
BAKER’S CONJECTURE FOR FUNCTIONS WITH REAL
ZEROS

D. A. NICKS, P. J. RIPPON, AND G. M. STALLARD

Abstract. Baker’s conjecture states that a transcendental entire function of
order less than 1/2 has no unbounded Fatou components. It is known that,
for such functions, there are no unbounded periodic Fatou components and so
it remains to show that they can also have no unbounded wandering domains.
Here we introduce completely new techniques to show that the conjecture
holds in the case that the transcendental entire function is real with only real
zeros, and we prove the much stronger result that such a function has no orbits
consisting of unbounded wandering domains whenever the order is less than 1.
This raises the question as to whether such wandering domains can exist for
any transcendental entire function with order less than 1.

Key ingredients of our proofs are new results in classical complex analysis
with wider applications. These new results concern: the winding properties of
the images of certain curves proved using extremal length arguments, growth
estimates for entire functions, and the distribution of the zeros of entire func-
tions of order less than 1.

1. Introduction

Let f : C → C be a transcendental entire function and denote by fn, n =
0, 1, 2, . . . , the nth iterate of f . The Fatou set F (f) is the set of points z ∈ C such
that (fn)n∈N forms a normal family in some neighborhood of z. The complement
of F (f) is called the Julia set J(f) of f . An introduction to the properties of
these sets can be found in [4].

Baker’s conjecture, arising from his paper [3] in 1981, is that the Fatou set has
no unbounded components whenever the order of the function is less than 1/2, or
even whenever the function has order at most 1/2, minimal type (see Section 2 for
definitions). It is known [25] that such functions have no unbounded periodic or
preperiodic Fatou components but it remains open as to whether such a function
can have an unbounded wandering domain, that is, an unbounded component U
of the Fatou set such that fn(U) ∩ fm(U) = ∅ for n 6= m. Note that [3] gives
examples of functions of order 1/2 with unbounded periodic Fatou components.

Many authors have shown that Baker’s conjecture holds provided some regularity
condition is imposed on the growth of the maximum modulus but, without any
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such condition, it is not even known whether the conjecture holds for all functions
of order zero. The strongest results in this direction are given in [14] and in [18].
A survey of earlier work on this conjecture appears in [13]. All these papers used
properties of the minimum modulus to show that, under certain conditions, the
images of certain curves must stretch radially.

The paper [20] introduced a new approach to the problem, showing that, for
a certain class of functions, if these image curves do not stretch radially, then
they must wind round the origin repeatedly. This led to the first result on
Baker’s conjecture for functions of positive order requiring no restriction on the
regularity of the growth, namely, that the conjecture holds for a transcendental
entire function of order less than 1/2 which is real (that is, it takes only real
values on the real axis) and has only negative zeros.

This new approach to Baker’s conjecture requires a detailed understanding of
the influence of the zeros of the function on the images of curves. Even the
apparently straightforward generalisation of allowing the zeros to lie anywhere
on the real axis requires much more sophisticated arguments than those used
in [20], where repeated use was made of the fact that, when the zeros of f are
all negative, |f(reiθ)| is strictly decreasing for 0 ≤ θ ≤ π, for any r > 0.

In this paper we prove several new results in complex analysis which enable us
to make this generalisation and, more surprisingly, enable us to show that such
functions have no orbits consisting of unbounded wandering domains whenever
the order is less than 1.

Theorem 1.1. Let f be a real transcendental entire function of order less than 1
with only real zeros. Then f has no orbits consisting of unbounded wandering
domains.

As stated earlier, it is known that functions of order at most 1/2, minimal type,
have no unbounded periodic Fatou components. For such functions, the mini-
mum modulus function is unbounded (see, for example, [24, p.274]) and so the
image of any unbounded continuum is also unbounded. Hence we have the fol-
lowing corollary to Theorem 1.1.

Corollary 1.2. Let f be a real transcendental entire function of order at most
1/2, minimal type, with only real zeros. Then f has no unbounded Fatou com-
ponents and hence Baker’s conjecture holds.

The proofs of all earlier results on Baker’s conjecture made crucial use of the very
strong minimum modulus properties of functions of order less than 1/2, and the
proof of Theorem 1.1 requires a number of new results concerning properties
of functions of order less than 1. Note that there are examples of functions of
order 1 with orbits consisting of unbounded wandering domains – for example,
the function defined by f(z) = z − 1 + e−z + 2πi has this property as shown by
Herman [11] – but no examples are known of functions of order less than 1 which
have this property. Our result suggests the following question.
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Question Is there an example of a transcendental entire function f of order
less than 1 with an orbit consisting of unbounded wandering domains?

