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Abstract
Background and objective: In human-machine (HM) hybrid control 
systems, human operator and machine cooperate to achieve the control 
objectives. To enhance the overall HM system performance, the 
discrete manual control task-load by the operator must be dynamically 
allocated in accordance with continuous-time fluctuation of 
psychophysiological functional status of the operator, so-called 
operator functional state (OFS). The behavior of the HM system is 
hybrid in nature due to the presence of both discrete task-load (control) 
variable and continuous operator performance variable. 
Methods: Petri net is an effective tool for modeling discrete event 
systems, whereas for hybrid system involving discrete dynamics, 
generally Petri net model has to be extended.  Instead of using 
different tools to represent continuous and discrete components in a 
hybrid system, this paper proposed a method of fuzzy inference Petri 
nets (FIPN) to represent the HM hybrid system comprising a 
Mamdani-type fuzzy model of OFS and a logical switching controller 
in a unified framework, in which the task-load level is dynamically 
reallocated between the operator and machine based on the model-
based OFS prediction. Furthermore, for the purpose of validation of 
the framework suggested, this paper used a multi-model approach to 
predict the operator performance based on three 
electroencephalographic (EEG) variables via the Wang-Mendel (WM) 
fuzzy modeling method. The membership function parameters of 
fuzzy OFS model for individual experimental participant were 
optimized by using artificial bee colony (ABC) evolutionary 
algorithm. Three performance indices, RMSE, MRE, and EPR, were 
computed to evaluate the overall modeling accuracy. 
Results: Experiment data from six participants are processed and 
simulated, the results show that the proposed method(FIPN with 
adaptive task allocation) yields better performance with lower 
breakdown rate(from 14.8% to 3.27%) and higher human 
performance(from 90.30% to 91.99%). 
Conclusions: The simulation results of FIPN-based adaptive HM 
(AHM) system on six experimental participants demonstrated that the 
FIPN framework provides an effective way to model and 
regulate/optimize the OFS in HM hybrid systems composed of 
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1. Introduction
With the rapid development of automatic control and 

automation technologies, humans rarely need to participate in 
manual control tasks in many engineering fields. In terms of 
supervision and decision-making, a well-trained human 
operator may perform better than machines. However, a long-
duration attention to (or concentration on) control tasks likely 
results in fatigue of the operator. On the other hand, since 
computers or mechanical controllers are utilized to replace the 
roles of human in control loops, the human operator may lose 
situational awareness (SA), which makes it impossible for 
him/her to cope with unforeseen emergency or urgent events in 
real time. Thus, it is necessary to find a way to allocate 
dynamically the tasks between human operator and machine 
computer. In this connection, adaptive allocation of task-load is 
important for a large class of human-machine integrated 
systems. An adaptive task allocation (ATA) strategy was 
integrated into a human-machine process control system to 
assign some of the control tasks to computer-based controllers 
temporarily once the risky operator functional state (OFS) is 
detected in [1]. In [2], the following switching logic was 
proposed: when OFS is effective, the current task allocation 
remains unchanged; when risky OFS caused by a loss of SA 
occurs, several tasks would be assigned to operator to keep 
his/her maximum engagement with the tasks; and when risky 
OFS caused by high cognitive load is detected, several tasks for 
operator would be reallocated to computers temporarily with 
particular aiding (or assistive) strategy triggered. In this way, 
operator can be attentive but without cognitive overload and the 
operator performance (including SA) may be maintained at a 
desired level.

In order to achieve adaptive functional allocation, accurate 
assessment of OFS is essential. In our previous work [3], 
support vector machine was used to classify the mental 
workload, whereas in [4] and [5], the index time in range (TIR) 
was used to quantify the operator performance and both 
adaptive-network-based fuzzy inference systems (ANFIS) and 
genetic algorithm (GA) based fuzzy systems were used to 
evaluate the OFS. The work demonstrated that fuzzy system is 
a powerful tool for OFS assessment. In [1] and [6], the authors 
built predictive models to predict the OFS based on the 
measured electroencephalographical (EEG) data. The ATA is 
inspired by model predictive control (MPC) technique. A 
model based hybrid predictive control was proposed in [7], 
where the model is fuzzy. The work in [8] showed that for 
hybrid system with discrete inputs, satisfactory control 
performance can be attained by employing the MPC with fuzzy 
models. 

Since the relationship between the operator performance and 
electrophysiological markers is generally unknown, 
complicated and uncertain, the data-driven models are usually 
used to characterize the OFS. Subject-specific models were 
built considering noticeable individual difference. For each 
subject, we constructed an individualized model based on the 

available “training data”. However, there always exists noise, 
artifact and uncertainty (or fuzziness) in the measured 
psychophysiological data. This inspired us to utilize fuzzy 
model to accommodate the uncertainty of intra-session data. 
Wang and Mendel proposed a data-based fuzzy modeling 
method, known as Wang-Mendel (WM) method, in [9]. With 
optimization algorithm, the WM method is able to generate 
fuzzy models directly and accurately from sample data. 
Evolutionary algorithms, such as GA, particle swarm 
optimization, and differential evolution, have been used for 
model optimization in our previous works [4][10][11]. 
Evolutionary algorithm is usually time-consuming (or 
computationally intensive). If the parameters in objective 
function are model-related and the model-construction 
procedure is complex, the whole evolutionary optimization 
procedure is even slower. Compared with the time-consuming 
convergence of evolutionary algorithms with time-consuming 
modeling methods, WM method provides a promising 
alternative for OFS model construction.

Furthermore, in HM systems, human operator functional 
(e.g., workload) state (OFS) would affect operator 
performance. Different (discrete) levels of task difficulty (or 
task-load) lead to different evolution trajectories of the system. 
Different OFS results in different operator performance even 
under the same level of task difficulty. Both the switching 
among discrete levels of task-load and OFS (discrete class) 
transition lead to the discrete phenomenon in the HM system, 
therefore the HM system is characteristically hybrid in general. 
Petri net (PN) is an effective tool for modeling discrete event 
systems, whereas for hybrid system involving discrete 
dynamics, generally Petri net model has to be extended. For 
continuous systems described by a set of ODEs, Z. Ding el al. 
in [12] used Continuous Petri Nets to model. Kaakai et al. 
proposed a simulation model based on hybrid Petri nets to 
evaluate performance of railway transit stations design [13]. 
Fanti el al. constructed a model for freeway traffic and control 
with a First-Order Hybrid Petri Net in [14]. A new framework 
for online monitoring and adaptive control of automation in 
human-machine system was proposed in [4]. However, the 
functions were still separate in that framework, i.e., the discrete 
and continuous components of the system were handled 
separately. Demongodin and Koussoulas argued that it is 
advantageous to represent both continuous and discrete parts of 
a hybrid system in a unified framework. They defined a new 
class of PNs, differential Petri nets (DPNs), to represent 
continuous systems in a discrete-event world [15]. With the use 
of DPN, Davrazos and Koussoulas modelled and analyzed 
state-switched hybrid systems [16]. Furthermore, Hamdi et al. 
used the DPN to design hybrid observer for linear switched 
systems [17]. Looney proposed fuzzy Petri nets (FPN), which 
allow for fuzzy rule-based reasoning [18]. In terms of 
applications, Milinkovic et al. used FPN to model train motion 
and then calculate train delays [19] and Liu et al. used it for 
knowledge representation [20]. Two types of fuzzy timed Petri 
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nets (FTPN) were proposed in [21] and [22]. Ding et al. 
assigned a fuzzy firing time to the transitions in FTPN [21 
whereas in [22] the timing effect was represented by fuzzy sets. 
Though FTPN performs well in (discrete) process modeling, it 
is not sufficient to model a continuous-time fuzzy system. 
Based on DPN, Ding et al. used PNs to represent switched 
Takagi-Sugeno-Kang (TSK) fuzzy systems [23]. Their work 
provides a way to analyze the switched fuzzy systems by 
checking the properties of PN (such as deadlock detection [24]) 
and to use the PN model for further system implementation. 
These work showed the strength of PNs for representing fuzzy 
inference systems (FIS). It is well-known that the TSK and 
Mandani types are two major classes of FIS. The TSK fuzzy 
models have been widely used in the aforementioned work in 
virtue of its ease of mathematical analysis. Nevertheless, TSK 
fuzzy models might not be suitable for representing the 
linguistic-rule-based knowledge. Due to the interpretable rule 
base, Kaur et al. suggested the use of Mamdani-type FIS 
particularly for decision support applications [25].

