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Abstract

The paper proposes a novel computational method for real-time simulation and monitoring-based predictions during the construc-
tion of machine-driven tunnels to support decisions concerning the steering of tunnel boring machines (TBMs). The proposed
technique combines the capacity of a process-oriented 3D simulation model for mechanized tunnelling to accurately describe the
complex geological and mechanical interactions of the tunnelling process with the computational efficiency of surrogate (or meta)
models based on artificial neural networks. The process-oriented 3D simulation model with updated model parameters based on
acquired monitoring data during the advancement process is used in combination with surrogate models to determine optimal tun-
nel machine-related parameters such that tunnelling-induced settlements are kept below a tolerated level within the forthcoming
process steps. The performance of the proposed strategy is applied to the Wehrhahn-line metro project in Düsseldorf, Germany
and compared with a recently developed approach for real-time steering of TBMs, in which only surrogate models are used.

Keywords: Mechanized tunnelling; finite element method; parameter identification; surrogate model; recurrent neural network;
computational steering; tunnel boring machine; monitoring; settlements; real-time prediction

1. Introduction

Mechanized tunnelling is a flexible and efficient technology for the construction of underground infrastructure,
which is characterized by a dynamic technological progress of tunnel boring machines (TBMs) and an increasing
range of applicability to various ground conditions [1]. During TBM-driven tunnelling in urban environments, in
particular in the presence of sensitive buildings, the risk of damage caused by construction-induced settlements needs
to be limited. To this end, computational models are required to efficiently and reliably predict the expected response
of the ground and existing infrastructure to the tunnel drive.

Engineering decisions during the construction process are based, besides the (often limited) a priori knowledge
from analyses made in the design stage of the project, mainly on the interpretation of data from on site monitoring
including data related to soil deformations, pore pressure and machine performance. However, the capacity of com-
putational models to quantify the effect of engineering decisions on stability and safety at the construction site during
the tunnel drive is not exploited.

The mechanized tunnelling process involves complex spatio-temporal interactions between the TBM, the tunnel
structure, the surrounding soil and the existing infrastructure. In addition to empirical and analytical relations for the
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description of surface and subsurface settlements induced by tunnelling [2, 3, 4], 2D and 3D numerical analyses have
been applied (see [5, 6, 7, 8] and references therein) to model the tunnelling process and the physics behind it more
accurately.

Numerical analyses of geotechnical problems are characterized by a large number of problem-dependent model
parameters related, among others, to the geotechnical specifications of the ground. In case of tunnelling, these param-
eters may have a significant spatial variability [9]. Furthermore, in the design stage, only limited information on the
specific soil parameters is available from distinct boreholes, which limits the quality of the model parameters based
upon these data. Therefore, in geotechnical analysis, to reduce the uncertainty of model parameters, back analysis
based on in situ measurements is often used for the calibration of numerical models to determine more reliable updated
model parameters. Several authors have addressed inverse analysis for geotechnical processes, see e.g. [10, 11, 12]. If
optimization algorithms such as Particle Swarm Optimization (PSO) [13] are used for inverse analyses, often a large
number of realizations is required. Since this is connected with a prohibitively large effort if large-scale 3D finite
element models are used, often surrogate models (alternatively also denoted as meta models) are employed for the
evaluation of the objective functions [14, 15]. In [16], this approach is used for back analysis of material parameters
and steering of the mechanized tunnelling process.

Surrogate models are a compact representation for the simulation model, and can be generated based on different
methods, e.g. regression models, Artificial Neural Networks (ANNs), Proper Orthogonal Decomposition (POD), etc.
(see [16, 17] and references therein). In geotechnical problems, ANNs have been applied as surrogate models trained
by means of numerical simulations and used e.g. for the prediction of the deformations induced by geotechnical
interventions [15] or for the prediction of tunnelling-induced settlements [18, 19, 20, 21, 22]. Hybrid surrogate
modelling approaches in mechanized tunnelling combining POD and ANNs are presented in [23] and [24].

For computational prognoses during construction, (almost) real-time predictions are required. If numerical simula-
tion models would be employed, the required continuous model update during the tunnel drive would only be possible
using massive parallelization. This is not feasible for most practical applications. To overcome this obstacle, an ap-
proach to support the TBM steering based upon surrogate models has been proposed in a recent paper by the authors
[16]. Feedforward neural networks have been used to substitute the computationally demanding 3D finite element
simulation models. Evidently, this approach only provides an approximation of the tunnelling-induced settlements,
which relies on the a priori parameterization of the surrogate model. It is not able to provide detailed information on
the tunnel-ground interaction with a resolution comparable to an advanced numerical simulation model. Therefore,
in this paper, a novel hybrid FE-surrogate modelling strategy is proposed for the support of the TBM steering during
construction with model parameters updated according to monitoring data in association with adequately designed
surrogate models used to determine optimized steering parameters. In contrast to [16], Recurrent Neural Networks
(RNNs) [25] are employed, which are able to account for history-dependent processes. This approach combines the
advantage of surrogate models to provide fast computations needed for the numerous realizations involved in the pa-
rameter identification and the iterative determination of optimal steering parameters with the accuracy provided by
a process-oriented finite element model in regards to the consequences of the tunnel drive on ground deformations,
buildings, lining stresses etc.

The proposed strategy is demonstrated by means of real project data from the Tunnelling Information Model
(TIM) [26] of the Wehrhahn-line (WHL) metro project in Düsseldorf. Based on the project data, sensitivity analysis
are conducted first to preselect a set of relevant material and machine-operational parameters, which are then used
to set up numerical simulations using a process-oriented 3D Finite Element (FE) simulation model for mechanized
tunnelling [7, 27] in order to generate the surrogate model. In this work, an RNN surrogate model [25] is applied,
which is trained using an optimized back-propagation algorithm [16].

The remainder of the paper is organized as follows: Section 2 introduces the overall concept for simulation-
supported steering in mechanized tunnelling, the RNN and the hybrid FE-surrogate modelling approach. In Section 3,
the 3D FE model for a selected section of the Wehrhahn-line metro project in Düsseldorf is presented. Using a
complete data set of the selected project section, the generation of the surrogate model, the parameter identification
and the model-supported steering is demonstrated in Section 4. In this section, also a comparison with a recently
proposed approach for real-time steering based on surrogate models only is provided.
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2. TBM steering concept combining surrogate models and finite element simulations

Prior to the construction of a TBM-driven tunnel, the parameters of the tunnel boring process to be used in
the project are determined in the design stage according to geological explorations to satisfy design objectives such
as tolerated surface settlements, safety against loss of face stability and other specific construction requirements.
However, during tunnel construction, due to on site ground conditions, which differ from the original assumptions,
the settlements often exceed tolerated values. This is of particular importance in tunnelling in urban areas, where
the existing infrastructure may be affected by damage caused by tunnelling-induced ground settlements. Controlling
the TBM process parameters, denoted in the following also as steering parameters (i.e. the support pressure, grouting
pressure, advance rate, etc.), it is possible to control the surface settlements and to reduce or even prevent damage of
existing infrastructure.

