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HIGHLIGHTS 

 Microwave-metal discharge used for the preparation of Fe@CNCs. 

 Exceedingly high degree of graphitization and excellent material integrity achieved. 

 Novel thermo-oxidative stability and super anti-corrosion performance obtained. 

 The advanced material demonstrates desirable absorption of EMW across wide-

range of bandwidth. 

 

ABSTRACT  

Microwave-metal discharge was proposed as a facile methodology to prepare 

unique Fe-cored carbon nanocapsules (Fe@CNCs) with high purity, novel stability and 

extraordinary electromagnetic wave (EMW) absorption performance. The effect of 

microwave power, irradiation time and cyclohexane/ferrocene ratio on the production 
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of Fe@CNCs was examined and the properties of the nanocapsules, such as their Fe 

content, phase, yield, degree of graphitization and associated microstructures were 

investigated in detail. It was found that the prepared Fe@CNCs, which can easily be 

separated from the reaction system, displayed exceedingly high electromagnetic wave 

(EMW) absorption performance over the 2-18 GHz range. At the minimal reflection 

loss (RL) values over -10 dB, the EMW absorption bandwidth can reach up to 13.8 

GHz with an absorber thickness of 1.5-5 mm. In addition, novel thermo-oxidative 

stability and super anti-corrosion property were also obtained for the Fe@CNCs as no 

signs of any corrosion or oxidative degradation loss were observed from the accelerated 

degradation tests in air and acid at temperatures up to 420 ℃. The exceedingly high 

EMW absorption performance coupled with the superior anti-degradation and anti-

corrosion properties of the prepared nanocomposite microcapsules highlights the novel 

capability of microwave-metal discharge in synthesizing advanced metal-cored 

nanocarbon microcapsules with promising application potentials in diverse fields, such 

as but not limited to microwave absorption, EM shielding and advanced separations etc. 

Keywords: Fe-cored carbon nanocapsules, microwave-metal discharge, preparation, 

stability, electromagnetic wave absorption  

 

1. Introduction 

Nanocapsules are a class of nanocomposites with a unique core/shell structure with size 

ranging from a few nanometers to hundreds of nanometers. Due to their special optical, 

electrical, magnetic and catalytic properties[1, 2] and their promising application 

potentials in electromagnetic wave (EMW) absorption[3-5], battery technology[6-8], 



catalyst[9, 10], biomedical[11] and electromagnetic (EM) shielding[12], how to 

develop metal-cored nanocapsules with robust performances have attracted intensive 

research activities over recent years. Nanocapsules with appropriate materials as being 

the shell can effectively protect the metal core from getting oxidized thus to improve 

their stability in hostile environment[13, 14]. A number of nanocapsules have been 

investigated, with the shell structures fabricated ranging from carbon materials[15, 16], 

boron nitride[17], conductive polymers (e.g. phosphates)[18] to metal or semiconductor 

oxides[19, 20]. Among them, carbon shell materials are considered ideal owing to their 

proper dielectric properties, low cost, easy access and good environmental stability. As 

a result, the carbon-based soft magnetic metal nanocapsules, which are often referred 

to as metal-cored carbon nanocapsules (M@CNCs) usually with Fe, Co, Ni and their 

alloys as the core, become a research of intensive interest because the exchange 

coupling effect at the heterogeneous interface can induce the aforementioned desirable 

properties that cannot be possibly achieved otherwise.  

One of the novel properties of M@CNCs is their unparalleled performance in EMW 

absorption over single-substance materials owing to the unique core-shell structure. 

Magnetic metal nanoparticles have the characteristics of high saturation magnetization 

and shape anisotropy. Compared with micron magnetic metal particles, M@CNCs 

show higher magnetic permeability and magnetic loss in wide frequency ranges of 

gigahertz[21, 22]. As their characteristic particle sizes are 1~100 nm, lower than their 

skin depth in the EMW band, the restriction of eddy current effect can be furthermore 

avoided[23]. However, magnetic nanometals alone cannot achieve effective absorption 



of EMW due to the limited achievable dielectric losses. Nevertheless, the existence of 

carbon shell can effectively solve this problem, thanks to their excellent conductivity 

and dielectric properties. In addition, the increase of electrical resistivity can also 

effectively improve the attenuation constant. It is the cross-coupling effects among 

magnetic loss and dielectric loss as well as the larger attenuation constant that jointly 

contribute to the enhanced EMW absorption performance of the M@CNCs. 

Despite the superiorities, the practical applications of M@CNCs still faces major 

challenges or performance hurdles such as the lack of scalable production 

methodologies and the associated issues of product purity. Following the arc discharge 

method that was first used by Rouff et al, a variety of other preparation methods have 

been investigated, such as chemical vapor deposition (CVD), high temperature 

carbonization, pyrolysis, hydrothermal and explosion methodologies[1, 24-28]. Among 

these technologies, CVD appears to be the best available methodology at present but 

suffers from major drawbacks, such as the product purity and separation problems. 