Based on DPN [15], in this work we proposed a new type of 
Petri nets, named fuzzy inference Petri nets (FIPN), to represent 
the behavior of hybrid system, i.e., the continuous and discrete 
part of FIPN is fuzzy model (OFS model here) and task 
allocator (controller here), respectively. In this work, HM 
system is treated as a hybrid dynamic system; FIPN is the 
method for modeling HM system. However, with only data, 
FIPN could not be able to model the system. So the data-driven 
modeling method-WM method could be employed, and 
Mamdani-type fuzzy rules could be generated. What’s more, 
the parameters in WM method should be optimized for a better 
performance, so Artificial Bee Colony (ABC) was employed to 
enhance the performance of WM method. For the purpose of 
validation of the proposed method, we used an individualized 
fuzzy model to predict the OFS of an operator. On the basis of 
that, dynamical task reallocation is realized. There is already 
several existing work on OFS modeling, e.g., [1-6]. 
Nevertheless, most of the developed models using TIR as the 
model output are basically not dynamical, but static. However, 
the current value of TIR may be highly correlated to its 
historical data. For this reason, in this work we took the 
difference of TIR between two neighboring sampling instants 
as the model output. Moreover, we calculated three 
performance indices, namely root mean square error (RMSE), 
mean relative error (MRE) and effective prediction rate (EPR), 
to evaluate different aspects of fuzzy modeling performance.

The remainder of this paper is organized as follows: In Sect. 
2, we describe the data acquisition experiment and data 
preprocessing scheme. Section 3 introduces the ABC-based 
WM method and proposes fuzzy inference Petri nets. In Sect. 4, 
fuzzy model of HM system is constructed and simulation of 
ATA-based HM system is performed to validate the feasibility 
of the proposed method. Section 5 concludes the paper with an 
outline of future work.

2. Experiments and Data Preprocessing
To acquire physiological data of human operator under 

different levels of cognition-demanding task-load, we designed 
data acquisition experiment using an experimental procedure 
similar to that in our previous work [26]. A detailed description 
of the experimental design scheme and procedure is given in 
this section.

2.1 Experimental Environment
The machine part of HM system is simulated by a software 

simulation platform, developed by Hockey, Manzey and others 
[28] to simulate Automation-enhanced Cabin Air Management 
System (AutoCAMS) on board of a spacecraft, submarine or 
other safety-critical and self-contained systems, another 
version of which was also used in [4]. As will be shown later, in 
comparison with [4] we designed different experimental 
procedure and used a different number of measurement 
electrodes in the current study.  The AutoCAMS consists of 
four subsystems: O2 concentration, air pressure, CO2 
concentration, and temperature. Each subsystem can be 
controlled by either human operator in manual mode of 
operation or by computer in automatic mode of operation. The 
output trajectories of these four subsystems were monitored 
and displayed in real time. The level of actuator sensitivity 
(LAS) is also variable for each subsystem. In the experiment, 
we used standard and high LAS. Under high LAS, the controlled 
variable is changing rapidly (i.e. operator must pay more 
attention on the system functioning and thus mental workload 
of the operator is high), while standard LAS leads to a more 
sluggish process. Take O2 subsystem as an example; in 
standard LAS it pumps 0.07% O2 into the cabin from oxygen 
tank every second when the valve is open, whereas in high LAS 
the rate is 0.22% per second. With high LAS, the changing rate 
is much higher and manual control tasks imposed on the 
operator become more difficult, indicating a higher level of task 
difficulty than standard LAS, hence an operator has to 
attentively invest more mental effort in order to manually 
control the entire system around desired set-points. The EEG 
data was measured by using Nihon-Kohden equipment 
connected to the experimental PC. The AutoCAMS software 
was run on another laptop computer.

2.2 Experimental participants and procedure
Six volunteering graduate students (participant A-F, aged at 

23-24 years) at the East China University of Science and 
Technology, Shanghai, were finally selected as the participants 
of our experiments after extensive training on the process 
control tasks under the Auto-CAMS virtual-reality (VR) 
environment. Since we will develop and test participant-
specific models instead of a generic model subsequently, the 
sample size of the participants suffices even though it can be 
certainly larger. All participants were healthy, short-haired 
(long hair might interfere in the EEG measurement), male, 
right-handed, and majored in control systems engineering. 
Each participant underwent a 2-hour training session arranged 
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three to five days before the first formal experimental session, 
to make sure that he is capable of skillfully commanding 
manual control tasks under Auto-CAMS task environment. 
Through the specifically-designed training procedure, all 
participants became familiar to the software simulation 
platform as well as the manual control task skills and the 
manifest performance decline is usually due to mental fatigue 
accumulated during the long-duration session and/or low (or 
poor) OFS, instead of lack of manual skills and/or experience.

Each participant was engaged in two sessions of experiment, 
which were conducted starting from 2:00 PM on Friday of two 
different weeks. Each session lasted 50 min, which consists of 
10 task-load conditions each lasting 5 min. In conditions 1, 4, 7, 
and 10, all four subsystems were automatically controlled by 
the computer and the participant was in a relaxed state. Under 
conditions 2, 5, and 8, the participant was required to manually 
control 2, 3, and 4 subsystems, respectively, in the case of 
standard LAS (as described in Sect. 2.1). More challenging 
manual control tasks appeared in conditions 3, 6, and 9 (i.e., the 
number of subsystems to be manually controlled was 2, 3, and 
4, respectively) in the case of high LAS. At the end of each task-
load condition (with different NOS or LAS in experiment), the 
participant was asked to subjectively report their estimated (or 
perceived) level of mental fatigue, mental effort and anxiety on 
a rating scale of 0 - 100 points (see also our previous work 
[26]). The task-load conditions in a session of experiment are 
illustrated in Fig. 1. The task of participants is to control 
specific subsystems according to the process control 
requirement in each condition.

2.3 Data preprocessing
Using the measurement electrode placement scheme shown 

in Fig. 2, we recorded the EEG data. The placement of 
electrodes was based on 10-20 international electrode system. 
Since ocular artifacts may seriously contaminate the EEG 
signal, we also recorded the vertical electrooculogram (VEOG) 
from two electrodes placed above and below the left eye of the 
participant (those electrodes might be removed in our future 
experiment with the method proposed in [27]). Ocular artifacts 
were removed by using the same independent component 
analysis (ICA) technique as that in [1]. In this way, clean EEG 
data was acquired.

The raw EEG data was sampled at 500 Hz. Since the 
maximum frequency of EEG signal is usually lower than 40 
Hz, the power spectrum density (PSD) of EEG signal was 
computed via fast Fourier transform (FFT) on a 5-sec segment 
of EEG data. Each EEG measurement channel involves 10 
features (each covering a 4 Hz bandwidth, as shown in Table 
1). 

The operator performance (quantified by time in range - TIR) 
was calculated every second by:

                                (1) (%) 100'T n
n= ×

where  and  denote the number of subsystems in target n′ n
ranges and the number of subsystems, respectively. 
Subsequently the original TIR data was evenly segmented into 
5-s segments, each of which was averaged to make the size of 
EEG and TIR data identical. Take participant C, Session 1 as an 
example, as shown in Fig. 3. The original TIR data was shown 
in the top sub-figure of Fig, 3, where TIR takes the five discrete 
values of 0, 1/4, 2/4, 3/4, or 1 every second (i.e., the temporal 
resolution is 1 s). The result of the 5-sec segment averaging is 
presented in the middle sub-figure of Fig. 3, where TIR∈(0, 

Fig. 2: EEG electrodes placement, including 17 electrodes with two 
referential electrodes (i.e., A1 and A2) placed on earlobes.

Fig. 3: Preprocessing of original TIR data (participant C, Session 1).

Fig. 1: The NOS and LAS in each task-load condition of an experimental 
session (consisting of 10 conditions in total).
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1/20, 2/20, …, 1) takes 21 or less discrete values every 5 s (i.e., 
the time resolution becomes 5 s). However, intuitively the 
temporal fluctuation of OFS should be smoother than the 
change of TIR shown therein. Thus, we smoothed the resulting 
TIR data by moving average with a sliding window length of 30 
s and step size of 5 s. Finally the preprocessed TIR data, used as 
the model output data later, is depicted in the bottom of Fig. 3.