The conceptual outline of simulation-supported process control in mechanized tunnelling is illustrated in Fig. 1.
It contains the generation of surrogate models in the design phase, the model update based on monitoring data and the
determination of optimal steering parameters to keep the ground settlements below tolerated values.
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Figure 1. Concept of the simulation-supported process control in mechanized tunnelling.

After the selection of the relevant project sections, in which the steering support will be needed, surrogate models
are generated in the design phase of the project especially for these sections.

A 3D numerical model of a tunnelling project characterized by a complex geotechnical situation generally requires
a large number (from around ten to more than 100) parameters to characterize the geotechnical model, the alignment,
the TBM and the lining shell, including a number of operational parameters and parameters related to the existing
infrastructure. Some of the model parameters are well determined (geometry of TBM and lining), while geotech-
nical parameters such as the topology of soil layers and material parameters of the soil are usually associated with
uncertainties and hence are provided in general only as a set of admissible ranges.

If all uncertain parameters are taken into account, it would be extremely time consuming to reach a good quality
of the surrogate model. Therefore, prior to the generation of the surrogate model, a sensitivity analysis has to be
conducted to determine a set of important parameters sensitive to the output of the model [16]. Based on pre-selected
important parameters, a reliable surrogate model is generated in the design phase as shown in Fig. 1. The algorithm
for the generation of reliable surrogate models for tunnel sections is summarized in the Appendix (Table 3). In this
paper, an RNN is used for the generation of the surrogate model. RNNs (in contrast to feedforward ANNs) are able
to represent space-time dependencies, which is essential to consider time-dependent processes occurring during the
mechanized tunnelling. The RNN model is described in the following Section 2.1.

The surrogate model is used for the update of geotechnical parameters according to monitoring data acquired on
site during tunnel construction. For the model update, back analysis is performed using the Particle Swarm Opti-
mization (PSO), an evolutionary algorithm, which is able to provide global optima. The realizations needed for the
evaluation of the objective function are performed by means of the RNN surrogate model.
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Figure 2. Strategies for the steering support of TBMs: a) Surrogate model-based steering [16]; b) Hybrid FE and surrogate model-based steering.

During the tunnel construction, the process parameters, such as the face and the grouting pressure, are adjusted
to control the tunnelling process to satisfy various requirements for safety and stability of the system (e.g. tolerated
surface settlements, tunnel face stability, damage induced in buildings). Since the surface deformations are in general
relevant for the risk assessment during the construction process, in the following, the tolerated maximum surface
settlement stol is chosen as a control criteria in this study. In [16], the surrogate model with updated model parameters
has been directly used for settlement predictions, which provides an almost instantaneous response. Therefore, if the
tolerated limits stol are exceeded, the process (steering) parameters are optimized, such that the predicted settlements
s for all excavation steps within the section remain below the given tolerance. This surrogate model-based approach
for real-time steering of TBMs is illustrated in Fig. 2a.

However, the excavation process affects the behaviour of all model components involved in mechanized tun-
nelling and their mutual interactions, which cannot be quantified by the surrogate models. Therefore, a new hybrid
approach combing surrogate model-based steering and process-oriented finite element simulation is introduced in
Subsection 2.2. Using surrogate models, the process parameters are optimized in each construction step i, if the sim-
ulated settlements si exceed the tolerated settlements stol. The final system response based on optimized parameters is
evaluated by means of the FE model (see Fig. 2b).

2.1. RNN-based surrogate model

In order to be used in real-time, the computationally expensive FE simulation model is substituted by a surro-
gate model generated offline for a pre-selected section of the tunnel project. The training of the surrogate model is
performed in the design stage of a project, and therefore is not time-critical. In [16], a procedure for the automated
generation of an input set for 3D FE simulations of a straight tunnel, the data processing and the generation of a feed-
forward neural network-based surrogate model have been proposed. In this paper, this method is extended to account
for time-dependent processes by using RNN architectures [25]. RNNs are able to learn dependencies between data
series without considering time as an additional input parameter. They allow to capture time-dependent phenomena
in data series and to predict (extrapolate) the future structural responses.

Figure 3 illustrates the structure of the Extended Elman’s network as proposed in [28]. As an extension to feed-
forward neural networks, a context layer is added to each hidden layer and to the output layer. The processing units
of those layers are so-called context neurons, which are activated by the output of their corresponding hidden/output
neurons. In this type of neural networks, the input xt is processed from the input nodes through the hidden layers of
the network to compute the output yt

j of a hidden neuron:

yt
j = f

 n∑
i=1

wjixt
i +

m∑
i=1

cjizt−1
i + θj

 where zt
i = f

(
yt

jαi + zt−1
i λi

)
. (1)

In Eq. (1), zt
i is the output of the context neuron at time t, wji and cji are weighting coefficients of the input and context

neurons, respectively, θj is a bias, αi is a memory factor and λi represents the feedback factor of the ith context neuron.
Both αi and λi are deterministic values in the interval [0, 1] and are randomly chosen at the beginning of the training
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Figure 3. Schematic illustration of the structure of an RNN according to [28].

process and then kept fixed. The information is similarly processed in all hidden layers by the sigmoid activation
function f (•) and finally passed to the output of the network, taking the output of the nodes of the previous layer as
the input of the current layer.

The goal of the learning process is to adjust the synaptic weights of hidden and context neurons such that the
output of the network for the given input matches the expected (target) values tt

k. In the proposed model, so-called
“batch mode” learning is used, where the error Etot between predicted and target values of the output nodes m is
calculated after processing the set of all input patterns p = [1, ...,P] within the time step t = [1, ...,T]:

Et =
1
2

m∑
k=1

(ot
k − tt

k)2 Etot =

P∑
p=1

T∑
t=1

Et . (2)

The learning process is accomplished by minimizing the error in Eq. (2), where the gradient of Etot with respect
to the input quantities is calculated and the weights are adjusted incrementally for both hidden and context neurons:

∆wij = −γ
∂Etot

∂wij
and ∆cij = −β

∂Etot

∂cij
. (3)

γ and β are learning rates. In this study, the architecture and the learning coefficients are optimized using PSO similar
to the approach recently presented in [16]. In comparison to feedforward ANNs, RNNs show better learning properties
for the same number of training cycles.