Other technologies currently under development also face their own disadvantages. For 

instance, pyrolysis method benefits from process simplicity but the selection of 

appropriate precursors is the major challenge yet with high energy consumption and 

long preparation cycle whereas the complicated explosion methodology is almost 

impossible to operate and control with confidence. In addition to the shortcomings of 

preparation methodologies, the performance of the product also faced some problems. 

For example, carbon-encapsulated iron hybrids and graphite-coated FeNi nanoparticles 

synthesized by hydrothermal and arc-discharge methods are stable only in air and at 



temperatures below 180 ℃ and 240 ℃ respectively, highlighting their relatively poor 

thermo-oxidative stability[9, 29]. In addition, the absorption bandwidth for a given 

absorber thickness of the M@CNCs prepared by arc-discharge plasma method with RL 

values exceeding -10 dB is narrow[30, 31], which limits the potentials of their 

applications. Therefore, more practical or effective technologies have to be developed. 

Microwave-metal (MW-M) discharge can potentially serve as a novel approach to 

fabricate high-performance M@CNCs, due to its capabilities in facilitating multiple 

effects to take place simultaneously, such as strong selective heating, photo-catalytic 

and plasma effects[32]. When metal with tips or sharp edges were exposed to the 

microwave field, intense discharge phenomena may occur. Our previous investigations 

have demonstrated the novel application potentials of microwave-metal discharge in 

eliminating toxic volatile organic emissions and associated mechanisms[33, 34]. It was 

then interestingly found that the decomposition of carbonaceous compounds was often 

accompanied by the formation of dense carbon fragments. The transient local high 

temperature with localized pressure in the discharge area, which can reach up to 

3000 ℃[35, 36], provide desirable conditions to facilitate the formation of density 

carbons with high degrees of graphitization.  

Herein, the potential of using MW-M discharge as an approach to prepare iron-cored 

nanocapsules (Fe@CNCs) was for the first time explored, and the properties of the 

material were characterized using a variety of advanced characterization tools. To 

demonstrate the application potentials, the performance of this material for microwave 

absorption and EM shielding was evaluated with outstanding results. 



2. Experimental section  

2.1. Materials and sample preparation 

All chemicals used, typically including cyclohexane, ethanol and concentrated nitric 

acid were mainly purchased from Aladdin Industrial Corporation (ferrocene) and 

Sinopharm Chemical Reagent Co. Ltd. (including cyclohexane, ethanol and 

concentrated nitric acid). The concentrated nitric acid was diluted to 3 mol/L by 

deionized water, as acid lotion. Nickel wires (1 mm in diameter and 3-6 mm in length) 

obtained from Shanghai Shen Long High Temperature Line were used to induce 

microwave discharges in a self-designed industrial microwave oven (300-4000 W, 2.45 

GHz). High purity argon (99.999%) acted as a protective gas.   

A purpose-built quartz reactor with high-purity quartz glass, which can provide the 

required microwave transparency, was used to synthesize the Fe@CNPs with 

microwave-metal discharge via a dissolution-precipitation mechanism. In brief, to 

prepare the Fe@CNPs, cyclohexane and ferrocene were first mixed at a pre-determined 

weight ratio (cyclohexane: ferrocene = 5:1, 10:1, 15:1, 20:1, 25:1 and 30:1) in a quartz 

tube and then the nickel wires (2 g) were added into the aqueous mixture. The selection 

of the ferrocene/cyclohexane ratio is based on two important factors, namely the 

solubility of ferrocene in cyclohexane and the minimal volume required to facilitate the 

materials synthesis for the given experimental conditions. The nickel wires with tips 

are used to induce the desirable discharge under microwave irradiation and the amount 

of nickel used is determined by the required level of MW-metal discharge required for 

a given volume of the reactants. The mixture was then subjected to ultrasonic dispersion 



for 10 min before it was positioned in a quartz reactor. The reactor containing the 

mixture was then placed in the microwave oven and purged thoroughly with argon at 

200 mL/min to create an oxygen-free environment. Then, the mixture was exposed to 

microwave irradiation at different power output levels (800, 1000, 1200, 1400, 1600, 