In high LAS condition, the system is varying rapidly and thus 
the participants have to be trained for a long time to execute the 
manual control tasks skillfully and successfully. For this 
reason, the performance breakdown in high LAS might 
correspond to either poor OFS or other factors such as long 
reaction time. The data elicited from high LAS is very noisy and 
hard to interpret. So here we only consider the case of standard 
LAS, i.e., only the EEG data in conditions 3, 6, and 9 were taken 
into account. In condition 10, the participant was relaxed 
without any manual control demand. Furthermore, as 
mentioned above, participants were asked to rate their 
perceived level of mental fatigue, mental effort and anxiety 
during that time, however the step of subjective ratings and 
task-load level switching would possibly interfere in the EEG 
data recording. The removal of the 5-sec data segment was 
based on participants’ experience, which is long enough to 
eliminate the unwanted interference from the measured data. 
Thus, there were 58 data points in each condition and 
348(=58*6) data points for each measurement channel. Finally, 
the data of each feature set was normalized to the unit interval 
[0, 1]. 

In this work, we selected and  as the input , ,,z zAF Pθ α ,zF θ

features of OFS model; we performed gray relation analysis of 
the EEG channels and found the most highly related channel

 based on the time-series data of 6 participants data. The ,zAF θ

other two channels were chosen based on previous work. For 
the reasons for selecting the specific EEG channels, the 
interested readers are referred to Ref. [1] and [2]. The three 
model inputs (i.e., EEG spectral power features) and single 
output (i.e., the primary-task performance variable of the 
operator, TIR) for participant B, C, and D are presented in Fig. 
4.

3 Methods

3.1 ABC-based Wang-Mendel fuzzy modeling method
The ABC algorithm is a swarm optimization based meta-

heuristic algorithm. It was inspired by intelligent foraging 

(a) Participant B

(b) Participant C

(c) Participant D
Fig. 4: The I/O discrete-time data (EEG averaged every 5 s, TIR smoothed 
by moving average of 5s) from two sessions.

Table 1
The Features from the EEG Fz channel
Index Feature

1 Fz,δ (1-4Hz)
2 Fz,θ (5-8Hz)
3 Fz,α (9-12Hz)
4 Fz,β1 (13-16Hz)
5 Fz,β2 (17-20Hz)
6 Fz,β3 (21-24Hz)
7 Fz,β4 (25-28Hz)
8 Fz,β5 (29-32Hz)
9 Fz,γ1 (33-36Hz)
10 Fz,γ2 (37-40Hz)
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behavior of honey bees. In fact, GA, PSO and ABC algorithms 
were compared in our work. It turned out that the newer ABC 
algorithm leads to relatively better optimization result, details 
could be found in Sect. 4.2. In ABC algorithm, the colony of 
artificial bees contains three groups of bees: employed bees 
associated with specific food sources, onlooker bees watching 
the dance of employed bees within the hive to choose a food 
source, and scout bees searching for food sources randomly. 
Fig. 5 is a flowchart of ABC algorithm used to tune the 
parameters of fuzzy OFS model, in which tc is the cycle 
number, MCN is the maximum number of cycles, and tac is a 
predetermined “abandonment criterion”. A detailed description 
of the ABC algorithm can be found in [29].

The WM method is an efficient way to learn fuzzy rules from 
numerical data. For MISO system, its procedure basically 
consists of the following five computational steps:

Step 1 (Partition I/O domains into fuzzy subsets): Partition 
each dimension of I/O domains into 2N+1 fuzzy regions and 
each region is assigned with a membership function (MF) with 
a linguistic label. In our work we chose Gaussian MFs, reasons 
provided in the end of this sub-section. The MF parameters 
were optimized by using artificial bee colony (ABC) algorithm.

Step 2 (Generate fuzzy rules from given data pairs): For a 
given I/O data pair, the membership degree of each dimension 
in different regions is determined. For each dimension, the 
linguistic label with the maximum membership degree is 
regarded as its label. The antecedent of a fuzzy rule is generated 
by connecting all inputs’ linguistic labels with logical “AND", 
while its consequent is the output’s linguistic label. The fuzzy 
rule generated in this step is in the following form: 

IF x1 is A1 and x2 is A2 and … and xn is An, THEN y is B.
Step 3 (Assign a degree to each fuzzy rule): Due to the 

possibly large size of sample dataset, probably there would be 
some redundant or conflicting rules (i.e. rules with same 
antecedent part but different consequence part). To cope with 
this possibility, one way is to assign a (confidence) degree to 
each rule, and accept only the rule with maximum degree in the 
conflicting group. A commonly-used method to assign the 

degree of the rule is to multiply all the membership degrees of 
its antecedents.

Step 4 (Create a combined fuzzy rule-base): Some a priori 
information and expert experience can be incorporated to create 
a combined fuzzy rule base. 

Step 5 (Defuzzification): This step uses the centroid 
defuzzification method given by: 

                                (2) 1

1

K i i
i

K i
i

m y

m
y =

=

⋅
= ∑

∑
where  denotes the center of the i-th output region,  is the iy im
degree of the i-th rule (usually the product of the input 
membership degrees), and K is the number of fuzzy rules. 

Note that, according to the original Wang-Mendel method 
[9], the I/O space is partitioned to fuzzy sub-regions and the 
fuzzy rules are generated from individual training (sample) data 
pairs (see Steps 1 and 2). However, there may be no training 
data in some fuzzy sub-regions, but some testing data might fall 
into those regions. For those regions, there would be no fuzzy 
rules generated due to the lack of training data. In this condition, 
other types (such as triangular or trapezoid) of MFs would lead 
to zero degree of confidence (mi in Eqn. (2)) for fuzzy rules 
generated in other regions (the input membership degree might 
be zero). With Gaussian MFs with an infinitely wide support, 
although the confidence degree may be very small, there is still 
an output of the model. There are also other methods for 
tackling this issue. For example, in [33] the generated rules 
were extrapolated to the entire space. Nevertheless, the use of 
Gaussian MFs is the most straightforward one. 

For example, if the input space of a system is partitioned as 
in Fig. 6, there would be no training data (black dots) in the 
regions 1, 3, 5, 7, and 9. As a result, no fuzzy rules would be 
generated for those regions. With trapezoid MFs (solid line), if 
a testing data (red star) falls within any of those regions, the 
degree of membership to regions 2, 4, 6, 8 are 0, hence each mi 
= 0 in Eqn. (2) and no output would result. However, with 
Gaussian MFs (dashed line), the degree of membership of the 
testing data to fuzzy rules generated from regions 2 and 4 
would be non-zero and thus some output would be acquired 
from the fuzzy rules generated. 

On the other hand, the Gaussian MF is differentiable to an 

Fig. 5: Flowchart of the ABC-based optimization algorithm. 

Fig. 6: An illustrative example of the use of different types of MFs.
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infinite degree, it is suitable to be used in any gradient-based 
optimization algorithm (such as the commonly-used steepest 
gradient descent technique). In [35], Wang and Mendel proved 
mathematically that with a sufficient number of fuzzy partitions 
and fuzzy rules, a fuzzy system, whose output can be expressed 
explicitly as a linear combination of fuzzy (Gaussian) basis 
functions, is capable of approximating any real-valued 
continuous function on a compact set to arbitrarily high 
accuracy. Hence, we adopted Gaussian MFs in this work. A 
detailed introduction of WM method could be found in [9] and 
[33].

3.2 Fuzzy inference Petri net
In this section, a new fuzzy inference Petri net method is 

proposed based on differential Petri net (DPN). The DPNs were 
usually used to model hybrid systems in which continuous part 
was described by differential equations [15], but in our work 
Petri nets were used to model fuzzy rule-based systems with no 
need of precisely-known first principles.

As pointed out above, fuzzy inference Petri net (FIPN) is an 
extension of DPN, which is defined as DPN=<P, T, Pre, Post, f, 
M0, J>, where P is a finite set of places; T is a finite set of 
transitions;  is a function that defines arcs from a Pre( , )i jP T
place to a transition;  is a function that defines arcs Post( , )i jP T

from a transition to a place;  indicates { }: ,f P T D DF→∪
two types of place and transition, D for discrete type and DF for 
differential type; M0 is initial markings, and J is a “timing map” 
which associates a time (real number) with every transition.

The following notation will be used: and  are the pre- o p op
and post-transitions of place p; and are the pre- and post-ot ot
places of transition t; and W is an incidence matrix defined by: 

               (3)( ) ( )
[ ]

Post , Pre ,
P Tij n n

ij i j i j

W w

w P T P T
×=⎧⎪

⎨
= −⎪⎩

For the timing map J, the following two relations hold:
If f ( ) = D, then  (i.e., a delay is associated with jT ( )j jT d=J

the discrete transition ); andjT

If f ( ) = DF ,then , where the maximum jT ( ) ( )j jT V T h=J
firing speed  can be either a constant or a function of the ( )jV T
markings of the differential places connected to the differential 
transition  and h is the time constant.jT

In FIPN used for the purpose of system modeling, two new 
types of arc are introduced in addition to all the components in 

DPN: One is “test arc” and another is “inhibitor arc”, as shown 
in Fig. 7. Test arc is similar to normal arc in its role in enabling 
transitions, which is like an arc from a place to transition and a 
reciprocal arc with the same weight but does not consume any 
tokens (or continuous marking) upon firing of the transition (as 
a result, conflicts can be reduced). Inhibitory arc was first 
introduced by Agerwala [30] and widely used in performance 
modeling and simulation analysis[31]. It prevents a transition 
from firing if the marking of input place at least equals the 
weight of the arc and this behavior does not consume any 
tokens.

