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Abstract: 
 

Good metallurgical bonding between neighboring droplets is essential in droplet-based 3D 

printing. However, although the mechanism of remelting has clearly been mastered, cold laps are 

still common internal defects of formed parts in uniform aluminum droplets deposition 

manufacturing, which is due to the overlook of the surface morphologies of solidified droplets. Here, 

for the first time, the blocking effect of ripples and solidification angles on the fusion between 

droplets is revealed. To investigate the detailed process of remelting, a 3D numerical model was 

developed, basing on the volume of fluid (VOF) method. Experiments and simulations show that 

the remelting process between neighboring droplets can be divided into two stages according to the 

transient contact between the second droplet and the substrate. In the first stage, a non-intuitive 

result is observed that cold laps can also be formed even if the remelting conditions are satisfied in 

theory. Ripples on the surface of previously-deposited droplet block its direct contact with the new-

coming droplet. In the second stage, cold laps on bottom surface are formed due to incomplete filling 

of liquid metal when the solidification angle is greater than 90°. Furthermore, these cold laps are 

difficult to be completely avoided by improving the temperature parameters. To address this 

problem, a novel strategy of decreasing the thermal conductivity coefficient of the substrate is 

proposed. This method effectively promotes remelting between droplets by eliminating ripples and 

decreasing solidification angles. 
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1. Introduction 
 

Droplet-based 3D printing is a kind of novel direct-write techniques [1, 2], and it is considered 

to be a promising method for numerous applications, such as printing of flexible circuits [3, 4], 

advanced electronic components [5, 6] and metal parts [7]. In the manufacturing processes, uniform 

metal micro-droplets as the basic building blocks are sequentially deposited onto a programmable 

substrate to fabricate complex 3D parts from their CAD models. However, due to the high 

temperature gradient and large surface tension of molten aluminum alloys, it is still a huge challenge 

to directly print high-quality structures from molten aluminum droplets. 

Fusion behavior at the droplet/droplet interface is a fundamental issue in printing 3D metal 

structures. Poor remelting between neighboring droplets will lead to defects, such as cold lap pores, 

which result in the decrease of metallurgical bonding [8]. To determine the critical conditions of 

remelting, a calculated model of the interfacial temperature between neighboring droplets was 

developed [9]. The thermal behaviors of single droplet [10, 11] and multi -droplets [12] sequentially 

impacting on substrates were investigated by experimental and numerical studies. The proper 

temperature parameters for achieving good metallurgical bonding between neighboring droplets 

were then ascertained [13]. Moreover, the scanning steps were optimized to decrease the inner 

porosities of the formed parts in droplet-based 3D printing [14]. However, the performance has not 

been significantly improved, cold lap pores are still common internal defects of the formed parts in 

aluminum droplets 3D printing. Therefore, other influencing factors in remelting have to be 

considered. 

 
A number of theoretical and experimental studies [15-18] on molten metal droplets impact 

suggest that some ripples will be formed on the droplet surface after the complete solidification of 

the droplet. The reason of this phenomenon is that the solidification of metal droplets is always 

accompanied with underdamped oscillation, which is subsequently “frozen” by phase change to 

become ripples with different scales. Furthermore, because the surface tension of molten aluminum 

droplet is relatively large and the solidification process is rapid, the solidification angles of the 

deposition aluminum droplets are usually larger than 90° [16, 19, 20]. These facts bring us to the 

question that whether these surface morphologies influence the remelting behavior between 

neighboring droplets in 3D printing. However, this interesting case has yet to be well studied. 
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The present work aims to investigate the effect of surface morphologies of solidified droplets 

on the remelting behavior between neighboring droplets during the horizontal deposition process. 

To this end, some droplet deposition experiments were conducted, and a 3D numerical model was 

also developed, basing on the VOF method. By comparing the experimental and simulation results, 

the remelting process between two neighboring droplets is divided into two stages according to the 

transient contact between the second droplet and the substrate. The influencing mechanism of surface 

morphologies, including ripples and solidification angles, was then revealed by experiments and 

simulations. Finally, a method of using a substrate with relatively lower thermal conductivity was 

proposed. The corresponding experimental results verify that this proposed method can effectively 

promote the remelting between neighboring droplets by eliminating ripples and decreasing 

solidification angles. 

