
Abstract  

The placenta and tumors share important characteristics, including a requirement to establish 

effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain 

the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new 

blood supplies is considered a key step in supporting metastases. Therefore the development of 

novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the 

molecular processes regulating angiogenesis are well understood in the context of both early 

placentation and tumorigenesis. In this review we focus on the well-established role of androgen 

regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. 

The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand 

dependent transcription factor. Androgens and the AR are essential for normal male embryonic 

development, puberty and lifelong health. Defects in androgen signalling are associated with a 

diverse range of clinical disorders in men and women including disorders of sex development 

(DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse 

molecular mechanisms of androgen regulation of angiogenesis and infer the potential 

significance of these pathways to normal and pathogenic placental function. Finally, we offer 

potential research applications of androgen-targeting molecules developed to treat cancer as 

investigative tools to help further delineate the role of androgen signalling in placental function 

and maternal and offspring health in animal models.  
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 The placenta and tumors share important characteristics, including a requirement to 

establish effective angiogenesis. 

 We focus on the well-established role of androgen regulation of angiogenesis in cancer 

and infer potential relevance to placental development and function. 
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Introduction 1 

It has long been recognized that the placenta and tumors share important characteristics. These 2 

include mechanisms related to immune privilege and most notably in the context of this review, 3 

a requirement to establish effective neovascularization and angiogenesis. Placental 4 

angiogenesis is a tightly regulated process involving complex interactions of pro- and anti-5 

angiogenic factors, which if dysregulated can lead to different pregnancy complications 6 

including preeclampsia [1]. Examples of important pro-angiogenic factors in the placenta include 7 

vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and fibroblast growth 8 

factor (FGF) [2], whereas soluble fms-like tyrosine kinase 1 (sFlt-1) is noted as a key anti-9 

angiogenic factor [3]. A better understanding of placental angiogenesis would be beneficial in 10 

understanding pathological conditions such as preeclampsia and intrauterine growth restriction. 11 

This review will provide a summary of current understanding of the role of angiogenesis in 12 

cancer and placental physiology, with an emphasis on androgen regulation of pro-angiogenesis 13 

pathways.  14 

Androgens have long been known to play essential roles in male embryonic development and 15 

pubertal maturation [4] and are now recognized as having a role in angiogenesis [reviewed in 5]. 16 

The most abundant physiological androgens in men are testosterone and its more potent 17 

derivative 5α-dihydrotestosterone (DHT) which is produced by steroid-5α-reductase enzymes 18 

[6]. Testosterone can also be converted to the primary estrogen (β-estradiol) by aromatase [7], 19 

therefore it is often essential to consider the relative roles of androgen and estrogen signalling. 20 

Androgen production is regulated in the hypothalamus, where gonadotrophin hormone-releasing 21 

hormone (GnRH) triggers the release of luteinizing hormone (LH) from the pituitary gland [8]. LH 22 

in turn acts on the testes where the majority of the testosterone is synthesized. Testosterone is 23 

transported to target tissues primarily bound to the sex hormone-binding globulin or to albumin 24 

[9, 10]. Secondary androgens, such as androstenedione (AED) and dehydroepiandrostenedione 25 
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(DHEA) are produced primarily by the adrenal glands [8]. As we will discuss in detail later, there 26 

is also evidence of androgen synthesis [11] and androgen receptor (AR) expression in the 27 

placenta and endometrium [12-14]. 28 

 29 

Androgen receptor signalling 30 

The actions of androgens are mediated primarily by the AR, also referred to as NR3C4 [15]. The 31 

AR is a member of the ligand dependent superfamily of nuclear receptor transcription factors 32 

which, in the presence of androgens, regulates the transcription of target genes [15]. Nuclear 33 

receptors consist of three major domains: the N-terminal region, the DNA-binding domain (DBD) 34 

and the C-terminal ligand-binding domain (LBD) [16]. The N-terminal region is variable in both 35 

sequence and size and in the AR harbors an agonist independent transcriptional activation 36 

function (AF-1) [17]. The highly conserved DBD is situated in the centre of the polypeptide and 37 

selectively and preferentially binds to androgen response elements in the regulatory regions of 38 

androgen target genes. The DBD and LBD are separated through a variable hinge region that 39 

contains DNA minor-groove binding residues [18]. The LBD is the site where both ligands and 40 

coregulators bind and where the second transcriptional activation function (AF-2) region is 41 

situated. In contrast to AF-1, AF-2 is ligand-dependent and full transcriptional activity can only 42 

be accomplished when AF-1 and AF-2 act together [19]. The AR regulates gene expression by 43 