A FIPN for switched fuzzy systems basically consists of 
three parts, namely fuzzy inference (continuous) part, step 
control (discrete) part, and switching logic part (discrete too). 

Definition 1: A marked graph is a Petri net in which each 
place has exactly one input and one output transition [32], i.e., 

, for all                        (4)1o op p= = p P∈

According to Definition 1, we can use a marked graph as the 
step control part of FIPN. As an example of FIPN modeling, we 
use a 3-input single output fuzzy model with the following 
three fuzzy rules:

R1: IF A is A1 and B is B1, THEN D is D1.
R2: IF A is A2 and C is C1, THEN D is D2.
R3: IF B is B2 and C is C2, THEN D is D3. 
The Petri net representation of the above fuzzy model is 

shown in Fig. 8. The fundamental idea of FIPN is that DPN is 
equivalent to an FIS if appropriate speed functions are set for it. 
The marked graph can enable or disable the differential 
transitions. A token in place P13 can enable the input transitions 
(with test arc), and after firing P14 takes a token away from P13. 
This disables the input transitions but enables the 
“fuzzification” transitions. Suppose that the holding time for 
P14 is t0, and the “timing map J” of fuzzification transitions is

, where mf is the membership function. After the firing 
0 0

mf
t t

of the fuzzification transitions, the post places would acquire 
 tokens.

0 0
mf
t t mf× =

When there is a token from P14 to P15, the “rules” transitions 
are enabled. The J of rule transitions is

                                         (5)0
0

o kk t
m

t
t
∈∏

where  is the product of markings in all preplaces of o kk t
m

∈∏
transition t. The next event after “rules” is centroid 
defuzzification (Step 5 in Sect. 3.1). The mi in Eqn. (2) are 
calculated by the previous “rules” transitions and are exactly 
the markings in places D1, D2, and D3. When the weights of the 
arcs are set as the centroid and J of the transitions isiy

                  (6)
1

0
0

( ) ( )o o
i

k kk t k t
m m y

t
t

−
∈ ∈

⋅∑ ∑

Fig. 7: The test arc and inhibitor arc.
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The “defuzzification” transition will automatically perform 
the defuzzification step. Place P17 controls the “initialization” 
step since it can enable all the differential transitions (so-called 
“sink transitions”) on the top of Fig. 8. The firing speed of these 
transitions equals the markings in divided by the time ot
constant, hence after firing the state of FIPN will be re-
initialized and new input data can be processed without the 
influence of historical data.

The evolution graph of this FIPN is shown in Fig. 9, where xi 

denotes the model input, µij is the membership degree of xi in 
fuzzy region j, Mi is the confidence level of output yi calculated 
by the “rules” transitions,  is the 

1 1
( ) ( )K Ki

i ii i
y m y m

= =
= ⋅∑ ∑

model output, and “...” represents complicated but meaningless 
markings. After all the calculation, the “initialization” step 
resets the FIPN for the presentation of the next input.

4 Control and Simulation of Human-Machine Hybrid 
System

The modeling, control and simulation of a switched fuzzy 
system are considered in this section. We generated a fuzzy 
predictive model for the HM system and then mapped it to 
fuzzy inference part of an FIPN. Afterwards we proposed a 
switching logic for the FIPN to realize ATA. The block 
diagram of HM control system is shown in Fig. 10. For each 

Fig. 8: A schematic configuration of FIPN representing a fuzzy model comprising three fuzzy rules.

Fig. 9: The evolution graph of FIPN shown in Fig. 8. Fig. 10: The structure of adaptive human-machine hybrid control system.
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participant, the data measured from the 1st experimental session 
were used to construct the model while the data from the 2nd 
session were used as the testing set to check the generalizability 
performance of the model developed. 

4.1 Predictive OFS model
The improved WM method was proposed in [33]. Here we 

use a one-step-ahead predictive model:     
                        (7) ˆ( 1) ( ) [ ( )]y t y t F t+ = + u

where  denotes the EEG input vector,  denotes for ( )tu ˆ( 1)y t +

model output (i.e., TIR time-series) and y(t) is the real TIR value 
at time step t,. respectively.

Eqn. (7) can be rewritten into:
                                   (8) ( ) ( )ŷ t F t∆ = ⎡ ⎤⎣ ⎦u

where .( ) ( ) ( )ˆ ˆ 1y t y t y t∆ = + −

The fuzzy model predicts the temporal change of TIR, 
namely ∆TIR, instead of TIR itself. This is more reasonable 
since TIR is a time-dependent performance variable whose 
current value is dependent upon its past values. 

As mentioned in Sect. 2.3, three inputs ( and ) , ,,z zAF Pθ α ,zF θ

are empirically selected. Since each input fuzzy subset requires 
a place in FIPN, in order to reduce the dimensionality of 
incidence matrix W, all three input domains are partitioned into 

3 fuzzy subsets with linguistic labels of Big, Medium, and Small 
and the output domain is partitioned into 3 fuzzy subsets with 
linguistic values of Negative, Zero, and Positive. Fig. 11 shows 
a comparison of fuzzy division of I/O domains before and after 
optimization. The MF parameters were optimized by the ABC 
algorithm. We quasi-equally divide the data measured from 1st 
experimental session into 5 parts, i.e. 5-fold cross-validation. 
During the process of model construction, we used four fifth of 
the 1st session data as the training set to train a model and the 
rest of the one fifth data as the validation set to further tune the 
model parameters, and the model parameters are average values 
of the results of 5-time optimizations. In every time of 
optimization, the training set was used to train a model with 
WM method and initial parameters, and validation set was used 
to calculate RMSE. In this way, the over-fitting problem is 
mitigated.

For the ABC-based optimization algorithm, colony size was 
40 (including 20 employed bees and 20 onlooker bees), 
MCN=1000, and tac=100. The initial food source xm is 
calculated by:

                        (9)(0,1) ( )mi i i ix l rand u l= + × −

where  is the i-th component of xm,  and  are the lower mix iu il
and upper bound of , respectively. The objective function of mix
ABC is RMSE in Eq. 10:

(a) The initialized MFs (common for all participants)                                           (b) The optimized MFs (participant B)                                    

(c) The optimized MFs (participant C)                                                          (d) The optimized MFs (participant D)                                   
Fig. 11: I/O MFs of fuzzy OFS model: (a) Initial; (b)-(d) Optimized for participant B, C and D, respectively.
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          (10)( )211
1 1

ˆ( 1) ( 1)N
N kRMSE y k y k−

− =
= + − +∑

where  and   are the actual and model output at time ( )y t ˆ( )y t
step t, respectively and N is the size of testing dataset. Note that, 
the model is a predictive model, which means the model output 
is a prediction of TIR in next time step. So there will be only N-
1 point-pairs to calculate.

For each fuzzy OFS model, xm  is the parameter vector of the 
I/O Gaussian MFs, each containing central (or mean) parameter 
µ and width (or standard deviation) parameterσ, given by:

   (11)1 1 1 1 1 1 2 2 2 2 2 2 3

3 3 3 3 3

[
]

m s s m m b b s s m m b b s

s m m b b on on oz oz op op

x µ σ µ σ µ σ µ σ µ σ µ σ µ
σ µ σ µ σ µ σ µ σ µ σ

=

where s, m and b represent fuzzy subsets small, medium, and 
big defined in each input domain, respectively; 1, 2, 3, and o 
represent three model inputs  and model output , , ,, ,z z zAF P Fθ α θ

∆TIR, respectively; and n, z and p represent fuzzy subsets 
negative, zero and positive defined in output domain, 
respectively.

The bounds of the I/O membership function (MF) 
parameters of all I/O variables in the ABC-based optimization 
were empirically obtained. Intuitively, the three MF center 
parameters can be set at 0, 0.5 and 1, respectively. It was also 
found that fuzzy modeling accuracy is insensitive to the change 
of upper and lower bounds. In other words, fuzzy models were 
found to be robust w.r.t. the parameter variation. The model 
parameter optimization results for participant B, C, D are 
presented in Table 2 (averaged results from 5-fold cross 
validation).