2.2. Hybrid finite element and surrogate model-based steering of TBMs
In order to perform a back analysis of the parameters of the computational model based on monitoring data in

real-time, the computing time should be in the order of seconds to few minutes. In [16], PSO is used in conjunction
with computationally cheap surrogate models, which replace the original finite element model, to enable almost
instantaneous back analysis of the model parameters. The solution space is initialized with particles described with
their position pij and velocity vij. The position of the particles is updated in each iteration step based on local and
global best positions (plocal

best,i, p
global
best ) according to Eq. (4), moving towards the optimal solution by maximizing the
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objective function F in Eq. (5), which is evaluated by means of the RNN surrogate model (Eq. (2)). In Eq. (4), r1
and r2 are random numbers uniformly distributed in [0, 1], and φ1 and φ2 are cognition and social learning factors. In
Eq. (5), TOL is the tolerance added to avoid singularity of the solution.

vi,j+1 = wij + φ1r1(plocal
best,i − pij) + φ2r2(pglobal

best − pij) and pi,j+1 = pij + vi,j+1 . (4)

F =
1

pn∑
0

Etot + TOL
(5)

The complete procedure is described in [16]. The algorithm summarizing the steps for the surrogate model based
inverse identification of soil material parameters (mp0) according to measured settlements sn,mes in the monitoring
point n is given in the Appendix (Table 4).
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Figure 4. Hybrid FE and surrogate model-supported steering of the mechanized tunnelling process.

Having a surrogate model trained to predict settlements with sufficient accuracy after identification of the soil
material parameters (mpident) at the current stage of TBM advancement, it is possible to control the advancement
process for the forthcoming section, such that the settlements (or other target parameters) are reduced to a desired
value by optimizing the values of the TBM process parameters (such as support and grouting pressure, advance rate,
etc.).

The proposed computational strategy illustrated in Fig. 4 is characterized by combining the full-scale 3D finite
element model and the previously described surrogate models during the construction process. In this hybrid concept,
the process-oriented simulation model ekate, described in Subsection 3.2, is invoked during the construction pro-
cess using parameters, which have been updated according to monitoring data by means of back analysis using the
computationally much cheaper RNN-PSO surrogate model for the investigated tunnelling section. After each TBM
advance step i, the surface settlements obtained from the 3D FE simulation (sn,sim

i ) are checked. In case that prescribed
limits slim are exceeded, the parameters for the steering of the TBM (i.e. the face pressure and the grouting pressure)
are optimized, again by using surrogate models according to the procedure described above. These prescribed limits
are set as a certain percentage of the tolerated settlements stol: slim= νstol. The next advancement step is then simulated
by means of the FE model adopting the updated (optimized) steering parameters (spoptim

i ). During each step, the full
response of all components (soil, linings, TBM) involved in the tunnelling process can be directly accessed from the
post processing of the numerical simulation. This hybrid strategy assigns computationally intensive tasks, such as
the repetitive analysis of the model for different input parameters involved in the back analysis procedure and in the
optimization procedure to determine the optimal steering parameters, respectively, to the computationally efficient

6
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surrogate model. The 3D FE simulation model is employed to provide predictions for the current excavation step
considering the previously optimized set of model parameters. Since the computation follows the construction step
by step, the computational effort is restricted to only simulating these construction steps. By using efficient imple-
mentations [29] these computational analyses can be performed in a fraction of the time needed for the real tunnelling
process.

The hybrid FE and surrogate model-supported steering procedure is enabled by implementing the previously de-
scribed RNN-PSO algorithm as a so-called OptimizationUtility in the framework of the ekate simulation model.
Based upon the simulation results, it is now possible to define criteria for calling the surrogate model-based op-
timization utility and for adapting TBM operational parameters directly within the simulation. The algorithm for
performing the FE analysis, checking the correlation of predicted data ssim

i with tolerated limits slim
i and calling the

RNN-PSO model to determine optimized levels for the steering parameters (face pressure and grouting pressure) is
described in Table 1.

Initialize FE model and surrogate model

mpi = mpident

sp0 = designprocessparameters

Calculate ring construction step

for construction step i

FESimulation.SetBoundaryConditions (mpident, spi)

FESimulation.ExcavationStep (time)

FESimulation.StandStill (time)

FESimulation.WriteOutput (sn,sim
i , time)

sn,sim
i < sn,lim

i

Yes No

spi = sp0

Optimization of process parameters using RNN-PSO

PSO.InitializeParticles (pjk, vjk)

j < num of iterations

for each particle(k)

sn
i (time) = RNN.CalculateRNNOutput (mpident, pk,j) - Eq. (1)

PSO.EvaluateObjectiveFunction (sn
i (time), stol) - Eq. (5)

Update particle positions and velocity: vk,j+1, pk,j+1 - Eq. (4)

spi = spoptim
i = pglobal

best

construction step i+1

Table 1. Algorithm for the hybrid FE and surrogate model-supported steering in mechanized tunnelling

The added value of this hybrid approach is firstly to obtain more accurate results from the 3D simulation model
for the optimized set of parameters and secondly to obtain additional insight into the physical behavior of the soil-
structure interaction during the machine advance, i.e., how the chosen process parameters affect the interacting system
constituted by the tunnelling process, the surrounding soil and existing buildings. Another advantage is that it enables
the user to set multiple criteria (multiple objectives and constraints) for the optimization of the process such as the
residual safety against loss of face stability in addition to surface settlements. Based on the results acquired from the
simulation model during the tunnel drive, new constraints can be set. Each time the optimization procedure is invoked,
the design space can be adjusted accordingly to satisfy all prescribed criteria.

3. Simulation model for the Wehrhahn-line project

In this section, a simulation model for mechanized tunnelling is generated according to project data of the
Wehrhahn-line (WHL) metro project in Düsseldorf, Germany. For this project, a tunnelling information model has
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J. Ninić, S. Freitag and G. Meschke / Tunnelling and Underground Space Technology 00 (2016) 1–21 8

been established, which is directly interlinked with the numerical simulation model ekate via an interaction plat-
form, which enables automated exchange of data and flexible generation of numerical models for selected sections of
the tunnel project.

3.1. Tunnelling Information Model
To store all relevant information related to the tunnelling process, to enable seamless integration of this data into

the numerical simulation model, and to automate the large number of parametric analyses required for the generation
of the surrogate model, a flexible information platform is required. In order to manage the huge amount of time-
dependent, dispersed and heterogeneous project data, a holistic spatio-temporal Tunnelling Information Model (TIM)
for mechanized tunnelling developed in [26] is used for the present project. All relevant design and construction
information of the WHL project in Düsseldorf has been collected, classified, structured and linked within the proposed
TIM to support unified access. This model is designed using the concept of Building Information Modeling (BIM)
and contains four essential sub-models: the ground data model, the tunnel boring machine model, the tunnel lining
model and the built environment model. These models are inherently linked and provide the basis to automatically
derive numerical simulation models [30]. The visualization of the information contained in the TIM of a WHL section
is shown in Fig. 5.