1800, 2000, 2400 and 2600 W) for variable duration times (2, 2.5, 3, 3.5, 4, 4.5 and 5 

min) in a continuous flow of argon at 200 ml/min. During microwave irradiation, strong 

discharge occurred at the tips of the nickel wires, and a series of chemical reactions 

took place in the mixed solution. After the microwave-metal discharge treatment under 

different conditions, the quartz tube turned black and the tips of some metal wires were 

melted. Then, the reactor was allowed to cool naturally down to ambient temperature 

in a flow of argon before the carbon formed was collected from the reactor. The 

collected carbon was then firstly washed for 3 h with dilute nitric acid (3 M) under 

vigorous stirring conditions to remove the residual ferrocene and incomplete coated 

iron nanoparticles, and this was followed by further washing with ethanol and deionized 

water to remove the amorphous carbon. The graphitized or purified Fe@CNCs was 

then obtained by drying the remaining solid residue in an oven at 80 ℃ for 6 h. In order 

to optimize the morphology and performance of the products, a series of samples were 

prepared by changing the microwave power, microwave irradiation time and mass ratio 

of raw materials according to the above experimental method. The samples prepared 

under different conditions were labelled as Ax-y-z where x refers to the microwave 

power out level, y the duration time and z the cyclohexane/ferrocene mass ratio. For 

instance, sample A1800-4-15 represents the sample prepared with a power output level 



of 1800 W at a discharge duration time of 4 min and a cyclohexane/ferrocene ratio of 

15. 

 

2.2. Materials characterization 

Phase and Structure: Powder X-ray diffractometer (XRD) (Rigaku D/MAX2500V 

diffractometer) with Cu Ka radiation (λ = 0.15406 nm) was employed to determine the 

phase of the products. The graphitization degree and molecular structure of the samples 

was confirmed by Raman spectroscopy (Renishaw inVia) based on a He-Ne laser with 

a wavelength of 633 nm.  

Morphology and Microstructure: The morphology and particle size of the products were 

investigated by thermal field scanning electron microscope (SEM) equipped with an 

energy dispersive spectrometer (EDS). The microstructure of the samples dispersed in 

a standard copper grids after ultrasonic dispersion in ethanol solvent was analyzed in 

detail by high resolution transmission electron microscopy (TEM, FEI).  

Stability and Elemental Content Measurement: Thermogravimetric analysis (TGA) 

equipped with a simultaneous thermal analyzer was used to characterize the thermo-

oxidative stability and elemental content of the prepared Fe@CNPs under an air flow 

of 100 ml/min at a heating rate of 10 ℃/min. 

Porosity: Pore size and Brunauer-Emmett-Teller (BET) specific surface area were 

measured by a Gas Sorption Analyzer Autosorb IQ after degassing treatment at 190 ℃ 

for 10 h.  

Magnetic and EMW Absorption Performance: The vibrating sample magnetometer 



(VSM) was used to measure the magnetic properties of samples at room temperature. 

Before determining the EM parameters (permittivity and permeability), the Fe@CNCs 

(30 wt%) and the paraffin mixture were first processed into a toroidal sample (7 mm 

outer diameter and 3.04 mm inner diameter). A vector network analyzer (Agilent PNA-

N5244A) was then used to measure the EMW absorption performance of the sample at 

a frequency of 2-18 GHz.  

 

3. Results and discussion 

To investigate the porosity and the BET surface area of the Fe-cored nanocapsules, the 

N2 adsorption-desorption experiment was carried out. The N2 adsorption-desorption 

isotherm and pore size distribution curve are shown in Fig. 1. The isotherm is a typical 

type IV isotherm with a H3 type hysteresis according the to the classification of 

IUPAC[37], being indicative of the slit-like mesopores that are created by the 

aggregates of platy particles namely the Fe-cored capsular nanocarbon particles. The 

nanocapsules has a specific surface area of 56.8 m2/g and pore volume of 0.19 cm3/g, 

with a single modal pore size distribution centred at about 10 nm. The BET surface area 

of the nano-capsules prepared with MW discharge is considerbly larger than those of 

the same type of the reported nanocapsules prepared by other methodologies, such as 

GN-pFe3O4@ZnO (22.2 m2/g)[3], Fex@CS (18.0 m2/g) and Fe0/Fe3C@CS (42.3 

m2/g)[9]. The existence of porous structure can significantly improve the interfacial 

polarization effect, which can further enhance the dielectric loss in the high frequency 

range, thus affecting the EMW absorption performance of the nanocomposites. 
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Fig. 1 Nitrogen sorption isotherm and pore size distribution of core/shell Fe@CNCs. 

 

3.1. Total solid and Fe@CNCs yield 

To better define the yield of the product, in this work, the total solid is the weight of the 

raw product in each batch and the Fe@CNCs yield is defined as the mass ratio of the 

raw product after and before acid washing treatment. Fig. 2a shows the total solid under 

different microwave power. It increases first and then decreases with the increase of 

microwave power, and the maximum value reaches 200 mg at 1800 W. Previous studies 

have shown that the higher the microwave power, the more intense the MW-M 

discharge[32], which contributes to the decomposition of organometallic compounds 

and the carbonization of amorphous carbon. However, when the microwave power is 

too high, violent discharges will lead to the evaporation of raw materials. At this point, 

the greater the power, the faster the evaporation, resulting in a decline in yield. The 

variation regularity of total solid under different microwave irradiation time was shown 

in Fig. 2b, that the weight increases first with the increase of microwave irradiation 

time, and it tends to be stable after 4 min. This is because a relatively short irradiation 

time cannot provide sufficient energy for the carbonization process and a large amount 

of ferrocene was carried by the evaporated solution. 
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Fig. 2 Total solid (a, b and c) of the raw product in each batch under different working 

conditions and Fe@CNCs yield (d). 