 

2. Experimental and numerical approach 
 

2.1 Experimental approach 
 

As shown in Fig. 1(a), the uniform aluminum droplet deposition manufacturing system mainly 

consists of a uniform metal droplet generator, a droplet deposition subsystem and a hypoxic 

condition control subsystem. In short, this system works as follows. First, the metal blank was 

grinded to remove its oxide skin and then melted in a graphite crucible. A vibration bar was driven 

by a specified waveform which was created by a pulse generator. Under the periodical vibration of 

the ceramic bar, the liquid metal was forced out of a nozzle to generate uniform molten metal 

droplets. During the ejection process, the piezoelectric actuator was placed in a cooling case, and 

the liquid metal could maintain filling the cavity in the crucible under the back pressure. The droplet 

deposition subsystem consisted of a programmable multi-axes controller (PMAC), a substrate and 

a 3D programmable platform. The motion of the platform was controlled according to the computer 

numerical control (CNC) file generated by model design and slice software process. As shown in 

Fig. 1(b), under the cooperative control of droplet ejection and platform movement, the metal 

droplets were sequentially deposited and fused together to fabricate 3D structures. The temperatures 

of molten metal droplets and substrate were measured and controlled by heater controllers. During 

the uniform droplet deposition process, the metal droplet generator and the 3D platform were both 

enclosed in an argon gas environment. The oxygen and water vapor content of the argon gas 
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environment was kept below 1 PPM (parts per million) to prevent the molten aluminum droplets 

from being oxidized. The above subsystems were coordinately manipulated by an industrial 

personal computer (IPC) to complete the fabrication of complex shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform 

aluminum droplet deposition manufacturing. 

 

In the deposition experiments, two 99.999% aluminum rods with the dimension of 35 mm× 

Φ20 mm were put into the graphite crucible and heated to a preset temperature. Uniform droplets 

were ejected out at a rate of 1-10Hz through a nozzle of ~450 µm in diameter. The perpendicular 

distance between the substrate and the nozzle was ~10 mm. H59 brass and one kind of silver-plated 

ceramic (which are commonly used in advanced electronics) were chosen as the materials of the 

substrate. 99.998% Argon gas was supplied to maintain an inert atmosphere to eliminate the 

oxidation of the molten aluminum droplets during the deposition process. The micro-morphologies 

of the deposition samples were obtained by using a scanning electron microscope (VEGA3-

TESCAN). 

 
2.2 Numerical approach 

 

To analyze the detailed fluid flow and thermal behavior during the aluminum droplets 

horizontal deposition process, a 3D simulation model was developed, basing on the VOF method. 
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The mathematical principle of this simulation model is similar to the previous research [20, 21]. As 

shown in Fig. 2, the model mainly consists of two aluminum droplets and a substrate. The flow field 

of the molten droplet was solved by 3D Navier-Stokes, continuity and energy equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the 

substrate. 

 

In the uniform aluminum micro-droplet deposition manufacturing, the heat convection was less 

than 10% of the total energy of the molten droplets [15]. As a result, the heat dissipation of droplets 

during flying in the gas environment could be ignored [16]. After the impact, the heat transfer of 

molten aluminum droplet mainly depends on the heat conduction [17, 18, 20]. Therefore, the radiant 

heat transfer could also be ignored in this numerical modeling. 

 
Pure aluminum was chosen for the present numerical modeling and experiment. To satisfy the 

precision of the numerical model, a minimum temperature range of 1K was given for the phase 

change of the pure aluminum droplet [20, 21]. The contact thermal resistance between the droplets 

 
and the substrate was set as 10−6m2KW−1 [22–24]. The pressure and velocity of the void region were 

set as zero. The boundary conditions of the computational domain and the substrate surface were set 

as ‘‘continuative’’ and “wall”, respective ly [20, 21]. The static contact angle between the droplet 

and the substrate was set as 90° [20, 21] . The physical properties of the pure aluminum are shown 

in Table 1 [25]. The initial conditions of the numerical model are shown in Table 2. 



7 
 

 

 

 
 

 

A commercial software FlOW-3D 11.0.4 was used to implement the numerical model 

developed above. FLOW-3D provides a subroutine for the production of droplets. All parameters, 

such as the offset distance, dimensions, velocity, position and temperature can be set in this 

subroutine [26]. The code uses a finite volume/finite difference method to solve the Navier–Stokes 

 
equations for fluid flow. Equations were iteratively solved by using a minimum time step of 10-9 s. 

The computational grid consisted of about two million rectangular elements, equaling about 40 units 

per droplet diameter. 