recruiting multiple epigenetic coregulators, often through a conserved LxxLL motif, which control 44 

transcription via covalent histone modifications (Figure 1) [20]. The role of coregulators in gene 45 

activation and how these relate to the modulation of histone lysine acetylation and methylation 46 

is an area of active research. Nuclear receptor-coregulator complexes, and by inference the AR-47 

coregulator complex, are believed to be dynamic [21] and involve the recruitment of diverse 48 

enzymes which covalently modify the N-terminal tail of histones such as lysine 49 

acetyltransferases (KATs), deacetylases (HDACs), lysine methyltransferases (KMTs) and lysine 50 
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demethylases (KDMs), kinases/phosphatases, poly(ADP)ribosylases and ubiquitin ligases [22]. 51 

KATs and HDACs have been intensively studied and the general paradigm is that KAT activity 52 

increases DNA accessibility, thus activating gene transcription, whereas HDACs are associated 53 

with transcriptional repression [23, 24]. It is important to note that certain coregulators, including 54 

KDM1A which is also expressed in the placenta [25], can exhibit transcriptional activation and 55 

repression properties in a cellular and epigenomic context-dependent manner [26].  56 

 57 

Androgens and fetal development 58 

During normal embryonic development and sex determination, the 46XY fetus instructs the 59 

primitive bipotential gonad to develop into testes [4]. Testicular androgen production and the 60 

ability to respond to these androgenic hormones are both then required to enable the XY fetus 61 

to complete male sex differentiation [4 and references therein]. Yet, it is estimated that  between 62 

1 in 20,400 and 1 in 99,100 infants are unable to respond to androgens and present with 63 

complete 46 XY sex reversal, termed complete androgen insensitivity [4]. Complete androgen 64 

insensitivity syndrome (CAIS) results in 46XY sex reversal and typically presents with pubertal 65 

amenorrhea or inguinal swelling in infants [27]. About 90-95% of all CAIS cases show mutations 66 

in the AR causing hormone resistance [28]. Partial androgen insensitivity syndrome (PAIS) is 67 

more common and the PAIS phenotype is much more complex and diverse [4]. We [29-32] and 68 

others [33] have identified and functionally characterized numerous loss of function and intronic 69 

mutations in the AR locus in individuals with complete and partial AIS. As we will explore in 70 

more detail later, the inability of the CAIS fetus and the fetal placenta component to respond to 71 

androgens suggests that pregnancy is sufficiently sustained by the ability of the maternal 72 

placental component to respond to androgens.  73 

 74 
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 75 

Androgens, angiogenesis and cancer  76 

Much of our understanding of androgen regulation of angiogenesis has been obtained in cancer 77 

studies. Androgens and androgen signalling are implicated in many human cancer types, 78 

including prostate  [34, 35], testicular germ cell [36] and bladder [37] cancers. Androgens are 79 

also known to have complex roles in breast tumors [38-40]. AR coregulators, including the 80 

lysine demethylase KDM1A/LSD1 [37, 41, 42] and p160 coactivators [43-45] have also been 81 

implicated in cancer, most notably prostate cancer (PCa). PCa is the most common non-82 

cutaneous cancer affecting men [46]. The treatment options for PCa are often dependent upon 83 

the age and general health of the patient, as well as the stage and grade of the cancer. 84 

Watchful waiting, active surveillance, radical prostatectomy and radiotherapy remain the most 85 

effective initial therapies of localized PCa, however these can be associated with negative 86 

impacts on quality of life [47, 48] and post-treatment recurrence remains common [49]. In the 87 

case of PCa, treatments which block androgen biosynthesis or signalling, so called androgen 88 

deprivation therapies (ADT) are important treatments for advanced PCa (Figure 2). Existing 89 

ADTs target AR function by blocking androgen biosynthesis (GnRH analogues), acting as AR 90 

selective antagonists (bicalutamide, enzalutamide) or blocking intra-tumoral androgen 91 

biosynthesis (abiraterone) [50, 51]. Unfortunately, ADTs are ineffective in the long term for many 92 

patients, as incurable hormone refractory PCa tumors which are resistant to ADTs, commonly 93 

emerge within ~18 months at which point only palliative treatments are available. For this 94 

reason, great effort was invested to develop novel therapies targeting tumor angiogenesis. 95 