 

Fig. 2c shows that the total solid is positively correlated with the content of ferrocene 

in the raw material, which means that the total solid is mainly determined by the 

ferrocene content. It is known that the addition amount of ferrocene of the six samples 

is 1.8, 0.9, 0.6, 0.45, 0.36 and 0.3 g, the mass ratio of total solid/ferrocene can be 

calculated as 0.23, 0.24, 0.33, 0.31, 0.25 and 0.20, respectively. It can be seen that the 

amount of nano-carbon particles formed as a fraction of the absolute amount of 

ferrocene used remains relatively constant or appears to be irrespective of the 

concentration of ferrocene in cyclohexane, suggesting that ferrocene, as opposed to the 

solvent of cyclohexane used, is primarily responsible for the formation and deposition 

of the nano-carbon particles. Indeed, it was found that most of the cyclohexane can be 



condensed out and recycled in the downstream process. The yields of nanocarbon 

particles were calculated to be more than 20%, which is significantly higher than those 

of other methods, such as microwave arcing process (~15%)[14] and explosive method 

(10-15%)[26]. In addition, all carbon particles showed similar content of Fe@CNCs, 

which was averaged at 86.2 % (as shown in Fig. 2d), confirming the exceedingly high 

efficiency of the formation of the ferromagnetic encapsulated nanoparticles. Compared 

with the carbon arc discharge (8-25%)[38], the Fe@CNCs yield obtained by this 

methodology has obvious advantages, indicating a high process efficiency. Both high 

yield and short preparation cycle have laid a solid foundation for the efficient 

application of MW-M discharge. Based on the above data, the formation mechanism of 

Fe@CNCs can be speculated. That is, hot-spot effect and plasma effect generated by 

MW-M discharge induce the micro-discharge of Fe in the ferrocene, which causes the 

collapse of cyclopentadiene on both sides of the Fe atom. Due to the desirable 

environmental conditions and the catalytic effect of iron[39-41], cyclopentadiene 

coated around the Fe atom can be thoroughly dehydrogenated and carbonized and 

eventually lead to the formation of the integrated graphite-like structures.  

3.2. Phase and structure characterization 

Fig. 3 shows the XRD patterns of seven samples in Fig. 2d. It can be seen that all 

samples are highly characterized by the characteristic presence of highly graphitized 

nanocarbon structures (002), body centered cubic (bcc) iron (α-Fe) and cementite iron 

carbide (Fe3C), with the iron core consists of manly α-Fe and some quantities of Fe3C. 

This suggests that the prepared iron-cored CNCs via the microwave-metal discharge all 



have highly ordered graphite layers with well-regulated iron as the core. The results 

shown by Fig. 3 also indicate that the crystalline phase composition of the Fe@CNCs 

samples prepared did not appear to be affected by the microwave power, irradiation 

time and the ratio of precursor materials. 

It was found from Fig. 3 that the diffraction peaks for the Fe phase present in the core 

of the Fe@CNCs are consistent with the standard phase (110), (200) and (220) of pure 

α-Fe, with the intensity of α-Fe diffraction peak being the strongest when the 

microwave power is 1800 W and the irradiation time is 4-5 min. A further increase in 

power output levels and duration times was found to lead to decreased intensity of both 

graphitized carbon and α-Fe diffraction peaks, presumably due to the enhanced 

evaporation loss of both the precursor feedstocks and potentially the carbon and/or iron 

species formed. This suggests that there exist optimal operational conditions to allow 

the development of desirable Fe@CNCs the iron core of samples. XRD is ideally 

suitable for investigating the evolution of graphitic structure of the nanoparticles. The 

diffraction patterns of the samples with different cyclohexane/ferrocene ratios were 

shown in Fig. S1. According to Mering-Maire equation (Eq.1) shown below [42], the 

degree of graphitization was calculated to be 57.4% (A1800-4-25), 69.3% (A1800-4-

15) and 60.7% (A1800-4-5), respectively. 

𝑔 =
0.3440 − 𝑑002

0.3440 − 0.3354
× 100%                                                           (1) 

Where g is the graphitization degree, d002 is the interlayer spacing along the c axis of 

graphite.  