 
2.3 Experimental validation of the numerical model 

 

Figure 3 shows the experimental and numerical results of two typically deposited neighboring 

droplets. The initial temperature of the droplet was 1223K, the substrate temperature was 523K, and 



8 
 

the scanning step was 400 µm. The experimental and simulation results show good agreement from 

the top, side and bottom views.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets 

from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm. 
 

 

3. Results and discussion 
 

3.1 Stage division of remelting process between neighboring droplets 
 

To investigate the remelting process in depth, it is necessary to obtain a comprehensive 

understanding of the dynamic behavior during two neighboring droplets successive deposition. 

Figure 4 illustrates some characteristic snapshots of two neighboring droplets successive deposition, 

which consists of a few processes: (a) Two droplets begin to contact at point A; (b) The second 

droplet flows downwards along the first droplet and begins to contact with the substrate at point B. 

At this moment, a closed pore is temporarily formed between the two droplets and the substrate; (c) 

The second droplet continues to spread along the substrate while some portion of the molten metal 

fill in the temporary pore formed in process (b). However, the local solidification within the bottom 

area of the second droplet will lead to insufficient filling, and a cold lap pore will be eventually 

formed on the bottom surface of the two adjacent droplets; (d)-(e) Before the full solidification of 
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the second droplet, the residual liquid metal will oscillate up and down several times in the oblique 

direction to the substrate; (f) The second droplet is fully solidified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets 

successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms. 

 

 

The dynamics of droplet deposition depend on the value of Weber number (We) and 
 

Ohnesorge number (Oh), which can be calculated by Eq. (1) and Eq. (2): 

 

 
 

 

The  We  number  and  Oh  number  in  the  experiment  and  simulation  are  about  0.88  and 
 

1.24×10 -3, respectively. According to Schiaffino and Sonin [15], in this study, the droplet 

deposition is driven by the dynamic pressure of impacting. The dynamic spreading and oscillation 

are the results of the conversion interplay between kinetic and free surface energies. During above 

process (d) to (e), the second droplet keeps alternate spreading and recoiling in order to balance the 

kinetic energy and the surface energy. The oscillation of the second droplet will stop when its kinetic 

energy is fully dissipated by viscosity and solidification. 
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Comparing with the actual droplet deposition dynamic images, which were captured by a high-

speed CCD, and the simulation results, it is concluded that the simulation results agree well with the 

experiments. Both results show that at first the two droplet contact, the second droplet then flows 

downwards along the first droplet. Next, the molten metal fill in the bottom void until the bottom 

area of the second droplet is fully solidified. At last, a cold lap pore will be formed (the bright spot 

between the two droplets and the substrate in Fig. 4). The shape of this pore will not be changed 

with the following oscillation of the second droplet. Time t corresponds to the instant of contact 

between the two neighboring droplets, and the whole freezing time of the second droplet is 

approximately 5 ms. Therefore, the remelting process between neighboring droplets can be divided 

into two different stages according to the transient contact between the second droplet and the 

substrate. In the first stage, there is no contact between the second droplet and the substrate. The 

main surface morphology influencing remelting behavior is the ripples on the first droplet surface. 

In the second stage, the second droplet begins to contact with the substrate. The residual liquid metal 

within the bottom region will fill in the pore temporarily formed between the two neighboring 

droplets and the substrate. The main surface morphology influencing remelting behavior is the 

solidification angle of the first droplet. 

 
3.2 Blocking effect of ripples on the remelting between droplets 

 

To achieve good remelting between neighboring droplets, the temperatures of the droplet and 

the substrate need to meet proper conditions. It is necessary to introduce a concept of the interfacial 

temperature of two contacting droplets. According to a previous report [27], the interfacial 

temperature Ti can be calculated as: 

 

       where Tsurf, αs, t and Rc  are the surface temperature of the previously-deposited droplet, the  
 

thermal diffusivity of the droplet, the heat transfer time and the interfacial contact resistance, 

respectively. 

The remelting behavior depends on the relation between the interfacial temperature Ti and the  
 

       melting point Tm  of the droplet. If Ti  > Tm, remelting occurs in the contact region of the two 
 

neighboring droplets and vice versa. 
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First, the thermal gradient inside the droplet can be neglected, since the ratio of conduction 

heat transfer resistance within the droplet to the convective heat transfer resistance, which is 

quantified by the Biot number Bi, is below 0.015 in all the cases considered in this work. (Bi=hdDd/kd  

with the convection heat transfer coefficient hd  and the thermal conductivity of the new-coming 

droplet kd). Tsurf  was measured to be ~800K when the substrate temperature and deposition 

frequency were 523K and 10 Hz, respectively. The characteristic scales for t and Rc are∼100 μs and 

∼10−6m2KW−1, respectively [27,28]. As a result, the interfacial temperature Ti is calculated to be 

~940K which is above the melting point of aluminum. This implies that the interface between two 

neighboring droplets will be immediately remelted upon contact. 