Fuzzy rule-bases for participant B, C, and D are shown in 
Tables 3, 4, and 5, respectively. For different participants, 
different model (sometimes even different feature [34]) could 
be applied since individual differences always exist. It is noted 
that when grid partition method is used, there should be a total 
of 27 (=33) fuzzy rules in a complete rule-base. However, WM 
method generates rules directly from training dataset. As a 
result, no rules are generated in those regions in I/O space, in 
which no training data falls. So the number of fuzzy rules by 
WM method can be highly reduced. In this way, the notorious 
issue of ‘curse of dimensionality’ can be overcome, i.e., the 
exponential increase of the number of rules with the input 
dimensionality is avoided. 

From Tables 3, 4, and 5, it can be seen that only 8, 13, and 12 

fuzzy rules are required to precisely model the OFS for 
participant B, C, and D, respectively. Due to the positivity of 
Gaussian MF, there always exists a non-zero membership 
degree for each rule. In other words, all rules in a rule base are 
fired to certain extent. Even if the testing data is settled out of 
the training input regions, an accurate output can be calculated 
owing to the good generalizability of the FIS, who is essentially 

Table 3
Fuzzy rule-base of fuzzy OFS model (participant B, NOS=4)

Rule # AFz Pz Fz ∆TIR
1 Small Small Small Zero
2 Small Small Medium Negative
3 Small Medium Small Zero
4 Small Medium Medium Zero
5 Medium Small Small Zero
6 Medium Small Medium Positive
7 Medium Medium Small Zero
8 Medium Medium Medium Positive

Table 4
Fuzzy rule-base of fuzzy OFS model (participant C, NOS=4)

Rule # AFz Pz Fz ∆TIR
1 Small Small Small Zero
2 Small Small Medium Negative
3 Small Medium Small Zero
4 Small Medium Medium Zero
5 Medium Small Small Positive
6 Medium Small Medium Negative
7 Medium Small Big Zero
8 Medium Medium Small Positive
9 Medium Medium Medium Positive

10 Medium Big Small Positive
11 Medium Big Medium Zero
12 Big Small Medium Negative
13 Big Medium Medium Positive

Table 5
Fuzzy rule base of fuzzy OFS model (participant D, NOS=4)

Rule # AFz Pz Fz ∆TIR
1 Small Small Small Zero
2 Small Small Medium Negative
3 Small Medium Small Negative
4 Medium Small Small Zero
5 Medium Small Medium Positive
6 Medium Medium Medium Positive
7 Medium Medium Big Negative
8 Medium Big Medium Negative
9 Big Small Medium Zero

10 Big Medium Medium Zero
11 Big Big Medium Negative
12 Big Big Big Zero

Table 2
The optimized model parameters for participant B, C, and D

Participant Input 1: AFz,θ Input 2: Pz,α Input 3: Fz,θ Output: ∆TIR
Small Medium Big Small Medium Big Small Medium Big Negative Zero Positive

µ

B -0.0466 0.6065 1.0456 0.0180 0.5813 1.0287 -0.0108 0.5416 0.9611 -0.0319 -0.0016 0.0415 
C 0.0814 0.6060 1.1364 -0.0297 0.4815 1.0665 0.0718 0.5267 1.0547 -0.0524 0.0017 0.0434
D -0.0127 0.4580 0.9404 0.0079 0.3688 1.0481 0.0193 0.4544 0.9576 -0.0439 0.0009 0.0376 
ui 0.15 0.65 1.15 0.15 0.65 1.15 0.15 0.65 1.15 -0.025 0.005 0.055
li -0.15 0.35 0.85 -0.15 0.35 0.85 -0.15 0.35 0.85 -0.055 -0.005 0.025

σ

B 0.1399 0.1808 0.1334 0.1057 0.1771 0.1361 0.1314 0.1984 0.1261 0.0122 0.0130 0.0135 
C 0.0957 0.1722 0.1356 0.1032 0.2129 0.1105 0.1279 0.1878 0.1529 0.0128 0.0096 0.0134
D 0.1490 0.1238 0.1651 0.1039 0.2323 0.1321 0.1470 0.1701 0.1813 0.0106 0.0157 0.0121 
ui 0.20 0.26 0.20 0.20 0.26 0.20 0.20 0.26 0.20 0.015 0.020 0.015
li 0.05 0.10 0.05 0.05 0.10 0.05 0.05 0.10 0.05 0.010 0.005 0.010
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used to reconstruct (or approximate) the continuous output 
surface (or nonlinear I/O mapping function). The analytical 
function formulation of fuzzy OFS model can be explicitly 
expressed by:
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         (12)( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2
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1 2 3
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e
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σ σ σ

⎡ ⎤− − −
⎢ ⎥− + +
⎢ ⎥⎣ ⎦

=
⎡ ⎤− − −
⎢ ⎥− + +
⎢ ⎥⎣ ⎦

=

= ∑

∑
where yi=µoi is the defuzzified (crisp) output (i.e., the core or 
central value of the output Gaussian MF) of the i-th rule; and µ1i 
and σ1i, and µ2i and σ2i, and µ3i and σ3i, are the three input MF 
parameters of the i-th rule. 

All those values can be found in Table 2. Take participant B, 
NOS=4 (see fuzzy rule-base in Table 3) as an example, for the 
5th rule (i.e., i=5, K=8), µ1,5= 0.6065, σ1,5= 0.1808, 
µ2,5=0.0180, σ2,5 = 0.1057, µ3,5 = -0.0108, σ3,5 = 0.1314, and µoz 

= -0.0016, σ3,5= 0.0130. Given all parameters, we can calculate 
the model output for every input by using Eqn. (12), the explicit 
mathematical formulation of fuzzy model.

As shown in Fig. 10, we used a multi-model approach, i.e., 
we built sub-models in different task-load conditions. In 
essence, this approach resulted in a composite fuzzy model 
which is switched by the level of task-load.

4.2 OFS modeling results
The modeling result RMSE was based on the testing set.
To evaluate the overall modeling performance, we calculated 

three performance indices of MRE, RMSE, and EPR. The first 
index is computed by:

          (13) 
1

1
1

1
ˆ( 1) ( 1)

( 1)
N
kMRE

N
y k y k

y k
−

=
=

−
+ − +

+∑
where  and   are the actual and model output at time ( )y t ˆ( )y t
step t, respectively and N is the size of testing set.

The TIR slightly lower than a preset threshold may indicate 
that the operator is in a vulnerable or risky functional state. 
Otherwise, the TIR considerably lower than the threshold may 
simply indicate operator performance breakdown. The third 
performance index EPR is thus defined as the rate (in 
percentage) of correct prediction of those risky, vulnerable or 
performance breakdown states by the OFS predictive model.

When TIR is lower than certain threshold (preset 
empirically), the operator is unable to cope with high-workload 
conditions and task reallocation is required. Hence, the EPR 
index is an important measure of the ATA system. A model 
with small RMSE and MRE but low EPR would lead to an ATA 
system that cannot reallocate the task-load on time. This means 
that EPR is complimentary to the first two commonly used 
performance metrics, particularly when the model is used for 
ATA system design. 

We determined the threshold in the following way. We 
compared the subjective ratings and TIR data and found that in 
the “subjectively perceived challenging” task-load condition 
(e.g., NOS=4) the TIR values are usually lower than 80%. 
Furthermore, as the current TIR is influenced by its past values, 
the TIR is calculated by moving average of its instantaneous 
values. Thus, when TIR is lower than 80% with NOS=4, more 

than 1 subsystem has been out of target range for some time. In 
the case of NOS=3 or 2, the data points dropped below 80% 
were rare. Notwithstanding, after a long concentration on the 
execution of manual control tasks, it is very likely that operator 
has already been in a vulnerable or high-risk functional state. In 
the raw data there exist data points where TIRs dropped below 
90%, so we preset the threshold for NOS=3 as 90%, while 
NOS=2 as 95%.

As examples, the sub-model testing results for participant A, 
B, C, D, E and F are shown in Fig. 12. Note that, the output of 
the predictive model is a prediction of TIR at the next time step. 
That is why in Sect. 2.3 we got 58 data points in each condition, 
whereas in Fig. 12 there are only 57 in each subfigure. In 
addition, the 1st predicted model output should be compared 
with the 2nd true TIR. Hence there exists a shift between the true 
TIR and predicted one. In this paper, the indices are made 
consistent (unified) for an easier comparison.