Figure 5. Tunnelling Information Model for the Wehrhahn-line in Düsseldorf: Visualization of soil layers, existing buildings, tunnel alignment,
boreholes and measurement points.

The investigated section of the WHL contains a single-tube double-track tunnel excavated with a 9.47 m slurry
shield. The ground along the alignment consists of almost homogeneous, horizontally layered soil specified below.
For the numerical analysis, a section of the tunnel advance between two stations, namely the Schadowstraße station
and Pempelforter Straße station on the eastern section of the project has been selected. This section has been both
equipped with a sensor field and observed with radar survey to monitor the settlements during the construction phase
of the tunnel [31, 32].

The ground model has been generated from 18 geo-referenced boreholes and groundwater measuring points along
the tunnel route [32]. The subsoil consists of four soil layers: surface layer filling (2–3 m to max. 8 m thickness
locally); alluvial layer with silt and clay deposits (thickness 0.5–1.5 m to max. 3.5 m locally); low terrace of the river
Rhine with sand and gravel of the quaternary (15–25 m thickness); tertiary with slightly silty and medium sandy
to silty fine sand (23–25 m below the ground surface level). The selected section for the TIM does not contain the
alluvial soil layers. Based on this data, a subsoil section of approximately 730 m × 340 m is defined (see Fig. 5).
The overburden varies between 12 m and 16 m, while the ground water table is approximately 8 m to 12 m below the
ground surface with temporal fluctuations in the range of 2–5 m.
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The size of the simulation domain has been chosen such that disturbing effects on the solution caused by boundary
and initial conditions are not affecting the results in the vicinity of the monitoring field. Considering that the soil
consists of sandy layers, the soil model used for representation of the soil behavior in this study is Drucker-Prager
with non-associative flow rule [33]. Table 2 contains the geotechnical data used in the numerical simulation.

Parameter Range
Young’s Modulus of layer 1 — E1 [MPa] 10–30
Young’s Modulus of layer 2 — E2 [MPa] 30–150
Young’s Modulus of layer 3 — E3 [MPa] 60–150
Weight of layer 1 — γ′1 [kg/m3] 900–1100
Weight of layer 2 — γ′

2
[kg/m3] 1000–1300

Friction angle of layer 1 — φ1 [◦] 25–35
Friction angle of layer 2 — φ2 [◦] 30–40
Cohesion of layer 1 — c1 [kPa] 0–3
Cohesion of layer 2 — c2 [kPa] 0–3
Grouting pressure scaling factor — gp [-] 0.9–1.1
Support pressure scaling factor — sp [-] 0.8–1.2

Table 2. Range of geomechanical and process parameters used for the analysis of the Wehrhahn-line project (in bold face: parameters used for the
generation of the surrogate model).

3.2. Numerical simulation model for mechanized tunnelling

The simulation model for mechanized tunnelling ekate is generated using the object-oriented FE framework
KRATOS [34]. All relevant components of the mechanized tunnelling process (see Fig. 6) are properly modelled in
this 3D FE process-oriented simulation model [27, 7] as shown in Fig. 6.

3.2.1. Modelling of the ground
The soft soil is modelled as a two-phase fully saturated material, accounting for the soil matrix and the pore water

as distinct phases according to the theory of porous media (see [35] for details). Depending on the type of the soil
and available material parameters, two elastoplastic constitutive models are available in ekate: the Drucker-Prager
model, which is preferably used for sandy soils, and the more general Clay and Sand model, characterized by non-
associative plasticity and Lode-angle dependent yield surfaces [36], which is well suited for clayey soil. For the WHL
project, Drucker-Prager was used to describe the sandy soil.

Having a fully coupled formulation, it is possible to follow the dissipation of the pore water in time. To accurately
model the consolidation process, the actual time required for the excavation steps, the installation of the linings and
stand still steps is considered in the set up of the simulation model for the WHL metro. The temporal discretization
(i.e. the number and length of the increments) within each of these construction stages is adapted according to the
consolidation characteristics of the soil.

In order to allow for a user-friendly input of the soil layers and their material properties, a routine denoted as
MaterialPropertiesUtility is implemented. Through the simulation script, the material properties are assigned directly
to the finite element mesh, storing the respective values at the element Gauss points inside of the polygon defining the
respective soil layer, as illustrated in part (1) of Fig. 6.

3.2.2. Shield machine, hydraulic jacks, lining and backup trailer
In the simulation model ekate, the shield machine, the hydraulic jacks and the segmented lining are considered as

separate components (see parts (2), (3) and (5) of Fig. 6). The TBM is modelled as a deformable body moving through
the soil and interacting with the ground through surface-to-surface contact. By virtue of this modelling approach, the
volume loss due to the excavation process naturally follows the real, tapered geometry and the over-cutting of the
shield machine. For the WHL project the hydro shield machine with a cutting wheel of 9.49 m diameter and a length
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Figure 6. Process-oriented FE model for shield tunnelling ekate with relevant components: (1) Surrounding soil, definition of soil layers,
consolidation; (2) TBM and frictional contact between shield skin and soil and; (3) segmented lining; (4) tail gap; (5) steering with hydraulic jacks;
(6) existing infrastructure.

of 9.42 m with slightly tapered geometry is modelled with linear hexahedral finite elements. The loading from the
engine, the lining erector and the backup trailer are applied as surface loads.

The TBM is pushed forward by elongation of the hydraulic jacks, excavating in a step by step procedure. The
hydraulic jacks are represented by truss elements tied between the lining and the shield machine.

3.2.3. Modelling of support measures
The annular gap between the segmented lining tube and the excavation boundary is assumed to be refilled with

cement-based grouting material, modelled as a fully saturated two-phase material with a hydrating matrix phase,
considering the evolution of stiffness and permeability of the cementitious grout [37] (see part (4) of Fig. 6). To
provide the stability of the tunnel face due to distortions caused by the excavation process and to reduce ground loss
behind the tapered shield, the face support pressure and the grouting pressure are applied at the tunnel face and in
the steering gap, respectively (see Fig. 6). In this simulation model, both support and grouting pressure are applied
according to data measured during the construction phase. Although for this project about 200 to 300 values from
about 250 data sources are collected for each ring, for the simulation model, only averaged values per ring are applied.

3.2.4. Modelling of existing infrastructure
Buildings are considered in the tunnelling model ekate by means of reduced models with a substitute elastic

stiffness E, height H and weight ρ computed according to an approach proposed in [38]. In the presented FE for-
mulation, isotropic shell elements are adopted with respective structural properties, interacting with the soil through
a mesh-independent surface-to-surface contact algorithm, which prevents the penetration of the foundation of the
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building into the soil (see part (6) of Fig. 6). It also takes different mechanisms of the soil-structure interaction corre-
sponding to “sagging” and “hogging” modes into account. The geometry of the buildings is imported from the TIM
as described in the following subsection and illustrated in Fig. 7.

