=1.2, η=23.02 β=1.2, η=2.88 β=1.2, η=2.88 

Power system Generator 0.0520 β=1.2, η=15.38 β=1.2, η=1.92 β=1.2, η=1.92 

 Frequency converter 0.0240 β=1.2, η=33.38 - β=1.2, η=8.35 

 Transformer 0.0670 - - β=1.2, η=14.93 

Structure Tower 0.0670 - - β=1.2, η=14.93 

 Nacelle 0.0060 
β=1.2, 

η=133.33 
β=1.2, η=16.67 β=1.2, η=16.67 

 Foundation 0.0060 
β=1.2, 

η=133.33 
β=1.2, η=16.67 β=1.2, η=16.67 

CMS CMS 0.0060 
β=1.2, 

η=133.33 
β=1.2, η=16.67 β=1.2, η=16.67 

Table A2: Model input parameters - degradation distributions for transitions T1-T72. 

Distributions are Weibull distributions characterised by shape parameter β, and scale 

parameter η (unit: year). References: [16, 17, 23-25, 38-41]. 

In the event of real application then data would be collected to provide the times to achieve 

different levels of degradation.  This data would then be used to determine the parameters of 

the appropriate Weibull parameters.  In the paper, the Weibull distributions that govern the 

transition process between degradation states are indicative and were estimated from the failure 

rate data obtained from several published studies. In the study presented a relatively crude 

estimation was used so that the characteristic time (η) of a component residing in the normal, 

degraded and critical states cover 80%, 10% and 10% respectively of the characteristic life of 

the component (the characteristic life of the component is estimated as the inverse of the failure 

rate). The shape parameters (β) of the distributions are assumed to be larger than 1 to effectively 

capture with the increasing deterioration rates of mechanical components. 

Repair 

type 

Logistic time 

(h) 

Repair time 

(h) 

Travel/access time 

(h) 

Wait for good weather time 

(weeks) 

5 8 3 3 β=3.2, η=6 
4 24 3 3 β=3.3, η=1 
3 48 10 3 β=3.4, η=2 
2 160 50 3 β=3.5, η=3 
1 500 70 3 β=3.1, η=6 

Table A3: Model input parameters – maintenance process. The model assumes a work shift 

of 8 hours per day. 
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WT components Maintenance description Cost (£) 

Drivetrain 

Bearing 
Type 1 Bearing replacement 20,000 

Type 4 Repair of pitting, misalignment 5,000 

Gearbox 

Type 2 Gearbox replacement 260,000 

Type 3 Gear replacement 50,000 

Type 4 Gear tooth repair 5,000 

Shaft 
Type 1 Shaft replacement 37,000 

Type 4 Minor repair, alignment adjustment 5,000 

Lubrication Type 4 Lubrication change 1,000 

Hydraulic 
Hydraulic pump Type 3 Part replacement 26,000 

Hydraulic valves/pipes Type 4 Replacement 1,000 

Braking 
Brake callipers/pads Type 3 Replace worn components 4,000 

Brake discs Type 3 Replacement 4,000 

Yaw 

Yaw actuator 
Type 3 Part replacement 20,000 

Type 4 Minor repair 7,000 

Yaw bearing/gear 

Type 1 Complete replacement 9,000 

Type 3 Gear tooth repair 7,000 

Type 4 Corrective repair 5,000 

Yaw brake Type 3 Replacement 9,000 

Pitch 

Pitch actuator 
Type 3 Part replacement 23,000 

Type 4 Minor repair 8,000 

Pitch bearing/gear 
Type 3 Gear tooth repair/replacement 23,000 

Type 4 Corrective repair 8,000 

Rotor 

Hub 
Type 1 Replacement 44,000 

Type 4 Minor corrosion repair 3,000 

Blade 
Type 1 Replacement 200,000 

Type 5 Minor repair (patching, sealing) 4,000 

Power 

Generator 
Type 2 Complete replacement 150,000 

Type 3 Part replacement 50,000 

Frequency converter Type 2 Part/complete replacement 12,000 

Transformer Type 3 Part/complete replacement 30,000 

Structure 

Tower 
Type 1 Replacement 264,000 

Type 5 Corrosion repair 20,000 

Nacelle 
Type 1 Replacement 40,000 

Type 5 Loss of section, crack repair 5,000 

Foundation 
Type 1 Replacement 204,000 

Type 5 Corrosion/repaint/remove marine growth 15,000 

Table A4: Typical maintenance costs for different repair types. These costs are estimated 

from several studies [2, 6, 40] in the literature and where the maintenance cost is not 

available the costs are estimated from the installation and construction costs [42] for a new 

wind turbine. 
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Maint. 
types 

Typical vessel requires Typical rate (£) 

5 
Crew Transfer Vessels (CTVs): these are fast and small vessels which transfer 
technicians, tools and spare parts (1-1.5 ton capacity) to the wind turbine for minor 
repairs and/or inspections. 

7,000 

4 Crew Transfer Vessels (CTVs). 5,000 

3 Jack-up vessels: these are self-propelled vessels with jack-up platforms.  15,000 

2 
Jack-up barges: these are non-self-propelled vessels with jack-up platforms.. These 
vessels have better stability for crane operation under rough weather conditions but 
are slow and dependent on the support ships to tow to working position.  

40,000 

1 
Crane ships:  these are heavy lifting ships with sheer leg or pedestal mounted cranes 
to life heavy loads. 

70,000 

Table A5: Special vessels for different types of repairs and typical cost [40] for a shift 