Table 6
 The accuracy of the participant-specific sub-model 1 (NOS=2)

Participant RMSE[×10-2] MRE[%] EPR[%]
A 1.592 1.12 84.62
B 0.930 0.88 93.02
C 1.621 1.04 78.57
D 1.094 0.81 NaN*

E 2.922 2.02 77.78
F 3.078 2.27 100.00

Mean 1.873 1.36 89.00
* NaN means that there is no data point falling below the threshold and 
thus the denominator of the EPR formula is 0. When calculating the mean 
value presented in the last row of the table, we assume NaN=100.

Table 7
 The accuracy of the participant-specific sub-model 2 (NOS=3)

Participant RMSE[×10-2] MRE[%] EPR[%]
A 1.649 1.16 85.71
B 3.759 3.99 100.00
C 1.480 1.01 100.00
D 1.184 1.07 93.18
E 1.367 0.85 NaN
F 1.476 0.89 NaN

Mean 1.819 1.50 96.48
Table 8

The accuracy of the participant-specific sub-model 3 (NOS=4)
Participant RMSE[×10-2] MRE[%] EPR [%]

A 4.351 4.65 93.75
B 7.165 8.21 100.00
C 3.290 3.11 78.57
D 4.736 4.82 79.17
E 7.156 7.19 100.00
F 2.346 2.12 NaN

Mean 4.841 5.02 91.91
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Tables 6, 7, and 8 present the performance indices of the 
three sub-models in the condition of NOS=2, 3 and 4, 
respectively. With the increase of NOS, both the modeling 
RMSE and MRE increase for each participant. This is 

reasonable since more dynamical variations in TIR over time 
are expected with the increase of NOS. In Fig, 11, it can be seen 
that when NOS=4 TIR takes values in the interval between 60% 
and 100%, whereas the range shrinks to 80% and 100% when 

(a) Participant A, NOS=3                                                          (b) Participant A, NOS=4

(c) Participant B, NOS=3                                                          (d) Participant B, NOS=4

(e) Participant C, NOS=3                                                          (f) Participant C, NOS=4

(g) Participant D, NOS=3                                                           (h) Participant D, NOS=4

(i) Participant E, NOS=3                                                          (j) Participant E, NOS=4

(k) Participant F, NOS=3                                                           (l) Participant F, NOS=4
Fig. 12: The testing results of predictive sub-models for each participant.
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NOS=3. The EPR index is defined as the ratio between the 
number of actual data points corresponding to performance 
breakdown and the number of correctly predicted breakdown. 
Its denominator increases with larger NOS, while its numerator 
may also increase with larger NOS under certain model 
accuracy. Thus there is no straightforward (monotonic) 
relationship between EPR measure and NOS, as shown in the 
last column of Tables 6 – 9.

Table 9 shows the averaged accuracy of OFS modeling for 
each participant with ABC, which is in fact an average of the 
respective entries in Table 6, 7 and 8. As per the respective 
definition, the lower RMSE and MRE and the higher EPR, the 
better performance the model possesses. In [1], the three 
performance indices, RMSE, MRE, and EPR, of the composite 
model, comprising three sub-models corresponding task-load 
conditions (NOS=1, 3, and 4) were 9.419*10-2, 7.020%, and 
58.9%, respectively. In comparison, the prediction performance 
indices of our models (NOS=2, 3, and 4) using the difference in 
TIR as fuzzy model output were improved to 2.844*10-2, 2.62%, 
and 92.47%, respectively. 

As mentioned before in Sect. 3.1, we also tried the other 2 
popular evolutionary optimization algorithms (PSO, and GA) 
to reveal their respective pros and cons. Set the cross-over and 
mutation probability as 0.6 and 0.1 respectively, population 
size as 40, 20 random runs of simulation for each participant 
and 1000 iteration steps per run, the simulation results of the 5-
fold cross validation of the model based on GA are listed in 
Table 10; whereas the results of PSO algorithm are listed in 
Table 11 (20 random runs of the simulation for each participant 
and 1000 iteration steps per run, swarm size 40, learning rate 
c1=c2=2, inertia weight 0.9). 

Comparing the results given in Tables 9, 10, and 11, we can 
see that most average indices of the GA and PSO are inferior to 
those of the ABC algorithm. The coding and decoding schemes 
of GA are complicated. For example, if the binary coding is 
adopted, an accuracy level of 0.001 for a parameter of the 
model requires 10 bits. The number of parameters to be 
optimized is 72, thus for the binary-coded GA, a coded 
individual/chromosome is rather long (720=72 (# parameters) 
*10 (length of binary code)). In addition, GA is 
computationally slow in convergence to the global optima. If 
choosing different initial populations, the optimization solution 
found within a limited number of iterations (i.e., 1000) might 
not be precise enough due to the low probability of mutation 
operator. Furthermore, as the PSO algorithm is sensitive to the 
setting of the initial particles in the swarm and sometimes may 
converge to local optima in a limited number of iterations, the 
s.d. (standard deviation) of its results is larger. With the 
existence of scout bees, local optima can be overcome by the 
ABC algorithm. For the purpose of comparison, the s.d. of 
ABC algorithm is also calculated. It’s always less than 10-7, 
indicating that the ABC algorithm converges within 1000 
iterations. That is why we used the ABC algorithm as the model 
optimization technique.

Based on the multiple sub-models constructed using the WM 
method, the control design and simulation of adaptive human-
machine (AHM) system are described in the following section. 

4.3 Control design and simulation of FIPN-based AHM system
Take the example of participant C, Fig. 13, produced with 

Hybrid Petri Net ICSI Simulator (HISim) by Alberto 
Amengual, International Computer Science Institute, illustrates 
the FIPN used in our control system design (see Fig. 10) and 
simulation studies. For a different participant, only the “Rules” 
part varies in Fig. 13. Analogous to Fig. 8, the fuzzy inference 
part is surrounded by a marked graph, which serves as a step 
controller with discrete control action. A unique feature of Fig. 
13 is that it is essentially a switched (or hybrid) system. The rest 
parts of FIPN in Fig. 13 are similar to those in Fig. 8, as 
described in Sect. 3.2. Such a modular simulation system is 
composed of the following 3 modules:

Module1 - Input data generator: In Fig. 10, the HM system 
part was simulated based on the measured data. The measured 
database of the EEG and TIR were available and the NOS 
switching signal determines which database should be invoked 
and which data-driven sub-models used. In simulation, first we 
picked randomly the physiological and TIR data, denoted by 

 and  respectively, from the database ( )ku n ( )kT n
corresponding to NOS=k, i.e.

                                        (14) ( ) ( )ˆ 1 ku u n=

                                     (15) ( ) ( )ˆ ˆ1 kT T n=

Table 9
The overall(averaged) accuracy of the participant-specific OFS models

Participant RMSE[×10-2] MRE[%] EPR [%]
A 2.531 2.31 88.03
B 3.951 4.36 97.67
C 2.130 1.72 85.71
D 2.338 2.23 90.78
E 3.815 3.35 92.59
F 2.300 1.76 100.00

Mean 2.844 2.62 92.47
Table 10

The 5-fold cross validation results of the GA-optimized model
Participant RMSE[×10-2] MRE[%] EPR[%]

A 6.528±1.756 7.18±2.12 60.07±12.28
B 6.345±2.641 6.91±3.48 71.42±15.06
C 4.272±2.541 4.37±2.99 67.14±22.92
D 5.934±4.028 6.24±4.85 58.93±32.84
E 6.291±4.253 6.20±4.45 95.19±4.97
F 7.153±5.917 7.15±6.15 100±0

Mean 6.087 6.34 75.46
Table 11

The 5-fold cross validation results of the PSO-optimized model
Participant RMSE[×10-2] MRE[%] EPR[%]

A 4.148±1.695 4.23±1.91 73.21±14.96
B 4.932±1.128 4.94±1.37 79.83±17.06
C 4.048±1.700 3.96±1.87 68.57±16.44
D 4.768±2.813 4.81±3.40 78.86±9.40
E 4.529±2.392 4.45±2.62 92.78±3.89
F 3.497±2.539 3.34±2.68 100±0

Mean 4.320 4.29 82.21
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and prior to task-load switching, 
                         (16) ( ) ( )* 1ku t u t n= + −

                          (17) ( ) ( )ˆ 1kT t T t n= + −

where  and  are input data and actual output data at ( )*u t ( )T̂ t
the simulation time step t, respectively. When the NOS switches 
to s at time instant , we havest

                  (18) ˆarg min ( ) ( )
s

t s si M
n T t T i σ

∈
= − +

and 
,                          (19) ( ) ( )* 1s s tu t u n+ =

                              (20) ( ) ( )ˆ 1s s tT t T n+ =

where Ms is the size of database when NOS=s and σ is a random 
error uniformly distributed in interval [-0.1, 0.1].