3.3. Data exchange between the Tunnelling Information Model and the simulation model
Using the TIM for the Wehrhahn-line, the data for the selected section of the tunnel construction site was extracted

to create a simulation model. The selected simulation box contains the data of the topology of the subsoil including
the geomechanical properties of the soil layers, existing infrastructure with material properties of substitute models
for buildings [38], advance rates of the machine and the measured support and grouting pressures (see Fig. 7). All
measured data is utilized in the stepwise simulation of the tunnelling process. For instance, the advance rate, which
is described with excavation time, ring construction time and stop time is implemented in the simulation of stepwise
tunnel advance. Time-dependent effects, such as the consolidation process, are of a great importance for the pressure
distribution around the tunnel lining and for the total surface settlements, particularly in the case of large intervals of
stop time between two construction steps, which was often the case in this tunnel project.
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Figure 7. Data exchange between the TIM and the FE simulation model ekate.

For the generation of the surrogate model, a series of numerical simulations was performed, extracting the data
from the TIM and using an automated data generator (see [16]) together with the automatic modeller ekate [39] to
set up the simulation script for each individual realization. This approach allows for automated and flexible access to
tunnel project data, generation and execution of shield tunnelling simulations as well as processing of simulation data
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in a form that can directly be used for the generation of the surrogate model. In this context, the following tasks have
to be performed:

• Definition of the section of the project to be simulated and the spatial extent of the analysis model in the TIM
and acquisition of geometrical and geotechnical information to define the model size, the number of constructed
rings and the model boundaries.

• Acquisition of input parameters (e.g. related to the existing infrastructure, machine type, material parameters
for soil layers, grout and linings, advancement rate, soil water conditions, etc.).

• Generation of the FE simulation model controlled by a simulation script that is evaluated by a Python interpreter.

• Application of the data generator for setting up the numerical experiments based on admissible ranges of
geotechnical and process parameters for generation of the surrogate model.

• Execution of the numerical simulations on the available computing resources in parallel using a shared memory
system based on OpenMP.

• Postprocessing of the simulation output.

• Training and testing of the RNN-PSO based surrogate model.

4. Simulation and monitoring-supported steering of TBM for the Wehrhahn-line project

This section describes a prototype application of the computational concept for simulation and monitoring-supported
steering of TBMs using data from the WHL project together with the simulation model and the surrogate model set
up as presented in the previous section.

4.1. Pre-selection of relevant parameters

For the given range of model parameters of the investigated section of the WHL project, a sensitivity analysis has
been performed to identify the most relevant model parameters needed to be updated during the TBM advancement.
The sensitivity of model parameters strongly depends on the range of the chosen parameters and the target of evalua-
tion. In geotechnical reports available for mechanized tunnelling projects, a range of suitable geotechnical parameters
describing the soil properties, water-soil conditions, topology, etc. is generally provided, which can be used to conduct
such a sensitivity analysis. In this study, the elementary effect of nine soil and two machine operational parameters
on the settlement of a chosen monitoring point is investigated: Young’s modulus E1, E2, E3 for all three layers, the
weight γ′1, γ′2 of layers 1 and 2, the friction angle φ1, φ2 of layers 1 and 2; the soil cohesion c1, c2 of layers 1 and 2,
scaling factors of measured grouting pressure gp and the face support pressure sp) in the range given in Table 2.

Figure 8 contains the results of a sensitivity analysis using the project data of the WHL. As already mentioned, the
subsoil consists of three soil layers, see also Fig. 8a. The TBM is passing only through the second layer, a low terrace
layer of the Rhine characterized by sand and gravel of the quaternary of approximately 15–25 m thickness.

In Fig. 8b, the normalised absolute mean of the elementary effect |µ∗j | of the change of the input parameters on
the surface settlement in a monitoring point (×) (see Fig. 8a) is plotted for different positions of the TBM w.r.t. the
measurement section. From this graph, it can be concluded that the grouting pressure and the soil stiffness of the
second layer E2 have the largest relative influence on the surface settlements. The parameters γ′1, φ2, c1 and c2 show
an almost negligible effect on the surface settlements for the chosen range of parameters. It is also interesting to
note the change of the sensitivity of the parameters when the shield machine is approaching (step 17) and passing the
monitoring section (step 23). While in the first case, the support pressure plays an important role, in the second case,
the grouting pressure becomes dominant.
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Figure 8. Sensitivity analysis using project data of the Wehrhahn-line. a) Schematic geotechnical section of the model; b) Sensitivity measures of
the model parameters w.r.t the settlements in the monitoring point in terms of |µ∗ | for the model parameters (E1, E2, E3, γ′1, γ′2, φ1, φ2, c1, c2, gp,
sp).

4.2. Surrogate model for the metro project Wehrhahn-line
Using the results of the sensitivity analysis, the surrogate model was created based on a reduced set of the most

relevant model parameters (E1, E2, E3, γ′2, φ2 and gp ). Since the accuracy of a surrogate model strongly depends
on the number of sampling points and their distribution inside the input parameter space, for this example, a Latin
Hypercube Sampling (LHS) strategy has been chosen [17]. The LHS method has a random nature and the generated
samples are uniform, if each dimension is viewed separately. For the relevant parameters obtained from the sensitivity
analysis, using the LHS method, 100 samples for the training set and 50 samples for the validation set are used,
varying the parameters in the ranges described in Table 2.
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Comparison between settlements obtained from the FE simulation and predictions of the trained surrogate model for the training and validation
sets.

The simulation model is concerned with a tunnel of diameter D = 9.49 m excavated in 48 steps of 1.5 m length
each. The simulation model is shown in Fig. 9a. It has 72 m length, 190 m width and an overburden of 16 m. For
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each excavation step and each stage within one advancement step, the real time (advance rate) was properly modelled,
accounting for time-dependent effects such as consolidation, water pressure distribution on the tunnel face and grout
inflow. In the simulation, the measured support and grouting pressure (per ring) have been used. For the grouting
pressure, the values measured at the grouting pipes were adopted with a scaling factor and applied as boundary
conditions at the nodes related to the corresponding injection positions of the grouting elements. For each input
parameter set with six independent input parameters (six input nodes), the recorded output is the temporal evolution
of the surface settlement at a monitoring point, see Fig. 8a. The RNN surrogate model described in Section 2.1 has
been trained with optimized architecture and learning rate. The optimized architecture leads to one hidden layer with
20 hidden and respective context (history) neurons. Figure 9b shows the agreement between the settlements at the
chosen monitoring point predicted by the surrogate model and the target settlements obtained from the numerical
simulations for both training and validation sets. This figure shows that the surrogate model provides good prediction
capabilities with a Relative Root Mean Square Error (rRMSE) of 3.1% for the training and 3.5% for the validation set.

