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Experimental study has been carried out towards the development of a multiphase change 

material (MCM) by combining two fabricated microencapsulated phase change materials 

(MEPCM-oct and MEPCM-eic) samples. The study also covered the characterization of the 

developed samples for their thermal properties. For the purpose of validation the thermal 

properties of the developed MCM sample were compared with that of the core components. 

The developed MCM sample achieved a combined energy storage capacity of 186 kJ/kg with 

two melting temperatures of 23.4oC and 34.5oC. Even though the two melting temperatures of 

the MCM were slightly reduced by 0.18℃ and 0.48℃ in comparison with the MEPCM-oct and 

MEPCM-eic respectively, their mean energy storage capacities were in perfect agreement. 

The study has therefore shown that it is possible to overcome some of the scientific barriers 

towards the development of multiphase change materials but further investigations are 

needed to enhance overall thermal response. 
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I. Introduction 

 

NERGY consumption in the building sector still represents the highest proportion of energy usage in most 

developed and developing countries. According to recent publication, the building sector is responsible for 

approximately 40% of final global energy consumption and CO2 emissions [1].   

In the UK for instance, buildings account for about 43% of the country’s total energy consumption with heating 

and hot water representing the bulk proportion [2-3]. Innovation in the building sector therefore represents a significant 

opportunity to help minimise energy consumption as well as reducing global greenhouse gas emissions targets. One 

promising and innovative technology that could make positive contribution and improve the thermal performance of 

existing and future building stock is through the use of phase change materials (PCMs). These materials such as 

alkenes (paraffin waxes) can be used for the passive/active storage and release of heat energy in buildings as they have 

relatively high energy storage capacities at constant temperatures. There are a number of past investigations which 

show that energy consumption in buildings could be reduced by integrating PCMs into building fabrics and ventilation 

systems [4-10]. For instance studies carried out by Darkwa [11] and Zhou et. al [12] showed that as much as 30% 

reduction in heating and cooling loads in buildings could be achieved with integrated PCM drywall systems. Other 

researchers [13-14] also demonstrated that PCM could be integrated into hot water storage system and used for shifting 

peak load from space conditioning and water heating systems.  

However, there are some basic and applied research issues which need to be addressed before competitive 

scientific, technical and economic edge can be achieved. For instance commercially available microencapsulated 

PCMs can only function at fixed melting temperatures and unable to be tuned to other melting temperatures of say 

from 40oC to 20oC and vice versa. This means that in an area where both heating and cooling are required throughout 

the year, two separate PCMs would have to be applied to provide that dual function. This approach makes the materials 

thermally ineffective due to non-flexibility in their melting temperatures during energy storage/discharge process. The 

PCMs could also account for about 30% - 45% of the finished product in terms of content and cost which have direct 

impact on the profitability of the product. Above all they possess relatively low thermal conductivities and do display 

poor thermal response factor when combined with other construction materials [15-17]. Even though other 

investigations [18-23] have uncovered different methods and techniques for enhancing and developing high 

conductivity composite microencapsulated phase change materials they still possess single phase transition 
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temperatures. Other binary mixtures of PCMs have also been investigated but were unable to achieve the inherent 

functional and desirable variable temperature characteristics [24-27]. These limitations are barriers to the wider 

application of current PCMs. This study was therefore focused on developing a multiphase change material (MCM) 

capable of operating at two different melting temperatures. 

 

 

II. Development of a Multiphase Change Material (MCM) 

As summarised in Table 1, paraffins (n-octadecane and n-eicosane) were selected as the core materials for the 

fabrication of the MEPCMs. Melamine-formaldehyde solution was also selected and used as shell monomers and 

nano-silicon dioxide hydrosol as emulsifier. The other associated materials were ammonium chloride, sodium 

hydroxide and citric acid which were used as nucleating agents for modifying the pH values.  

Table 1: Composition of MEPCMs 

Paraffin Melamine  

(g) 

Formaldehyde  

(g) 

Nano SiO2 hydrosol 

(g) 

10g n-octadecane 2.0  3.2  1.2  

10g n-eicosane 2.0  3.2  1.2  

 

The fabrication process was based on in-situ polymerization method as well as other processes covering synthesis 

of prepolymer solution, preparation of oil-in-water (O/W) emulsion and formation of shells. The pre-polymer 

melamine formaldehyde (PMF) solution initially was prepared by mixing melamine (2.0g) and formaldehyde (3.2g) 

with 10ml deionised water. The pH value of the solution was then controlled within a range of 8.5 - 9 and at a 

temperature of 65°C whilst stirring at 500 rpm until it became homogeneous.  