The results intuitively show that the graphitization degree of the iron-cored nanocarbon 



particles can reach up to about 70%. The sample prepared from using a 

cyclohexane/ferrocene ratio of 15 (A1800-4-15) has a higher graphitization degree, 

followed by the sample A1800-4-5. This suggest that the amount of ferrocene available 

is vital for the formation of the well-graphited carbon shells. In addition, it is 

noteworthy that the presence of cementite Fe3C, which was detected in appreciable 

quantities, may suggest that this compound may serve as an intermediate for the 

formation of the graphite layers[39, 43]. Since Fe3C usually can only be formed at 

extremely high temperatures, this highlights the capability of microwave-metal 

discharge in creating the desirable localized high temperatures and associated pressures 

for the formation of quality metal-cored nanocarbon particles. 
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Fig. 4 Raman spectra of different core/shell Fe@CNCs. 



To further characterize the degree of graphitization of the metal-cored nanocarbon 

particles, which is an important factor that determines the quality of the materials for 

advanced applications (e.g. as an EMW absorbing material[44]), Raman spectroscopy 

was used to reveal further information. Fig. 4 shows the Raman spectra of the 

Fe@CNCs prepared under different conditions. All the samples present two typical 

characteristic peaks, which are often respectively referred to as the D band (1333 cm-1) 

that is related to the disorder of the carbon material and the G band (1586 cm-1) that is 

used to indicate the crystalline degree of the hexagonal lattices of carbon materials[45]. 

As a result, the intensity ratio of G and D band (IG/ID) is often used to characterize the 

graphitization degree of the carbon material, with samples having a higher 

graphitization degree giving rise to greater IG/ID of the ratio[38]. The Raman results 

show that the IG/ID value of all the samples is significantly higher than 1.2 and with the 

sample prepared with a microwave power output level of 1800W and irradiation time 

of 4 min having the highest IG/ID ratio of 1.81, which are significantly higher than those 

of the metal-cored CNCs prepared from using other methodologies, such as high-

temperature carbonization[44], carbon arc discharge[38] and thermal plasma torch 

method[46].  

It is well known that iron core has catalytic effect on the formation and growth of 

graphitized nanocarbon shells[39], but clearly the catalytic activity of iron alone cannot 

fully account for the significantly higher degree of graphitization obtained for the 

Fe@CNCs prepared from using the microwave-metal discharge methodology. It can be 

seen that for a given duration time of microwave discharge, the graphitization degree 



of Fe@CNCs first increased with increasing the power output up to 1800W, followed 

by a decrease with a further increase in the output level used. It is believed that the 

excessive power output may lead to excessive rate of carbon formation and thus affect 

the crystallization or alignment of the carbon on the surface of the iron core, giving rise 

to greater defects of the carbon shells formed. Similar trend was also observed with 

respect to the effect of microwave-metal discharge time (e.g. Sample A1800-2-15, 

A1800-4-15 and A1800-5-15). For a given power output level, it was found that the use 

of longer irradiation time led to the formation of larger sizes of Fe-cored nanocarbon 

capsules but at a cost of reduced degree of graphitization, due to the entrapment of 

amorphous carbon in the capsule structures during the process of particle deposition or 

agglomeration.   

Fig. 5 shows the SEM and TEM images of the four selected samples. It is evident that 

all the nanocapsules samples prepared are essentially spherical nanoparticles or their 

clusters containing a typical core-shell structure, with nanocarbon tubes also observed 

in appreciable quantities, due to the catalytic effect of metallic iron[47] and the high 

temperatures induced by the MV discharges. The sizes of the nano-capsules or their 

clusters vary typically from 30 to 100 nm. The occurrence of nano-capsule clusters or 

agglomerates is clearly attributable to the strong cohesion or even electromagnetic 

interaction between the Fe-cored CNCs of nanoparticles as to be discussed later. 

The TEM image (see Fig. 5b) reveals that the carbon shell of Fe-cored nano-capsules 

has a distinctive layered structure with an interval spacing of around ~0.34 nm, which 

is very close to the theoretical layer spacing of the graphite (0.3354), highlighting the  



 

Fig. 5 SEM (a, c, e and g) and TEM (b, d, f and h) images of core/shell Fe@CNCs, A1800-4-5 (a, 

b), A1800-2-15 (c, d), A2400-4-15 (e, f) and A1800-4-15 (g, h), inset in SEM image (a) is the 

corresponding EDS spectrum. 