Analogous to Eqn. (16) and (17), the following relations 
hold:

,                      (21) ( ) ( )* 1s k tu t t u n t+ = + −

                       (22) ( ) ( )ˆ 1s k tT t t T n t+ = + −

Using Eqn. (14) to Eqn. (22), we generated the input and 
reference output data for the entire simulation. 

Module2 - “Rules” transition: In order to simplify the PN 
structure simpler and reduce the dimensionality of incidence 
matrix W, the same I/O fuzzy partition but different 
defuzzification parameters were adopted for the three sub-
models with NOS=2, 3, and 4. Since the main task is to prevent 
operator performance breakdown, we will focus on those time 

instants when the OFS is vulnerable or risky, indicated by 
considerably lower TIR in high-workload conditions. As a 
result, when generating the fuzzy rule-base, we assigned a 
higher confidence level to rules generated from those high-risk 
OFS data. The extracted linguistically-interpretable and 
transparent fuzzy rule-bases in fuzzy OFS models are explicitly 
listed in Tables 3, 4, and 5, for participants B, C, and D, 
respectively.

Module3 - Adaptive task allocator: There are three workload 
conditions for the operator, in each of which certain number of 
subsystems demanding manual control (i.e., NOS=2, 3, and 4, 
respectively). Experiment data suggested that when manually 
controlling 2 subsystems, operator was in a more relaxed state 
while performing well the control tasks. This means that in 
task-load condition of NOS=2 when the mental (or 
psychological) load is lower, a satisfactory performance 
(characterized quantitatively by the TIR time-series data) can 
be maintained by the operator. When NOS=4, a sustained 
concentration and attention from the operator is demanded and 
thus after a certain period of time, TIR may decline. The 
condition when NOS=3 is in between the above two conditions. 
Once the switching signal NOS changes from 4 to 3, it would be 
easier for operator to maintain TIR above the preset 
performance threshold, but the cost is that the mental workload 
imposed on the operator may be still high. Based on the 
abovementioned knowledge, the ATA-based control strategy 
can be designed. The core idea of the ATA strategy is based on 
the following three intuitively straightforward logical rules:

Fig. 13: The simulation block diagram of FIPN-based AHM system (participant C).
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R1: IF TIR is lower than a threshold (i.e. 80%) and NOS is 
larger than 2, THEN NOS is reduced; ELSE

R2: IF TIR is higher than a threshold (i.e. 90%) and NOS is 
less than 4, THEN NOS is increased; ELSE

R3: NOS is held constantly at the current level.
In Fig. 13, the rightmost module functions as ATA. Places 

P16, P17, and P18 correspond to NOS=4, 3, and 2, respectively. 
The token in these places enables “defuzzification” transitions 
with different parameters. The amount of continuous marking 
in place P15 is TIR (in percentage) and the task-load switching is 

achieved by the inhibitor and test arcs (introduced in Sect. 3.2). 
When TIR is higher than the lower threshold 80%, the inhibitor 
arcs from P15 to T67 and T78 would disable the transitions. 
Otherwise the transitions would be normally enabled; token 
would be taken from the pre-discrete-place of T67 or T78 to their 
post-places, and thus the control signal NOS would be switched 
to a lower level. In a similar way, when TIR is lower than the 
upper threshold 90%, transitions T76 and T87 would be disabled. 
Otherwise the test arcs from P15 to T76 and T87 would enable the 
transitions, if the token is not in P16 then, the NOS would be 

(a) The performance comparison of the HM system with and without ATA                     (b) The control signal derived by ATA (participant B)
 (participant B) 

(c) The performance comparison of the HM system with and without ATA                     (d) The control signal derived by ATA (participant C)
(participant C)

(e) The performance comparison of the HM system with and without ATA                     (f) The control signal derived by ATA (participant D)
(participant D)

Fig. 14: The HM hybrid system performance with and without ATA strategy for participant B, C, and D. The computation of discrete control signal NOS (red 
line) in (b), (d), and (f) is based on model-predicted output (dotted line). Note that there is a phase shift (or time delay) between the model-predicted (dotted 
line in (b), (d), and (f)) and simulated TIR data (solid line in (a), (c) and (e)). The data “with ATA” is model-based simulation result, while the data “without 
ATA” is experimentally measured when NOS=3 and 4 with standard LAS.
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increased by firing T76 or T87. In this way, the control objective 
of ATA can be fulfilled.

4.4 Simulation results
All simulation codes were written using Matlab® R2010a 

and run on a PC with Intel® CoreTM 2 Duo CPU 2.4GHz, 4G 
RAM and Mac OS X 10.6.8 operation system. Each ATA-
based control system simulation was repetitively run 100 times 
to perform statistical analysis of the results.

Figs. 14(a), 14 (c), and 14 (e) compare the measured operator 
performance without active control (dotted line in red, NOS=3 
and 4 for the 1st and 2nd  half of the time-series respectively) and 
the output of the ATA-based AHM system (solid line in blue, 
NOS was switched between the highest level 4 and other levels 
in order to satisfy two conflicting control goals: one is to make 
the operator maximally engaged with control tasks and another 
is to guarantee the HM system performance). As shown in Fig. 
14(a) for participant B, the mean TIR of the AHM system is 
increased from 0.85075 to 0.91801 and Breakdown Rate 
(BDR) defined as the percentage of the number of breakdown 
points (BDP) is reduced from 26.7% (≈31/116*100%) to 
2.59% (≈3/116*100%). For participant C in Fig. 14(c), the 
mean TIR is increased from 0.88096 to 0.92355 and BDR is 
reduced from 16.4% (≈19/116*100%) to 6.03% 
(≈7/116*100%). For participant D in Fig. 14(e), the mean TIR 
is increased from 0.86236 to 0.89899 and BDR is reduced from 
19.8% (≈23/116*100%) to 3.45% (≈4/116*100%). It can be 
also observed that once a risky OFS is detected by the 
predictive model, the task-load NOS would be switched to a 
lower level and keep it until the model-predicted TIR becomes 
higher than the preset upper threshold (90% here). For most 
participants, a switch of NOS from 4 to 3 is sufficient to 
enhance the operator performance. Nevertheless, in some cases 
like in Fig. 14(b), the participant B cannot maintain TIR at a 
desired level even when NOS was reduced to 3, hence the ATA 
further reduced NOS to 2, when required, to elicit an acceptable 
operator performance. It should be noted that TIR is influenced 
by not only external control action (NOS here), but also other 
factors including psychophysiological state of the operator. In 
other words, the TIR (an overall quantitative measure of 
human-machine system performance) would fluctuate even 
when NOS keeps constant. The operator performance is 
predicted at each time step using fuzzy predictive model with 
EEG inputs. The model output at each time instant usually 

varies with different EEG input data even in the case of the 
same NOS level. That is why the model-predicted TIR (with 
ATA) still fluctuates under the same NOS.

Table 12 compares the TIR, BDP, and BDR of HM system 
with and without ATA for each of six participants, and also 
gives the best and worst results among 100 runs of simulation 
with ATA. The last column in Table 12 shows the average 
computational time required for each run of control simulation, 
i.e., the average time required for deriving control action at 
each time instant is about 2 ms. 

4.5 Discussion
The mean comparison of BDR shows that HM system with 

ATA strategy significantly outperforms the system without 
ATA in Table 12. For participants A - D the TIR is improved 
with ATA, while for participants E and F, the TIR without ATA 
is slightly higher. From Table 7, we can see that there is no 
performance breakdown at all for participants E and F when 
NOS=3. From Table 8, it is seen that there is no performance 
breakdown at all for participant F even in the condition of 
NOS=4. In other words, compared with other four participants, 
these two participants exhibited a stable and satisfactory 
operational performance during the experimental process and 
thus the use of ATA cannot further improve their task 
performance. In comparison, the participant-average TIR was 
improved from 90.30% to 91.99% and BDR reduced from 
14.8% to 3.27% after using the ATA scheme. In comparison 
with the previous ATA simulation results reported in [1], as 
shown in Table 12 the participant-average TIR was enhanced 
from 89.1% to 91.99% and the participant-average BDR was 
reduced from 16.67% to 3.27% in this work. The statistical test 
can be more convincing.  Since the size of the sample is small 
(i.e., 6 participants), we performed t-test for mean TIR and 
mean BDR. The p values for mean TIR and mean BDR is 0.1567 
and 0.0361 (<0.05), respectively. Statistical test results showed 
that the TIR is not significantly improved, but the BDR is 
significantly reduced.