Indeed >20 years ago, Marshall and Narayan suggested a role for androgens in PCa 96 

angiogenesis [52]. Subsequent studies in mouse PCa xenograft models indicated castration 97 

decreased angiogenesis with a concomitant decrease in levels of vascular endothelial growth 98 

factor A (VEGFA)[53]. More recently, we and others found that androgens and AR-coregulators 99 
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regulate VEGFA levels (Figure 3) [35, 54, 55]. Consistent with this there is clinical [54] and 100 

genetic [56] evidence suggesting a link between VEGFA expression and poorer outcomes in 101 

PCa patients. Androgen depletion has been found to significantly induce apoptosis of tumor 102 

associated endothelial cells, suggesting a direct effect on angiogenesis, independent of the 103 

effect of androgen withdrawal on PCa cell proliferation and/or viability [53]. For these reasons 104 

there was much hope for treatments targeting pro-angiogenesis mediators such as VEGFA. 105 

However, clinical trials of angiogenesis inhibitors have been disappointing with only modest anti-106 

tumor activity achieved in patients [57], though the use of anti-VEGFA therapy in combination 107 

with other agents shows more promise [58, 59].  108 

 109 

Androgens and angiogenesis in endometrial and placental function 110 

There is robust AR expression in the endometrium [13, 60] and both the AR and 111 

dihydrotestosterone are implicated in endometrial cancer. There is also evidence of endometrial 112 

and placental androgen biosynthesis [11, 12]. However the expression of AR in the placenta is 113 

controversial [14, 60-62]. In normal pregnancy, circulating androgen levels generally increase, 114 

compared with non-pregnant female hormone levels. Testosterone has been shown to increase 115 

by day 15 after the luteinizing hormone surge with reports of ~1.55 – 1.7 fold average increase 116 

from day 15 through to week 33 in comparison to non-pregnant women, changes were not 117 

observed prior to day 13 [63, 64]. Androstenedioine levels rise from day 14 and increase on 118 

average by 1.3 fold from week 5 to 40 in comparison to non-pregnant women [63, 64]. 119 

Additionally, testosterone decreased uterine blood flow to the placenta [65]. It is interesting to 120 

note that the free androgen index fell rapidly from weeks 5-21, plateauing at week 21 and rising 121 

marginally at 40 weeks [63]. Interestingly, aberrant placental function has not been described in 122 

the pregnancies of CAIS fetuses, suggesting that maternal androgen signalling may be 123 

sufficient to mediate any required androgen-regulated angiogenesis during placental 124 
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development. Excess testosterone during pregnancy can negatively impact placental 125 

angiogenesis [66, 67]. For example, androgen levels are higher in pregnant women with 126 

polycystic ovary syndrome (PCOS) as compared with normal pregnancy [68]. Free androgen 127 

index, testosterone, androstenedione, and dehydroepiandrosterone (DHEA) levels were all 128 

increased in PCOS pregnancies compared with normal pregnancies during weeks 22 to 28, but 129 

not earlier in pregnancy (weeks 10 – 16) [68]. Despite differing circulating levels of androgens 130 

during pregnancy, fetal virilisation was not observed. However this was likely due to fetal 131 

virilisation occurring between weeks 8 and 13 of gestation, whilst the increased levels of 132 

androgens were observed at week 16 [63, 64, 68]. The placenta also expresses aromatase 133 

which rapidly converts androgens to estrogen [68, 69]. This could explain why the fetus is not 134 

affected by virilisation in normal pregnancy. No associations have been observed between 135 

concentrations of testosterone and the sex of the baby in pregnant vs non-pregnant women 136 

[63]. Levels of DHEA, androstenedione or testosterone in normal pregnant women vs pregnant 137 

PCOS women were also not dependent on the sex of the baby [68].  138 

 139 

Increased first trimester total testosterone levels in women was also shown to be an 140 

independent predictor of gestational diabetes mellitus (GDM) [70]. Increased androgen 141 

sensitivity in the human GDM placenta compared to healthy placentas has also been reported 142 

[69] as have increased AR mRNA and protein levels of in GDM placentae. In contrast 143 

aromatase protein expression was decreased in GDM placentas compared with healthy 144 

placentas, which was suggested to lead to reduced conversion of testosterone to estrogen [69]. 145 