Once the surrogate model is set up, it is used for model updating according to the monitoring data. For the surface
settlements at the selected monitoring point “+” in Fig. 10, back analyses are conducted to determine precise values
of the material parameters summarized in Table 2 within the range given in the geotechnical report. For the back
analysis, the surrogate model-based PSO algorithm was used as described in Table 4 in the Appendix. The PSO is
initialized with 50 particles and a maximum of 100 iterations.
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Figure 10. Comparison of the settlements at the monitoring point “+” obtained from monitoring and from predictions of the surrogate model after
parameter identification.

Figure 10 shows a comparison between the measurements and the prediction of the surrogate model for the set-
tlements at the monitoring point “+” after the model parameters have been identified from the back analysis. The
model parameters from Table 2 have been identified as E1 = 30 MPa, E2 = 46 MPa, E3 = 124 MPa, γ′2 = 1000 kg/m3,
φ2 = 32.5◦ and averaged gp ≈ 220 kPa. The predictions of the surrogate model match the in situ measurements for
the identified set of parameters very well. Due to the fact that a surrogate model is used for the forward analysis in the
PSO algorithm, the back analysis was performed in approximately 5 seconds on a standard PC, converging within the
first 20 iterations.

4.3. Model-supported steering of TBM to minimize settlements

If surface settlements were above the critical value, the next step would be an optimization of the TBM-related
parameters in order to minimize surface settlements. However, in the WHL project, surface settlements were almost
negligible. Therefore, in the following subsection, a “worst case scenario” for the geotechnical parameters, taking
the lower bounds of the ranges in Table 2 into account, is assumed to demonstrate the capabilities of the hybrid FE
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and surrogate model-based iterative steering of TBM parameters with the goal of minimizing the surface settlements
during the TBM advance. To this end, a new surrogate model has been constructed with fixed values of the material
parameters (lower bound of given ranges in Table 2), taking into account the variation of the support and grouting
pressures scaling factors in the ranges of 0.8–1.2 and 0.6–1.2, respectively. The surface settlement was measured in
five points along the tunnel alignment in each TBM advance step. The RNN surrogate model was constructed based
on this data using the same procedure as described in the previous subsection, with a prediction accuracy of 98%.

4.3.1. Surrogate model-based steering
In this example, the previously developed surrogate model-based steering strategy, similar to the approach in [16],

is applied for minimization of tunnelling-induced settlements. The RNN-PSO algorithm, outlined in Fig. 2a and
summarized in the Appendix (Table 5), is applied to optimize TBM-related parameters to reduce tunnel-induced
settlements such that the tolerated limit value of 1 cm is not exceeded. Figure 11 shows the surface settlements
predicted by the surrogate model for the initial values of the support and grouting pressures and the settlements after
optimization of the support and grouting pressures with the objective that the maximum settlements do not exceed the
limit value of 10 mm in five selected monitoring points.
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Figure 11. Model-based optimization of TBM-steering parameters: Settlements at five measurement points with and without optimized steering
parameters.

The results in Fig. 11 demonstrate the good agreement between the predictions of tunnelling-induced settlements
(red line with + mark) from the RNN-PSO surrogate model and the predicted settlements (dashed line) from the 3D FE
simulation model. The curves show that the tolerated settlements are exceeded in all monitoring points except the fifth
monitoring point. Figure 11 also contains the settlements computed by the surrogate model after optimizing the TBM
steering parameters (green line with × mark). The fact that now the maximum settlement of 10 mm is not exceeded in
any of the control points demonstrates the efficiency of the surrogate model-based process control of TBMs. However,
it has to be noted that although the optimization target has been fulfilled and the maximum settlements for the first
four points are kept below the limit, this has a negative effect to the ground displacement of the fifth point, where
significant heaving is induced. This is a consequence of the fact that the surrogate model-based steering is conducted
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J. Ninić, S. Freitag and G. Meschke / Tunnelling and Underground Space Technology 00 (2016) 1–21 16

for the complete tunnel section with a time-constant grouting and support pressure. It can be avoided by defining also
heaving limit states and optimizing the settlements with time-variant pressures.

4.3.2. Hybrid finite element and surrogate model-supported TBM steering
The new hybrid finite element and surrogate model-supported steering strategy proposed in Section 2.2 is applied

to the same section of the WHL project as used in the previous subsection. Starting from the lowest values of the
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Figure 12. Hybrid FE and surrogate model-supported optimization of TBM steering parameters: Settlements at five measurement points with and
without optimized steering parameters.

support and grouting pressure, the iterative steering procedure described in Section 2.2 is applied to minimize the
settlements assuming a tolerated limit settlement value of 10 mm. According to Fig. 4, in each excavation step the FE
simulation model for the selected section of the WHL project is supplied with continuously updated process param-
eters obtained from the surrogate model-based optimization algorithm to compute the tunnelling-induced settlement
trough. After each TBM advancement step, the surface settlements are checked in all five monitoring points depicted
in the upper left part of Fig. 12. If the surface settlements reach 80% of the limit value, the RNN-PSO algorithm is
invoked with the objective to optimize support and grouting pressure such that tunnelling-induced settlements do not
exceed the tolerated limit. Figure 12 shows the settlements at the selected control points before (red line with + mark)
and after (green line with × mark) stepwise optimization of the TBM steering parameters. In this figure, it can be
observed that the optimization procedure is first activated in the 9th excavation step, continuing with an updated value
of the face and grouting pressure in each step until the end of the tunnel section.

Figure 13 shows the optimized values of the face support (Fig. 13a) and the grouting pressure (Fig. 13b), respec-
tively, in comparison with the initial design parameters. In this figure, it can be seen that the face pressure is almost
constantly increased from ≈ 160 kPa to ≈ 175 kPa, while the grouting pressure has a considerably larger variation
during the TBM advance due to the high sensitivity of this process parameter w.r.t. the surface settlements as shown
in Fig. 8. Furthermore, it is observed from Fig. 13b that a significant drop of the optimized grouting pressure occurs
after the 30th TBM advance step. This drop is a consequence of the tendency of the settlements at the measurement
point (S5) to become positive.

Comparing the results of this hybrid FE and surrogate model-based optimization strategy with the surrogate model-
based steering control presented in the previous subsection, it is concluded that both strategies satisfy the objective of
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Figure 13. Temporal development of the support and grouting pressure during the hybrid finite element and surrogate model-based optimization of
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keeping the surface settlements below the tolerated limit. However, the FE and surrogate model-supported steering
shows an advantage due to the fact that the optimization is continuously supplied with the physical model response
and that the steering parameters are iteratively determined based on this response.