Figure 5 shows the experimental results under the conditions of Td=1223K, Tsub =523K and f 
 

=10 Hz. According to the above analysis, remelting should occur between the neighboring droplets. 

However, a non-intuitive result is observed that there exists a poor remelting within the interface of 

two neighboring droplets. As shown in Fig. 5(c), it is clear that the two neighboring droplets only 

fuse at the peak of the ripples. From the fracture morphology in Fig. 5(d), it is found that the second 

droplet copies the ripples appearance on the first droplet. Moreover, as shown in Fig. 5(e), it can be 

found that the boundary between two neighboring droplets is clearly visible in some places at their 

interface, which indicates that cold laps are formed. Whereas, in some other places, the interface 

between them disappears, which shows the evidence of local remelting and fusing of the droplets. 

Closer examination of the cross-section of two successively-deposited droplets in Fig. 5(f) draws 

our attention to the alternating occurrence of cold lap and remelting. 
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Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of 

aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) 

fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) 

enlarged view of the selected section in (e). 

 

To understand Fig. 5(c)–(f), it is helpful to turn  to the numerical simulation results shown in  

Fig. 6 which were conducted under the same process parameters as the experiments in Fig. 5. Figure 

6(a) shows the shape evolution and solid fraction distribution in Y-Z middle cross-section of two 

neighboring droplets. Time t=0 µs corresponds to the instant of contact between the two neighboring 

droplets. It is found that the remelting depth is relatively shallow (~10 µm) and the duration of that 

the second droplet flows down along the first droplet is relatively short (~400 µs). Under such 

conditions, the remelting depth is insufficient to melt all the ripples on the first droplet. As shown in 

Fig. 7, a simplified model is adapted to characterize the surface ripples of the previously-deposited 

droplet. When the remelting depth yr is less than the ripple characteristic height h, the residual liquid 

in the second droplet will continue to fill in the void between the ripples driven by capillary pressure 

Pc. However, due to the existence of ambient gas, the back pressure Pg from the trapped gas will 

hinder the filling process of the residual liquid metal. When Pc= Pg, the filling process stops. As a 

result, the liquid metal penetration depth yp is always less than (h-yr). In other words, the residual 

liquid of the second droplet cannot completely fill the void between neighboring ripples on the first 

droplet. In the end, cold lap pores (highlighted by a red dotted box in Fig. 6(a)) are formed within 
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the ripple regions when the two metal droplets are completely solidified. Moreover, during the 

oblique impact of two neighboring droplets, the surrounding gas within the liquid-solid interface is 

strongly squeezed which leads to a pressure buildup in the gas under the new-coming droplet. The 

enhanced pressure results in a local dimple formation in the new-coming droplet, at the same time, 

the viscous shear stresses of the compressed gas increases quickly that decreases the escaping 

velocity of compressed gas. After impact, the trapped gas forms a bubble on the interface [29]. 

Ripples on the surface of previously-deposited droplet increase the chances of gas entrapment. 

Because the gas entrapment is the physical nature of droplet impact, it can be hardly avoided by 

changing the process parameters. Therefore, internal defects may also occur even if the remelting 

depth is further increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle 

cross-section of two successively-deposited droplets; (b) temperature variation with time at three 

points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet. 
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Fig. 7. Schematic of (a) two neighboring droplets depositing on substrate; (b) Simplified surface 

ripples model. 

 

Figure 6(b) shows the temperature variation with time at three different points (labeled A-C) 

on the surface of the first droplet during the deposition of the second droplet. These three points of 

A, B and C correspond to the peak, trough and peak of two adjacent ripples respectively. Because 

the lapping and spreading process of the new-coming droplet is accompanied with heat dissipation, 

the temperature of the three points of A, B and C should be successively decreasing. However, a 

non-intuitive result is observed that the temperature of point A is the highest, followed by point C 

and point B. Moreover, the temperatures of point A and C both exceed the melting point of aluminum, 

while the temperature of point B is always below the melting point. The simulation results mean that 

remelting only occurs at point A and C. The time scale for remelting is ~100 µs, and this result is 

similar to the previous work conducted by Amon [28]. This numerical output is consistent with the 

experiments in Fig. 5, and the mechanism of the experimental phenomenon in Fig. 5 can be well 

explained. Due to the existence of surface ripples, the new-coming droplet cannot directly contact 

with the previously-deposited droplet. As the result of above force analysis, it can be drawn that the 

residual liquid metal cannot fill in the void within the ripples. Therefore, cold lap and remelting 

alternately appear on the interface of two neighboring droplets. 