 

high degree of graphitization of the carbon shells. Additionally, the thickness of the 

crystalline carbon shell was obtained to be more than 10 nm (as shown in Fig. 5b and 

Fig. 5d), which is higher than virtually all previous reported metal-cored carbon 



capsules prepared by high temperature carbonization, arc discharge and explosion 

methods[21, 48, 49]. It is also evident from the SEM/TEM images that the Fe metal 

particles are well seeded into the core of the carbon lattice with no evident structural 

defects, highlighting the novel material integrity and potential super stability of the Fe-

cored nanoparticles even in hostile thermo-oxidative environments. High integrity of 

the carbon shell plays a decisive role in securing a long lifetime performance in different 

application environment. For instance, the disintegration or even rupture of the carbon 

shell[50] will lead to the corrosion or eradication of the metal core, transforming the 

metal-cored nanocapsules into hollow onion-like structures. The superior integrity of 

the carbon shell of the metal-cored nanocapsules augurs extremely well for the lasting 

lifetime performance of these materials in various environments, highlighting the 

capability of MW-M discharge in fabricating superior metal-cored carbon capsules. 

However, in this work, the onion-like carbon shell was rarely found, indicating that the 

shell of Fe@CNCs prepared by MW-M discharge have a high integrity.  

 

3.3 TGA characterization and thermo-oxidative stability of Fe@CNCs  

Thermal gravimetric analysis (TGA) was used to examine the relative composition and 

the thermos-oxidative stability of the Fe@CNCs capsules prepared under different 

conditions[51]. Fig. 6 shows the proximate analyses for the Fe@CNCs samples. As can 

be seen, the iron content in the form of iron oxides varied from 17.5 wt% to 22.0 wt%, 

with those prepared at higher MW output levels and longer discharge times generally 

having higher iron or lower carbon contents. The material balance of iron from the 

preparation can be expressed as follows: Iron in ferrocene = Iron removed by acid-



washing + Iron coated in carbon shells + Iron loss. Based on the mass conservation law, 

the effective utilization rate of iron in this preparation was calculated to be between 20-

25% at a power level of 1800 W and an irradiation time of 4 mins. However, it is 

interesting to note that the sample prepared at the highest ferrocene concentration 

(sample A1800-4-5) was found to have the lowest iron (17.5 wt%) or highest carbon 

content (82.5 wt%), and this may suggest that the carbon contained in the ferrocene is 

preferentially deposited out at a loss of iron or some of the ferrocene-contained iron is 

not encapsulated to form the iron-cored nanocarbon capsules. By and large, the 

proximate analyses show that a cyclohexane/ferrocene mass ratio of 15 appears to be 

the optimal for the efficient formation of the Fe-cored capsules. Compared to other 

carbon-coated nanocapsules prepared from using other methodologies[5, 52], the 

carbon contents or the thicknesses of the carbon shells of the Fe-cored capsules 

generated from the MW-M discharge are considerably higher, highlighting again the 

novel capability of MW discharge in fabricating high quality of metal-core capsules. 
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Fig. 6 TGA curves of different core/shell Fe@CNCs in air with a heating rate of 10 ˚C/min, the Fe 

content of the sample A1800-4-5, A1800-2-15, A2400-4-15 and A1800-4-15 are calculated to be 

17.5, 20.1, 19.6 and 22.0 wt%, respectively.   



In order to investigate the anti-corrosion performance and thermo-oxidative stability of 

the Fe-cored nanocapsules, the sample A1800-4-5 was first subjected to an acid 

washing treatment in dilute nitric acid under ambient and vigorous stirring conditions 

for variable duration times, before they are subjected to the burn-out tests in air with 

TGA, which were used as an accelerated testing of the thermo-oxidative stability of the 

capsule samples. Fig. 7 shows the accelerated thermo-oxidative stability testing results 

of the samples before and after the acid treatments. The slight weight gain observed at 

temperatures up to 420 ℃ for the sample A1800-4-5 before the acid treatment are 

believed to result from the oxidation of trace quantities of free or partly encapsulated 

iron[9] whereas the following slight weight loss obtained from 420 to 450 ℃ was due to 

the burnout of the amorphous carbons formed, respectively. This confirms that the 

formation of amorphous carbon and non or partly encapsulated iron appears to be 

closely related, and this phenomenon seems to occur mainly at high ferrocene 

concentrations used under the MW-M discharge conditions. 

In general, the TGA results indicate that all Fe-cored capsules demonstrate exceedingly 

high thermo-oxidative stability at temperatures up to 420 ℃ and no evident effect of 

the strongly aggressive acid treatment was observed on the stability. This highlights the 

robust anti-corrosion performance and novel thermo-oxidative stability of Fe@CNCs 

prepared via the MW discharge methodology, which are significantly higher than those 

fabricated with other methodologies, such as hydrothermal, arc-discharge and CVD 

method[14, 53], where the Fe or other metal-cored capsules can only afford 

temperatures generally well below 240 ℃. 
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Fig. 7 TGA curves of sample A1800-4-5 after different time acid-washing, carried out in air with a 

heating rate of 10 ˚C/min. 