In Section 4.3.1, the support and grouting pressures are optimized for the complete tunnel section such that the
maximum settlements do not exceed tolerated values. Note that this results in positive displacements (heaving) in the
last monitoring point. In the hybrid FE and surrogate model-supported steering, the iterative optimization provides an
optimal solution for each TBM advance step based on the computed settlements, which results in reduced grouting
pressures in the last steps (Fig. 13b) satisfying the control objective and avoiding the heaving at the same time. The
disadvantage of the new approach as compared to surrogate model-based steering is that it requires the computation
of the full 3D finite element model in each advancement step, which is connected with larger computational costs
as compared to the surrogate model technique. However, since the TBM process parameters are calculated from
numerical simulations of individual advancement steps, depending on the size of the model, this requires computation
times in the range of 5–30 minutes, depending on the used hardware. This response time is still acceptable to allow
the incorporation of the optimized steering parameters and the computational results into the decision making process
at the construction site.
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One of the major advantages of the FE supported steering is its ability to directly access the effect of steering on all
structural components of the system. In Fig. 14, the deformation of a lining ring (Fig. 14a) as well as the evolution of
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structural forces during construction (Fig. 14b) for initial (solid lines) and optimized (dashed lines) process parameters
are presented. The deformed configuration of the ring, scaled with factor 500 in Fig. 14a, shows that the optimization
of process parameters results in a smaller deformation of the lining. This is a consequence of the larger grouting
pressure (Fig. 13b), which has a nearly hydrostatic distribution and leads to a dominantly convergence deformation
mode and a reduced ovalization as compared to the lower initial grouting pressure. This is directly reflected in the
temporal evolution of bending moments (M) in the lining, plotted in Fig. 14b for the crown, the springline and the
invert, which are all reduced when using the optimized grouting pressure. On the contrary, the significantly larger
grouting pressures after optimization lead to larger normal forces (N).

5. Conclusions

In this paper, a computational strategy for a simulation and monitoring-supported steering of TBMs in real-time
has been proposed, which is characterized by combining a process-oriented 3D finite element model and accompa-
nying surrogate models to update the model parameters according to monitoring data and to provide continuously
optimized steering parameters such as the grouting or the face pressure to keep the tunnelling induced settlements
below a tolerated limit. This procedure was compared to a strategy recently proposed by the authors, which was com-
pletely based on surrogate models, restricting the use of the original 3D FE model to a tool for the (offline) training
of the surrogate model in the design stage of the project.

The proposed new method consists of three major steps: Firstly, an efficient method for the update of the geotech-
nical parameters of the computational model for mechanized tunnelling according to monitoring data acquired during
the construction process is presented. For this purpose, which involves a large number of realizations, surrogate
models based on RNNs are trained in an offline mode in the design stage of a project. The use of RNNs allows to
account for the time dependency of the tunnelling process. The relevant geotechnical parameters subject to an update
have been selected a priori for the tunnelling section by a sensitivity analysis for parameter ranges obtained from the
geotechnical report to preselect the most influencing parameters before creating the surrogate model. Secondly, TBM
process parameters used for the stepwise analysis of the tunnelling process are optimized in each excavation step ac-
cording to prescribed limits for the target settlements. The computation of the optimized process parameters is again
accomplished by means of the surrogate model according to the proposed strategy. For the forward analyses during
the tunnel advancement, a process-oriented finite element model is used to predict the settlements in the forthcoming
steps and, after having optimized process parameters, to predict the complete system response, i.e. the settlements,
pore pressures or lining forces.

This method was applied using data of the Wehrhahn-line metro project in Düsseldorf, Germany. The finite
element simulation model was created based on data obtained from the TIM for a chosen tunnel section. The actual
advance rates of the TBM used in the project have been properly implemented in the simulation model within all
excavation steps. In the presented examples, the support and grouting pressures have been updated during the advance
of the TBM to keep the tunnelling-induced settlements below tolerated limits during all excavation steps.

It was demonstrated that the surrogate model-based TBM steering support allows for the determination of opti-
mized steering parameters in a few seconds. Although the accuracy of the predictions may be satisfactory for most
practical purposes, it was also shown that evidently, the response obtained from the surrogate model relies on a certain
prescribed range of values for the parameters and does not provide the complete insight into the physics behind the
interactions between the tunnel advancement process, the surrounding soil and the existing buildings. As was shown
by a comparative analysis, this disadvantage of the surrogate model technique is compensated by the proposed novel
hybrid FE and surrogate model-based approach, since in this procedure, the actual model response is predicted by
the 3D process-oriented finite element model, in which all interactions are incorporated independent of the range of
parameters. Here, the surrogate model takes the role of determining the updated geotechnical parameters and the op-
timized steering parameters, respectively. Another advantage of this hybrid method is that in contrast to the surrogate
model-based strategy, one can follow the influence of the selected steering parameters through all components of the
tunnelling project, which are represented in the numerical simulation model, e.g. the pore pressure distribution in the
soil or the level of stresses in the lining shell. This is not possible when using surrogate models only.

Evidently, compared to the surrogate model-based approcah, the required computation time is higher. However,
since the model is used stepwise simultaneously with the actual tunnel advance, the required response time (in the
range of ∼ 5–30 minutes even for large models as used in the presented Wehrhahn-line project) is acceptable to allow
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the incorporation of the computational results and the optimized steering parameters into the decision making process
at the construction site.

It should be emphasized that this method can be extended by adding multiple criteria for triggering and controlling
the process optimization, including target parameters such as the residual safety against loss of face stability in addition
to surface settlements or settlement inclinations. Furthermore, a priori information on parameter sensitivity available
from the design stage may also be used in the parameter identification process performed during the advancement
process to govern the choice and/or magnitude of the optimized TBM parameters.

Evidently, an important ingredient for the model-based determination of process parameters is the consideration
of the uncertainty of the geotechnical parameters in front of the tunnel face. This was not addressed in the paper.
Uncertainty models such as fuzzy or combined fuzzy stochastic approaches can be incorporated in the proposed
concept and may also be performed in real-time. Results from current research on fuzzy stochastic approaches for real
time steering of the TBM advancement process in mechanized tunnelling will be presented in a follow-up publication.
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[21] J. Ninić, Computational strategies for predictions of the soil-structure interaction during mechanized tunneling, Ph.D. thesis, Institute for
Structural Mechanics Ruhr University Bochum (2015).
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[24] S. Freitag, B. T. Cao, J. Ninić, G. Meschke, Hybrid surrogate modelling for mechanised tunnelling simulations with uncertain data, Interna-
tional Journal of Reliability and Safety 9 (2/3) (2015) 154–173. doi:10.1504/IJRS.2015.072717.