Placentas from women with GDM also showed decreased human placental mRNA and protein 146 

expression of VEGFR2 and VEGFA compared to control placentas. Qualitative analysis of 147 

immunohistochemical localization reported that although mRNA and protein levels were lower, 148 
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and immune-staining was weaker, VEGFR2 and VEGFA were expressed in the same cells and 149 

localities within the GDM and control placentas [67].  150 

 151 

There is evidence that suggests the mechanisms of angiogenesis are similar in the placenta 152 

and prostate cancer. Evidence from early studies on first generation angiogenesis inhibitors 153 

such as TNP-470, implicated impaired angiogenesis as a contributing factor in intrauterine 154 

growth restriction of the fetus [71]. TNP-470 was shown to have an effect on human PCa cells 155 

and a number of tumors in patients [72, 73]. Similarly, the endogenous angiogenesis inhibitor, 156 

angiostatin4.5, has also shown activity in tumors [74]. Like TNP-470, angiostatin4.5 also 157 

reduces murine placental angiogenesis and with the offspring showing skeletal growth delays 158 

[75]. Maliqueo and colleagues have recently provided a comprehensive review of the diverse 159 

roles of the sex steroids in the regulation of the uterine-placental vasculature [76]. Yet current 160 

understanding of the role of androgen signalling in placental development and particularly its 161 

potential role in regulating angiogenesis in the placenta, is incomplete. Androgens are known to 162 

stimulate proliferation of human umbilical vein endothelial cells (HUVECs) [77], indicating a role 163 

for androgens during pregnancy. Interestingly, this androgen effect on HUVEC function was not 164 

sex dependent. There is also evidence from rat models that excess androgen reduces uterine 165 

blood flow and increases maternal and adult offspring blood pressure, by a convergence of 166 

mechanisms involving angiotensin II, reduced eNOS activity, a consequent reduction in NO 167 

production and AR activation of protein kinase C (PKCδ) [78-81]. Furthermore, increased 168 

testosterone results in elevated expression of hypoxia related genes including hypoxia inducible 169 

factor 1 α (HIF1α) [80], an established positive regulator of VEGFA [82]. VEGFA is believed to 170 

play important roles in the earliest stages of embryonic implantation [83]. Yet the potential role 171 

of androgens in regulating VEGFAand angiogenesis in the placenta remains poorly defined. But 172 

in a recent ovine study examining the effects of testosterone on the placenta, VEGFA 173 
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expression was observed to be androgen responsive. Indeed AR and the KDM1A coregulator 174 

are recruited to an androgen response element (ARE) in the ovine VEGFA locus [25]. On 175 

gestational day 90, placental VEGFA mRNA, placental VEGFA and AR protein levels increased 176 

in testosterone-treated ewes compared with control placentas [25].  177 

Beyond androgen regulation of VEGFAin angiogenesis [35, 54], there is also evidence for a role 178 

for androgens in regulation of the Slt/Robo pathway [84]. The slits(1-3) are secreted 179 

glycoproteins act as ligands for the Robos(1-4) transmembrane receptors. In one recent study, 180 

expression of Slit and Robo mRNA was compared in normal and preeclamptic (characterised by 181 

impaired angiogenesis and hypoxia) human placental tissue specimens [1]. Robo1 and Robo4 182 

were shown to have significantly higher expression in pre-eclamptic as compared to healthy 183 

tissue [85]. Additionally, hypoxia was shown to increase expression of Slit 2 in BeWo 184 

choriocarcinoma cells and Robo1 and 4 and Slit 3 in human umbilical vein endothelial cells 185 

(HUVEC) cells. Robo4 is a vascular specific and its activation by Slit2 has been shown in vitro 186 

to inhibit mouse lung endothelial cell migration, tube formation and permeability induced by 187 

vascular endothelial growth factor (VEGF)-165 [85]. Conversely, human malignant melanoma 188 

cells found to be expressing Slit2 were shown to induce angiogenesis in a xenograft animal 189 

model [86]. This effect was reversed, and tumour growth impeded, by Robo1 blocking 190 

antibodies or soluble Robo1 receptor. Slit/Robo signalling is implicated in multiple, often 191 

contradictory, ways in several cancers relating to invasion, migration and apoptosis as well as 192 

angiogenesis  (Gara et al., 2015). In most cases the Slits and Robos are under expressed due 193 

to promoter hypermethylation. Indeed there is evidence that androgen excess during pregnancy 194 

can reduce Robo1 expression [84]. One consequence of this would be to impact angiogenesis.   195 

 196 

Human trophoblast cells isolated at late stage pregnancy have been shown to express the 197 

angiogenesis inhibitor, pigment epithelium-derived factor (PEDF), at higher levels than those 198 
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from early pregnancy [87]. Additionally, only late stage pregnancy derived cells were capable of 199 

reducing angiogenesis of human placental endothelial cells. This anti-angiogenic effect could be 200 

reduced with the addition of a PEDF blocking antibody. Recombinant PEDF was also shown to 201 

induce an anti-angiogenic effect through inhibiting VEGFAsignalling. This suggests PDGF acts 202 

in a paracrine manner to slow angiogenesis in the latter stages of pregnancy. Expression of 203 