 

To further investigate the thermos-oxidative stability of the Fe-cored nanocapsules 

prepared, the sample A1800-4-5 was selected for an annealing treatment in air for 2 h 

at a pressure of -0.05 MPa and temperature of 550 ℃. Fig. 8a shows the Raman spectra 

for the A1800-4-5 sample before and after the annealing treatment. It can be seen that 

the IG/ID value of the sample after the annealing treatment decreased from 1.57 to 1.25, 

but it is still considerably higher than most of the other Fe@CNCs reported with other 

methodologies[11, 14], being indicative of the novel integrity of the Fe/carbon shell 

structures. The XRD pattern for the annealed sample (Fig. 8b) shows that the Fe3C 

species present in the capsule structures have been transformed into Fe3O4 after the 

annealing treatment. Compared with the CNCs with Fe/Fe3C as the core, the capsules 

with Fe/Fe3O4-cored exhibit better electrochemical performance. More importantly, the 

detection of crystal lattice of Fe3O4 as can be clearly seen from the inset in Fig. 8b 

indicates that the thermal annealing treatment contributes to the further development of 

the desirable crystalline structures, which helps to enhance the metal-cored capsules’  
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Fig. 8 Raman spectra (a) and XRD patterns (b) of core/shell Fe@CNCs before and after thermal 

annealing in air. 

 

Fig. 9 High resolution TEM images of core/shell Fe@CNCs before (a) and after (b) thermal 

annealing in air. 

saturation magnetization[54]. It is worth mentioning that the chemical composition of 

the residual solids remains the same i.e. C, α-Fe and Fe3C after thermal degradation in 

N2 atmosphere. The high resolution TEM images shown in Fig. 9 show that after the 

thermal annealing treatment, the size and carbon layer thickness of the capsule samples 

increased significantly, indicating a better anti-corrosion performance. It was also found 

from the TEM images that the degree of structural disorder and fusion between the 

small nanoparticles is increased (Fig. 9b), which is consistent with the observed decease 

in the IG/ID value shown in Raman spectrum in Fig. 8a. It is noteworthy that a 

remarkable recovery of higher than 95% was achieved from the nitric acid washing of 



the thermally annealed sample, being suggestive of the novel thermo-oxidative stability 

of the Fe@CNCs in extreme environments, for example, as stealth material on the 

surface of high speed flying objects[55].  

 

3.4. Performance assessment of the Fe-cored nanocapsules prepared as magnetic 

and EMW absorbing materials 

The magnetic hysteresis loop obtained from a magnetometer at room temperature, as 

shown in Fig. 10, is used to characterize the magnetic absorption characteristics of the 

synthesized nanocapsules. It can be seen that the Fe-cored nanocapsules exhibit strong 

ferromagnetic behavior and the magnetization reaches saturation at 10 kOe. The 

saturation magnetization (MS) value of the sample is 23.1 emu g-1, which is equivalent 

approximately to 11% of the bulk iron contained[56]. It is known that the MS of the 

Fe@CNCs is mainly determined by the total Fe content[38], so the value can be further 

improved by increasing the amount of encapsulated iron content in the structure. Based 

on this, it can be determined that the sample A1800-4-15 will exhibit better magnetic 

performance than the sample A1800-4-5 because of its higher iron content.  

It is also interesting to note that the Fe@CNC capsules show extraordinary magnetic 

properties as demonstrated in a simple experiment where it was found that all the 

Fe@CNCs particles dispersed in an aqueous suspension can be quickly separated from 

the mixture by using a common magnet, changing the colour of the aqueous suspension 

from black to colorless as shown in the inset of Fig. 10. In particular, the advantage of 

easy separation of the products is unattainable by CVD method, and it can be used as 

recyclable catalyst for chemical reactions enhancement.  



 

Fig. 10 Magnetic hysteresis loop of core/shell Fe@CNCs, take sample A1800-4-5 as an example. 

 

It is known that the EMW absorption performance is mainly determined by the 

dielectric tangent loss (tan δe = ε″ / ε′) and the magnetic tangent loss (tan δm = μ″ / μ′), 

as shown in Fig. 11. Among them, ε′, ε″, μ′ and μ″ are the real and imaginary part of 

complex permittivity and complex permeability, respectively. It should be noted that 

the drastic fluctuations of these two curves are caused by the relaxation process[29]. 

For instance, the tan δm is always smaller than the tan δe in the frequency range from 2 

to 18 GHz, and the tan δm changes slightly around zero. Compared with other 

nanocapsules[11, 21], the material has a high dielectric loss, which can improve not 

only the conductivity of the material but also the attenuation constant. In order to have 

an explicit understanding of the EMW absorption performance of the Fe-cored 

nanocapsules, the reflection loss (RL) was calculated via testing complex permeability 

and permittivity at different frequency based on the transmission line theory as 

follows[31, 57]:  

R𝐿(𝑑𝐵) = 20𝑙𝑜𝑔 |
𝑍𝑖𝑛−𝑍0

𝑍𝑖𝑛+𝑍0
|                                                 (2)                            

  𝑍𝑖𝑛 = 𝑍0√
𝜇𝑟

𝜀𝑟
 𝑡𝑎𝑛ℎ [𝑗 (

2𝜋𝑓𝑑

𝑐
) √𝜀𝑟𝜇𝑟]                                       (3)                       

Where 𝑍0 is the input impedance of free space (usually 𝑍0 get 1), 𝑍in is the input 



impedance of the absorber, 𝜀𝑟 and 𝜇𝑟 are the complex permittivity and complex 

permeability, respectively, 𝑓 is the frequency of the EMW, 𝑐 is the light velocity in the 

free space and 𝑑 is the thickness of the absorber.  