[25] S. Freitag, W. Graf, M. Kaliske, Recurrent neural networks for fuzzy data, Integrated Computer-Aided Engineering 18 (3) (2011) 265–280.
[26] J. Amann, A. Borrmann, F. Hegemann, J. Jubierre, M. Flurl, C. Koch, M. König, A refined product model for shield tunnels based on a

generalized approach for alignment representation, in: Proc. of the 1st ICCBEI 2013, 2013.
[27] F. Nagel, J. Stascheit, G. Meschke, Process-oriented numerical simulation of shield tunneling in soft soils, Geomechanics and Tunnelling

3 (3) (2010) 268–282.
[28] A. Zell, Simulation neuronaler Netze, Addison-Wesley, Bonn, Paris, 1994.
[29] G. Bui, J. Stascheit, G. Meschke, A parallel block preconditioner for coupled simulations of partially saturated soils in finite element analyses,

in: The Third International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp, 2013, p. paper 24.
[30] J. Stascheit, C. Koch, F. Hegemann, M. König, G. Meschke, Process-oriented numerical simulation of mechanized tunneling using an IFC

based tunnel product model, in: Proceedings of the 13th International Conference on Construction Applications of Virtual Reality (CONVR),
London, 2013.

[31] P. Mark, W. Niemeier, S. Schindler, A. Blome, P. Heek, A. Krivenko, E. Ziem, Radarinterferometrie zum Setzungsmonitoring beim Tunnel-
bau, Bautechnik 89 (2012) 764–776.

[32] S. Schindler, F. Hegemann, A. Alsahly, T. Barciaga, M. Galli, C. Koch, K. Lehner, An interaction platform for mechanized tunnelling.
Application on the Wehrhahn-line in Düsseldorf (Germany), Geomechanics and Tunnelling, 7 (2014) 72–86.

[33] D. Drucker, W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics 10 (2) (1952) 157–162.
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Appendix

Algorithms for surrogate model generation, model update and steering of TBM
The simulation and monitoring supported steering is implemented as a collection of Python scripts, which is used

in a highly automated manner to generate surrogate models for selected tunnel sections and to perform inverse analysis
of material and process parameters based on measured and tolerated settlements. The steering support tool consists
of six main components (“classes”): The FE simulation, the data generator, sensitivity analysis, the RNN surrogate
model, the PSO used as the optimization tool and data connected with the construction process. Each class is provided
with the list of respective objects and parameters which are summarized in Fig. 15.

Constructionjprocess
PmeasurementsjTsn

mes2
PtoleratedjsettlementsjTstol

n2j
PmaterialjparametersjTmpi2
PsteeringjparametersjTspi2

[Initializejfirstjstepjforjgivenjsection
[updatejparameters
jjjjj

RNN
Parchitecture
Psynapticjweights:jwij]jcij

PinputjparametersjTxi2
PoutputjparametersjTok2
PtargetjoutputjTtk2

[CalculatejoutputjTEqSjTU22
[jTrainjTEqSjTW22
[jOptimizejarchitecturej[WU]

PSO
PnumberjofjparticlesjTnpart2
PpositionjandjvelocityjTpij]jvij2
Pinputjparameters
PobjectivejfunctionjTF2
PtrainedjsurrogatejmodeljTRNN2

[jInitialzejsolutions
[jEvalatejobjectivejfunction
[jUpdatejparameters

FEjsimulation
Pgeometryj
PmaterialjparametersjTmpi2
PprocessjparametersjTspi2

[Setjboundaryjcondtions
jTsupportjgroutingjpressure2
[Excavationjstep
[Ringjcontructionjstep
[StandjstilljTconsolidation2
[Writejoutputjforjmeasuredjpoint
jjjjjj

Senistivityjanalysis
Pnumberjofjinputjparameters
Pinputjxij

Poutputjyij

[CalculatejElementaryjeffectjEijj
[CalculatejabsolutejmeanjofjEijj

DatajGenerator
PFEjsimulationjmodeljTFEsim2
Pdesignjparametersj
Prangesjofjparameters
Psamplingjmethod
Pcomputationaljresources

[Generatejsimulationsj
[Computejinjparallel
[WritejthejinputPoutputjfiles
[Filterjthejnoise

Figure 15. Main classes of the steering support tool including main objects and functions.

Initialize First Construction Step

mp0 = designmaterialparameters

sp0 = designprocessparameters

Predict settlements using RNN for monitoring point n

sn = RNN.CalculateRNNOutput (mp0, sp0) - Eq. (1)

sn = smes
n

Yes No

mpi = mp0

Back analysis of material parameters using RNN-PSO

PSO.InitializeParticles (pij, vij)

i < num of iterations

for each particle (j)

sn = RNN.CalculateRNNOutput (pj,i+1, sp0)- Eq. (1)

PSO.EvaluateObjectiveFunction (sn, stol) − Eq. (5)

Update particle positions and velocity: vj,i+1, pj,i+1- Eq. (4)

mpident = pglobal
best

Table 4. Algorithm for model update: Identification of the soil parameters based on in situ measurements.
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Sensitivity analysis for selection of important parameters

i < num of params

j < num of params

k < num of intervals

DataGenerator.GenerateSimulations (xj, xi + ∆)

DataGenerator.ComputeInParallel ()

IO = DataGenerator.WriteInputOutputForSelectedPoints (sn)

∆+ = ∆

Ei
j = SensitivityAnalysis.CalculateElementaryEfect (io)

µ∗j = SensitivityAnalysis.CalculateSensitiviyMeasures (Ei
j)

x∗m = SensitivityAnalysis.SelectImportantParameters ()

Generation of surrogate model

DataGenerator.HypercubeSampling (x∗m)

i < num of samples

DataGenerator.GenerateSimulations ()
DataGenerator.ComputeInParallel ()

DataGenerator.WriteInputOutputForSelectedPoints (io)

DataGenerator.FilterNoise ()
RNN.OptimizeArchitecture().Train (IO)

Return : architecture,wij, cij
Table 3. Algorithm for the generation of reliable surrogate models

Initialize surrogate model

mpi = mpident

sp0 = designprocessparameters

Predict settlements with trained RNN
sn = RNN.CalculateRNNOutput (mpident, sp0) - Eq. (1)

sn < stol

Yes No

spi = sp0

Back analysis of process parameters using RNN-PSO

PSO.InitializeParticles (pij, vij)

i < num of iterations

for each particle (j)

sn = RNN.CalculateRNNOutput (mpident, pj,i) - Eq. (1)

PSO.EvaluateObjectiveFunction (sn, stol) − Eq. (5)

Update particle positions and velocity: vj,i+1, pj,i+1 - Eq. (4)

spoptim = pglobal
best

Table 5. Algorithm for surrogate model-based steering
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