 
3.3 Blocking effect of solidification angle on the remelting between droplets 

 

As clearly indicated in Fig. 3(c) and Fig. 5(b), a slender pore is formed on the bottom surface 

of two neighboring droplets. This result (dimension and location) is highly reproducible under 
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similar experimental conditions. Through a closer examination of the side view of the droplet 

bottom region in Fig. 3(b), Fig. 4 and Fig. 5(a), it can be found that the solidification angle of the 

previously-deposited droplet is larger than 90°. Th is surface morphology near the bottom region of 

the previously-deposited droplet will block its direct contact with the new-coming droplet. To 

achieve a good remelting within the bottom region, the pore needs to be filled in by the flow of 

residual liquid metal after the second droplet contacts with the substrate. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Simulation results of shape evolution and solid fraction distribution in the X -Y bottom 

cross-section of two neighboring droplets. 

 

 

Figure 8 shows the shape evolution and solid fraction distribution in X-Y bottom cross-section 

of two successively-deposited droplets. The black arrows represent the directions of local liquid 

flow. Time t =0 µs is defined as the instant time when the second droplet contacts with the substrate. 

According to the simulation results, when the second droplet begins to spread along the substrate, 

its velocity distribution on the bottom surface faces away from the first droplet. At t =20.12 µs, the 

second droplet symmetrically spreads along the substrate with respect to the initial impacting point, 

and the local solidification occurs at the same time. At t =40.24 µs, because of the local solidification 

within the bottom region and the resistance from the first droplet, the velocity component of the 

second droplet towards the first droplet starts to decrease. At t =70.42 µs, the velocity of liquid flow 

filling into the pore almost decreases to zero. Therefore, the shape of this bottom cold lap pore 
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remains unchanged. In other words, the filling time of liquid metal flow is about 50.30 µs. At t 

=412.46 µs, the bottom layer is solidified completely and a cold lap pore is formed on the bottom 

surface due to the incomplete filling. 

Usually, the most sufficient way of eliminate cold lap is to increase the temperatures of the 

droplet and the substrate. Increasing the temperature parameters can increase the remelting depth 

and the filling time of liquid metal flow. To impart a measure of generality, the melt superheat 

dimensional parameter β [15], which characterizes the temperature differences between Td, Tsub 

and Tm, is introduced. 

 
 

Figure 9(a) shows the simulation results of solidification angle variation with β. Figure 9(b) 

shows the final shape variation with β in Y-Z cross-section and X-Y cross-section. It can be drawn 

that the solidification angle tends to decrease with the increase of β. Moreover, with the increase of 

β, the cold lap pore on the bottom surface tends to decrease until it completely disappears. However, 

on one side, even though the solidification angle has a decreasing tendency, it is always larger than 

90°. On another side, in actual experiments, the phenomenon of excessive remelting occurred when 

the temperature of droplet and substrate were 1223K and 723K, respectively. The two neighboring 

droplets almost merged together, and the substrate was also remelted to a certain extent at the same 

time. The deposited droplets were difficult to be removed from the substrate, and this was 

undesirable in the uniform aluminum droplet deposition manufacture. 

The reason for this experimental phenomenon can be explained by thermal energy analysis. At 

the transient moment of droplet impact, the thermal losses caused by heat conduction and convection 

can be ignored. As a result, the metal droplet impact process is assumed to be isothermal. Under 

such conditions, the thermal energy from the cooling of the new-coming droplet from Td to Tm 

(before solidification) is: 

 

where Vd is the droplet volume. In this process, the remelted volume of the previously-deposited 
 

droplet is: 
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Fig. 9. Simulation results of (a) solidification angle and (b) final shape in Y-Z middle cross-section and X-

Y cross-section variation with the melt superheat dimensional parameter β. The scale bar is 300 µm. 

 

 

Under the conditions of Td=1223K, Tsub=723K, f=10 Hz, Tsurf  was measured to be ~900K. 
 