Fig. 12 shows the RL values of the prepared Fe@CNCs, and it can be seen that the 

thickness of the packed absorber varies from 1.0 mm to 5.0 mm. When the RL values 

is higher than -10 dB, it means that more than 90% of the EMW will be absorbed and 

when this value is decreased to -20 dB, the absorption ratio can reach 99%. It is clear 

that the sample exhibits a great EMW absorption performance and with the RL value 

being close to as low as -22.5 dB at 10.2 GHz for a thickness of 2.5 mm. The minimal 

RL values of the sample are less than -18 dB for a thickness of 1.5-5 nm, which is even 

smaller than that of graphene (-11 dB)[37]. This indicates that the material has a better 

EMW absorption performance than pure graphite. It is interesting that the strongest RL 

value was found to be in the favourable high frequency region, and this compares to 

typical magnetic metal materials which their absorptive properties are only observed in 

the low frequency region. This is due to the high resistivity of the graphite shell, which 

can effectively reduce the effect of the eddy currents on the magnetic loss at high 

frequency[29, 58]. In addition, as shown in the figure, with the RL values being less 

than -10 dB, the corresponding absorption bandwidth can reach up to13.8 GHz (4.2-18 

GHz). Compared with other core-shell nanocomposites such as CoNi@SiO2@TiO2[59], 

CoxFey@C[60], (Fe, Ni)/C NPs[4] and (Fe)C NPs[30], the Fe@CNCs prepared from 

using  MW discharge display desirable absorption behavior over a significantly wider 

range of EMW bandwidth. It is also found that for a RL value being as low as -10 dB, 



the matching thickness is only 1.5 mm, which is significantly thinner than the reported 

thickness for other materials, which ranged mostly from 2 to 4 mm[3, 21, 61]. The 

results suggest that to achieve the same level of EMW absorption, the required coating 

thickness of Fe@CNCs will be much thinner than those of the aforementioned other 

metal-cored nanocomposites. Calculations also demonstrate that the added weight of 

Fe@CNCs in the absorber is only 30 wt%, which is also significantly lower than those 

of other previously reported materials, which are usually more than 40 wt%[21]. Based 

on the above data, it is believed that the Fe@CNCs prepared from microwave discharge 

is a super EMW absorbing material over a wide-range of bandwidth, outperforming 

virtually all the previously reported materials prepared from using other approaches. 
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Fig. 11 Dielectric tangent loss (tan δe) and magnetic tangent loss (tan δm) of core/shell Fe@CNCs 

in 2-18 GHz. 
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Fig. 12 Reflection loss of core-shell Fe@CNCs with absorber thickness of 1-5 mm. 



4. Conclusions 

The use of MW-M discharge as novel facile technology for the fast production of high 

purity Fe@CNCs has been explored with great promise. Using ferrocene dissolved in 

cyclohexane as the precursor material, the results demonstrate that Fe-cored 

nanocarbon capsules with exceedingly high material integrity were generated, with the 

highly graphitized carbon shells being almost exclusively derived from the precursor 

ferrocene, giving rise to the virtually full recovery of the solvent of cyclohexane used, 

and this highlights the novel capability of MW-M discharge in selectively targeting the 

ferrocene precursor material for the formation of F@CNCs particles. It was also found 

that the Fe-cored nanocapsules have super anti-corrosion performance and novel 

thermo-oxidative stability, outperforming virtually all previously reported M@CNCs 

prepared from using other methodologies. Thermal annealing treatment in air was 

found to lead to the desirable transformation of Fe3C to Fe3O4, which further helps to 

improve the electrochemical properties of the material. EMW absorption tests reveal 

that with a thin layer of the carbon shells having extraordinary anti-corrosion and 

thermos-oxidative stability, the Fe@CNCs particles show exceedingly high absorption 

of EMW across a wide-range of EMW bandwidth. The results from the exploratory 

investigation, which appears to be the first of its kind to the best of our knowledge, 

augurs extremely well for the use of MW-M discharge as a novel approach for 

synthesizing novel functionalized materials for targeted applications such as the EMW 

absorbing materials, high-performance electrode materials and easy-to-separate 

catalysts. 
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