 On the other hand, due to the simple and fast rule-based 
control algorithm employed, the ATA-based control paradigm 
can be readily implemented in future real-time experiments.

Compared with the existing work, the distinguishing features 
of this work can be summarized as follows:

1) We proposed a unified framework to model human-
machine hybrid system as a whole.

2) As the current value of TIR is correlated to its historical 

Table 12
Comparison of TIR and BDR of HM system without and with ATA strategy (100 runs of simulation)

Participant
Without ATA With ATA

TIR [%] BDP BDR [%] TIR [%] BDP BDR [%] Time [ms]
Mean±sdMax. Min. Mean±sd Max. Min. Mean±sd Max. Min. Mean±sd Max. Min. Mean±sd            

A 85.67 85.39 85.53±0.14 33 30 27.1±1.29 90.25 87.52 88.91±0.63 9 1 5.16±1.77 192.6±15.0
B 85.55 85.07 85.31±0.24 31 24 23.7±3.02 91.80 88.89 90.43±0.66 11 1 4.30±1.73 233.9±43.8
C 92.48 88.10 90.29±2.19 19 14 14.2±2.16 92.62 91.19 91.89±0.35 7 4 5.00±0.46 215.2±21.6
D 86.51 86.24 86.38±0.14 23 23 19.8±0 89.90 87.82 88.66±0.42 4 1 1.22±0.59 223.9±15.1
E 97.80 96.38 97.09±0.71 6 3 3.88±1.29 96.53 96.12 96.32±0.10 4 2 3.92±0.37 193.5±38.2
F 97.87 96.52 97.20±0.68 0 0 0±0 96.52 95.43 95.74±0.28 0 0 0±0 191.9±45.4

Mean 90.98 89.62 90.30 18.67 15.67 14.8 92.94 91.16 91.99 5.83 1.50 3.27 208.5
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values, we took TIR(t) as an additional input of the model. The 
resulting model is a one-step-ahead dynamical predictive 
model, instead of a static model like in [4].

3) The time step of our predictive model (i.e. temporal 
resolution of OFS prediction) is 5-sec., while in [1] and [4] it 
was 1 min. The shorter the time step is, the harder the prediction 
problem becomes.

Furthermore, in online (or real-time) applications, data is 
incrementally added to the database. Hence some researchers 
have investigated incremental learning or instantaneous 
learning apart from batch learning. For example, in [38] the 
authors developed an online incremental learning algorithm 
based on the batch learning ELM algorithm; in [39], the 
incremental learning and model update were achieved. For the 
WM method used in this work, the I/O space is partitioned to 
fuzzy sub-regions (see Sect. 3.1, Step 1), i.e., information 
granules, we could adopt the incremental update architecture 
similar to that proposed in [39] with little modification of the 
algorithm. A batch procedure would be used to create the initial 
fuzzy model (and FIPN). Then the WM method could 
dynamically generate new fuzzy rules when new data becomes 
available (see Sect. 3.1, Step 2.). The new data could be divided 
into real new data (data vector belonging to a new input space) 
and partially new data (data vector belonging or close to the 
existing input space) by comparing them with the existing 
information granules. The partially new data are used to fine-
tune the corresponding rule in the existing rule-base. If the rule 
generated by the partially new data is consistent with the one in 
fuzzy rule-base, slightly increase the weight of corresponding 
rule by increasing the weight of output arc assigned to the 
relevant “rule transition” in the Petri net; if the consequent of 
the rule generated is contradictory with the existing one, 
slightly reduce the weight of corresponding output arc. For the 
real new data, a new rule would be generated with the method 
in Sect. 3.1, Step 2, and a new rule transition (together with the 
I/O arcs) would be added to the Petri net. The detailed 
algorithm would be developed in the future.

5 Summary and Conclusion
This paper proposed a multi-model approach based on the 

change of discrete control variable (NOS) to predicting the 
operator performance (TIR) from continuous physiological 
features (EEG). The parameters of the WM fuzzy model were 
optimized by using the ABC algorithm. Three performance 
indices, MRE, RMSE, and EPR, were calculated to evaluate the 
modeling performance. Compared with other fuzzy modeling 
methods (e.g., fuzzy c-means clustering based fuzzy 
identification method), the WM method is much more 
computationally efficient and thus the training of fuzzy models 
is relatively faster. Another feature of our OFS modeling 
method is that the fuzzy model predicts the temporal change of 
TIR, namely ∆TIR, instead of TIR itself. This is more 
reasonable since TIR is a time-dependent performance variable 
whose current value is dependent upon its past values. 

As described in Sect. 3.2, the proposed FIPN modeling and 
control framework can be applied to a typical class of hybrid 
systems. This is a fundamental difference between this work 
and those in literature. The FIPN is able to represent the 
continuous-time OFS predictive model and discrete controller 
(i.e., ATA) in a unified framework, which inspired us to further 
improve it for representing both continuous and discrete parts 
of a hybrid dynamic system with a unified semantics.

The experimental tasks are high-fidelity computer-software-
based simulation of the real manual operations of human 
operator working cooperatively with an automation-enhanced 
air management system, a key component of life support 
system in a closed cabin of manned spacecraft, submarine or 
other safety-critical systems requiring intimate human-machine 
cooperation and fit. The AutoCAMS platform is a proven high-
fidelity simulation of complex human-machine cooperative 
process control system. In such safety-critical application fields 
as aviation, aerospace and nuclear industry, some components 
or subsystems of a large-scale complex automation system may 
malfunction especially during long-duration operation. This is 
one of main motivations of this study focusing on human 
performance modeling, prediction and control, instead of 
automation system itself. The variation of the NOS is in fact a 
programmed simulation of the possible malfunctioning or 
failure of certain automation subsystems in emergency, when 
manual control must be assumed by the operator immediately 
to maintain the safe operation of the entire human-machine 
system. In this connection, human operator state and/or 
performance modeling and assessment becomes an integral part 
of analysis and control of such safety-critical human-
automation integrated systems. Although the experimental 
tasks used in this study are software simulated, the modeling 
and control framework developed is general enough to be 
applied to real-world application scenarios, e.g., spacecraft and 
submarine systems and other civilian applications including 
public transportation tools, nuclear power plant, and air traffic 
control.

We constructed accurate fuzzy rule-based models to predict 
the task performance of individual operators and in turn to 
effectively reduce the occurrence of performance breakdown of 
the operators. The results obtained in this work demonstrated 
that the multi-model approach proposed is capable of 
predicting accurately the occurrence of risky OFS and operator 
performance breakdown and the framework of fuzzy inference 
Petri nets is effective for modeling and control of human-
machine hybrid dynamical systems. However, the following 
theoretical (the first two) and practical (the last two) problems 
related to this work need to be addressed in future work:

1) The accuracy of the OFS model severely depends on the 
way of fuzzy partition of I/O domains and the dimensionality of 
incidence matrix W (i.e., the number of places and transitions in 
PN). In order to simplify the Petri net structure, we empirically 
used the small number of fuzzy partitions, 3, for all I/O 
variables. In future work, a larger number of partitions (e.g., 5 
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or 7) should be examined. As rigorously proved in [35], with 
enough fuzzy partitions and fuzzy rules a linear combination of 
fuzzy basis functions is capable of approximating any real-
valued continuous function on a compact set to arbitrarily high 
accuracy. Nonetheless, the issue of ‘curse of dimensionality’ in 
the case of high-dimensional input without loss of fuzzy 
modeling accuracy should be further explored.

2) A rigorous proof of mathematical properties of FIPN 
should be established to theoretically guarantee the control 
performance. Although the feasibility and practical 
effectiveness of the FIPN framework was demonstrated in 
performance enhancement results of our simulation, its 
generality for other applications is still not clear although the 
FIPN representation/modeling of more complex systems also 
appears possible. Accordingly a rigorous proof of such 
properties as liveness, stability, reachability and maximum FIS 
approximation ability of the FIPN should be theoretically 
explored in the future.

3) An approach of performance breakdown elimination 
should be developed to guarantee the safety and reliability of 
human-machine hybrid system. In present simulation studies, 
there were still several significant performance 
decline/breakdown, indicative of nonzero BDP as shown in 
Table 12, even though FIPN generally performed well. The 
future work should be focused on how to reduce or eliminate 
BDP by refining the ATA strategy based control policy. For 
instance, we may use supervisory control scheme proposed in 
[36] to satisfy certain control specifications.

4) For further validation of the AHM system, an online (real-
time) experiment system with the ATA module must be 
implemented as in [4] and [37], among which designing the 
interface between FIPN and AutoCAMS is a significant 
research issue. The algorithm of incremental learning for fuzzy 
models should also be developed.
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