Therefore, the volume fraction of the remelting section is calculated to be ~70%, which means that 

the two neighboring droplets are almost liquid state in the early stage of contacting. The neighboring 

droplets trend to accumulate under the drive of surface tension [30]. Therefore, it can be concluded 

that excessive remelting will occur before the cold lap pores on the bottom surface are eliminated 

by improving the temperature parameters. 
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3.4 A strategy to eliminate ripples and decrease solidification angles 

 

Through the above discussion, it is suggested that ripples are adverse to the remelting between 

neighboring metal droplets. These surface ripples will block the direct contact between the second 

droplet and the first one. Furthermore, when the solidification angle is greater than 90°, cold lap 

pores will be formed on the bottom surface of deposited droplets due to the insufficient filling of 

residual liquid metal. The experimental and simulation results show that these cold laps can be 

hardly avoided by improving the temperatures of droplet and substrate. Therefore, it is very 

important to find a way to eliminate ripples and decrease the solidification angles of the droplets. 

 
Besides the droplet temperature and substrate temperature, the thermal conductivity of the 

substrate is another important influencing factor of the remelting behavior between metal droplets. 

Figure 10 shows the simulation results of surface morphology of deposited droplet variation with 

the decrease of thermal conductivity of the substrate. It is found that the surface of the droplet tends 

to be smooth with the decrease of thermal conductivity of the substrate. When the substrate thermal 

conductivity is decreased from 400 W/(m·K) to 100 W/(m·K), the solidification angle of the 

deposition droplet decreases from an obtuse angle to an acute angle. The main reason for this 

phenomenon is that the solidification time of the droplet is prolonged with the decrease of thermal 

conductivity of the substrate. The liquid metal droplets rest in the equilibrium state throughout the 

process of solidification. As a result, the ripples will not be formed on the surface of the droplets. At 

the same time, the deposited droplets can reach a better spread. 

One kind of silver-plated ceramic substrate was chosen to deposit the droplets. Here, the Ag 

coating was used to eliminate the bounce of metal droplets [31]. The thermal conductivity of this 

silver-plated ceramic substrate is ~100 W/(m·K). Comparing the experiment and the corresponding 

simulation in Fig. 10, it is concluded that the surface morphology of the deposition droplet in 

experiment agrees well with the simulation. Figure 11 shows the experimental results which were 

conducted with the similar temperature parameters (Td=1223K, Tsub =523K, Tsurf ~800K when 

f=1Hz) as Fig. 5. The only difference is the substrate thermal conductivity. It can be found that cold 

lap pores on the bottom surface can be effectively eliminated and the good fusion can also be 

achieved by decreasing the thermal conductivity of the substrate.  

  



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Simulation results of surface morphology variation with the decrease of the thermal 

conductivity of the substrate and the SEM image of side view of the deposited droplet with the 

substrate thermal conductivity of ~100 W/(m·K). 

 

 

 

 

Fig. 11. SEM images of the morphology of (a) two neighboring droplets with the similar 

temperature parameters as those in Fig. 5; (b) enlarged side view of the selected section of the 

deposited metal trace in (a); (c) cross-section of the interface region in (a). 
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4. Conclusions 
 

For the first time, the obstructive effect of surface morphologies, including ripples and 

solidification angles, on the remelting process between neighboring droplets is revealed. To 

investigate the detailed process during remelting between neighboring droplets, a 3D model was 

developed basing on the VOF method. The simulated morphology of deposited droplets agrees well 

with the experiments. 

 
The remelting process between neighboring droplets can be divided into two stages according 

to the transient contact between the second droplet and the substrate. In the first stage, a non-intuitive 

result is observed that cold laps can also be formed even if the remelting conditions are satisfied in 

theory. This is mainly because ripples on the surface of the previously-deposited droplet will block 

its direct contact with the new-coming droplet. In the second stage, cold laps will be formed on the 

bottom surface due to the incomplete filling of residual liquid phase when the solidification angle 

is greater than 90°. These cold lap pores are difficult to be completely avoided if the issues of surface 

morphologies are not addressed. 

 
Finally, a novel strategy of eliminating ripples and decreasing solidification angles to promote 

remelting is proposed. Through experiments and simulations, it is confirmed that the ripples can be 

eliminated and the solidification angles can be decreased by adopting a substrate with lower thermal 

conductivity. This research provides guidance to achieve good metallurgical bonding and minimizes 

internal defects in droplet-based 3D printing. 
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