The next stage covered the preparation of oil/water (O/W) emulsion by mixing 10g of each paraffin material with 

90g of water and 1.2g of nano-silicon dioxide hydrosol. The mixture was then stirred at a speed of 7000 rpm for 10 

minutes at a temperature of 60°C to establish a uniform and stable mixture. A certain amount of nucleating agent was 

then added to the O/W emulsion to reduce the pH value and to enable the PCM capsules to be cross linked with the 
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PMF polymer. The emulsion was then stirred at a reduced speed of 300-500 rpm at a temperature of 60°C for 4 hours. 

This enabled the pH value to be adjusted to 9 and to terminate the cross linking reaction process. 

In order to produce the MCM, equal proportion of the manufactured microencapsulated PCM samples (n-

octadecane and n-eicosane) were mixed together with deionised water at a stirring speed of 200 rpm for 10 minutes 

to achieve a uniform particle size distribution. The mixture was finally washed and dried in an oven at a temperature 

of 60°C for 20 hours to obtain the MCM sample. 

III. Results and Analysis 

A. Energy storage and melting temperature 

A differential scanning calorimetric (DSC) (EXSTAR SII DSC6220, SII Nanotechnology Inc.) equipment was used 

in determining the enthalpies of fusion and melting temperature of the MEPCM samples in accordance with ISO 

11357 Standards under the dynamic testing method. They were tested at atmospheric pressure and at a heating rate of 

2 °C /min from 5 °C to 50 °C. As shown in Fig. 1, the energy storage capacity of the MEPCM-oct and MEPCM-eic 

were obtained as 179 kJ/kg and 194 kJ/kg respectively with corresponding melting temperatures of 23.54℃ and 

34.99℃. In Fig 2, the developed MCM sample achieved a combined energy storage capacity of 186 kJ/kg with two 

melting temperatures of 23.4oC and 34.5oC. 

By comparing these sets of results, it can be seen that even though the melting points of the MCM sample were 

slightly reduced by 0.18℃ and 0.48℃ respectively, its energy storage capacity was in perfect agreement with the 

mean value of the MEPCM-oct and MEPCM-eic.  
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Figure 1: DSC profiles of MEPCM samples 

 

 

Figure 2: DSC profile of MCM sample 
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B. Thermogravimetric analysis (TGA)  

Thermogravimetric analysis were conducted on the samples in order to examine the physical and thermal resilience 

of the samples in relation to their molecular structure.These tests were was carried out under nitrogen gas protection 

covering a heating range of 50 °C to 500 °C and at a heating rate of 10 °C /min. Fig. 3 represents the characteristic 

TG curves for the MEPCMs which show that the MEPCM-oct and MEPCM-eic achieved thermal stability up to 

207.6°C and 211.9°C respectively. In Fig. 4, the MCM sample also displayed relatively good thermal stability 

behaviour up to about 197 ℃ which satisfies the environmental requirements for most applications in buildings.  

 

Figure 3: TG curves for MEPCMs 
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Figure 4: TG curve for MCM sample 

 

C. Scanning Electron Microscopy (SEM) analysis  

The SEM analysis was conducted in order to examine the external morphology (texture) and crystalline structure 

of the particles making up the samples. Figs. 5a and 5b are the results for the MEPCM samples. It can be seen that, 

most of the particles did achieve fairly good structural integrity of the shell materials after encapsulation without 

obvious sign of degradation. Similarly in Fig. 6, the structure and morphology of the MCM particles were good and 

physically well bonded. This shows that the MCM sample should be able to operate at the two specified temperatures 

for multiphase change processes. 
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Figure 5a: SEM image of MEPCM-oct 

 

 

Figure 5b: SEM image of MEPCM-eic 
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Figure 6: SEM image of MCM sample 

 

IV. Conclusion 

The study has shown that some of the scientific and technical barriers associated with the development of multiphase 

change materials can be overcome.  For instance thermal analysis of the test results clearly shows that it is possible to 

achieve multiple phase transitional temperatures with relatively good energy storage capacity and thermal stability. 

The findings may be therefore summarised as follows: 

 The maximum combined energy storage capacity for the MCM sample was obtained as 186 kJ/kg as 

compared with 179 kJ/kg and 194 kJ/kg for the individual MEPCM-oct and MEPCM-eic respectively. The 

energy storage capacity of the MCM was therefore in perfect agreement with the mean value of the MEPCMs 

 The two melting points for the MCM were 23.4oC and 34.5oC as against 23.54℃ for MEPCM-oct and 34.99℃ 

for MEPCM-eic.  

 The MCM sample displayed relatively good thermal stability behaviour up to about 197 ℃ as against 207.6°C 

and 211.9°C for MEPCM-oct and MEPCM-eic respectively. 

It is believed that the technology could significantly reduce the material content, cost, size and ultimately payback 

period of integrated MCM components since they should be able to perform multiple functions. There is however the 

need to develop it further to enhance its thermal conductivity. 
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