PEDF has also been shown to be reduced in PCa as compared to healthy control [88]. 204 

However, there is evidence that androgen can both activate [89] and reduce [88] PEDF 205 

expression in testicular peritubular cells and PCa respectively. Whether androgens regulate 206 

PEDF in the placenta remains unknown.    207 

 208 

It is also worth noting that whilst the placenta is undergoing angiogenesis and remodelling, so is 209 

the maternal endometrium. The imbalance of pro- and anti-angiogenic factors has also been 210 

shown to play a major role in disorders such as preeclampsia, where vascular disruption is 211 

evident in both the placenta and maternal endothelium during this essential vascular 212 

remodelling period [90, 91]. A number of studies have indicated that a key component of 213 

circulating angiogenesis inhibitors is whether or not the vascular endothelial cells are quiescent 214 

or activated and therefore expressing Fas at higher levels [92].  215 

 216 

 217 

Conclusion 218 

In this review we have discussed the current understanding of androgen signalling and how this 219 

relates to angiogenesis in placental and cancer contexts. Previous studies have reported 220 

changes in androgen levels during pregnancy and in pathogenic processes including PCOS and 221 

GDM which are associated with concomitant changes in placental angiogenesis. However, 222 

further work is required to elucidate the complex role of androgens and their metabolites in 223 
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placental angiogenesis and development. The extensive repertoire of pharmacological inhibitors 224 

of androgen signalling developed for PCa represent excellent tools to interrogate the androgen 225 

signalling pathway in placental development. The availability of potent pharmacological agents 226 

which can inhibit androgen synthesis (abiraterone) and conversion to estrogen (aromatase 227 

inhibitors), coupled with AR-antagonists such as bicalutamide and enzalutamide (Figure 2), 228 

afford the potential to further delineate the complex roles of androgens in placental 229 

angiogenesis in animal models. Such approaches will also help advance understanding of the 230 

life-long consequences of deregulated androgen signalling in utero.  231 
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Figure 1. (A) Crystal structure (PDB: 2AO6) of the AR ligand binding domain in complex with 240 

agonist R1881 and the LXXLL motif derived from SRC2/TIF2/NCOA2 [93]. The LBD is 241 

represented in cartoon format (green) and shows the three layer antiparallel alpha-helical 242 

sandwich conformation typical of NRs. The SRC2/TIF2/NCOA2 coactivator peptide is shown in 243 

yellow and adopts an alpha helical conformation. Conserved leucine residues are shown in cyan 244 

and contact the cofactor binding cleft on the LBD surface. The ligand R1881 is shown in red 245 

with the ligand binding pocket. (B) Crystal structure (PDB: 1R4I) of the rat AR DNA binding 246 

domain (DBD) bound to the direct repeat of the hexamer AGAACA as a direct repeat, separated 247 

by thee nucleotides (DR3). [94]. The double stranded DNA duplex is shown in wireframe. The 248 

DBD dimer is represented in cartoon format (green) and zinc atoms are portrayed as grey 249 

spheres. The DBD monomers adopt alpha-helical conformations of which one these, the DNA 250 

recognition helix, contacts specific bases and sugar-phosphate backbone of the ‘response 251 

element’. Interactions between the DBD monomers stabilise the dimer. 252 

Figure 2. Androgen deprivation therapies are important treatment approaches for advanced 253 

prostate cancer. Abiraterone blocks adrenal and gonadal androgen biosynthesis by inhibiting 254 

the Cyp17/17-a-hydroxylase/C17,20 lyase enzyme. Flutamide, bicalutamide and enzalutamide 255 

block androgen signalling by acting as AR antagonists. ARN-509, also termed JNJ-56021927 is 256 

in clinical phase III trials for advanced PCa (clinicaltrials.gov accessions: NCT02772588, 257 

NCT02489318, NCT02123758, NCT02578797, NCT01946204, NCT01790126, NCT01792687, 258 

NCT02106507, accessed November 10, 2016). 259 

Figure 3. Evaluation of the expression of vascular endothelial growth factor (VEGF-A) in 260 

prostate cancer specimens as previously reported (Wegiel et al., 2008). Representative staining 261 

examples are provided for benign prostate hyperplasia (BPH), low and high grade malignant 262 

prostate tissue. Reproduced with permission from Kashyap et al [54] in Molecular Oncology, 263 

2013 Jun;7(3):555-66. doi: 10.1016/j.molonc.2013.01.003; Elsevier.  264 
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