This question adds a new perspective to the body of work seeking to identify
classes of functions for which there are no wandering domains. This work began
with the famous paper of Sullivan [23] which introduced the idea of quasicon-
formal deformations to the subject and showed that rational functions have no
wandering domains. Many subsequent papers (see [4] for a summary) show that
Sullivan’s techniques can be extended to rule out wandering domains for various
classes of transcendental entire functions, such as those in the Speiser class S,
for which the set of finite singular values is finite. Our result does not rule out
bounded wandering domains, and indeed these can exist for functions of arbitrar-
ily small growth; see [12]. It does, however, provide a new approach for ruling
out orbits consisting of unbounded wandering domains.

One of the most recent papers concerning the absence of wandering domains
is [15] by Mihaljević-Brandt and Rempe-Gillen, who prove that wandering do-
mains do not exist for many functions in the Eremenko-Lyubich class B, consist-
ing of transcendental entire functions for which the set of finite singular values is
bounded. As an application, they show that there are no wandering domains of
functions in the class B which have order less than 1 and are real with all their
zeros on the negative real axis.

The above results about the class S and the class B show that the following
families of functions of order 1/2 have no wandering domains:

f(z) = λ cos
√
az + b, f(z) = λ

sin
√
az + b√

az + b
,

where λ, a, b are real, with a, λ 6= 0.

Our result complements these by using a completely different approach to show,
for example, that the following families of functions have no orbits consisting of
unbounded wandering domains:

(1.1) f(z) = p(z) cos
√
az + b, f(z) = p(z)

sin
√
az + b√

az + b
,

where a, b are real, with a 6= 0, and p(z) is a real polynomial with only real zeros.
Such functions belong to the class B only when p(z) is a real constant. These
classes include the function of order 1/2 defined by f(z) = (z/2) cos

√
z, which

has an unbounded attracting invariant Fatou component but, by Theorem 1.1,
has no orbits consisting of unbounded wandering domains.

Remarks
1. The examples in (1.1) have only real zeros, all but finitely many of which lie
on either the positive or the negative real axis. Nevertheless, these functions are
not covered by the results in [20].

2. Theorem 1.1 does not exclude the possibility that f has an unbounded wan-
dering domain whose forward orbit consists eventually of bounded Fatou compo-
nents. However, the proof shows that for this class of functions such a wandering
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domain can occur only if 0 lies in the orbit of wandering domains. In fact it also
shows that for these functions unbounded periodic Fatou components can only
occur if 0 lies in the periodic cycle.

3. In earlier work [19], the last two authors identified a surprising connection
between Baker’s conjecture and Eremenko’s conjecture [9] that, for any transcen-
dental entire function f , the components of the escaping set

I(f) = {z : fn(z)→∞ as n→∞}
are all unbounded. In particular, they showed that for large classes of functions
a common method of proof can be used to attack both conjectures showing
that, for such functions, Eremenko’s conjecture holds in a strong way with the
escaping set being a connected set with a structure called a spider’s web. This
approach was used, for example, in [20]. The main thrust of this paper, however,
is rather different and, for many of the functions covered by Theorem 1.1 (such
as f(z) = (z/2) cos

√
z), we know that I(f) is not a spider’s web. Some of

the winding results proved in this paper can be used to obtain new classes of
functions for which I(f) is a spider’s web and hence Eremenko’s conjecture holds.
These new classes include some of the functions covered in Theorem 1.1 and also
some real functions of order greater than 1. An analysis of the different types of
possible structures of the escaping set for real functions with real zeros is beyond
the scope of this paper and we will study this in future work.

4. The proof of Theorem 1.1 makes strong use of the fact that, for these functions,
f(z) = f(z), for z ∈ C, and also that log f is conformal in the upper half-plane.
This means that a generalisation of the result to cover functions whose zeros
lie on more general rays poses considerable challenges which will require new
ideas. The proofs could, however, be modified to cover the specific case of entire
functions f of the form f(z) = g(zq), where g is a function of the form considered
in Theorem 1.1 and q ∈ N.

The structure of this paper is as follows. In Section 2, we state two new results,
Theorems 2.1 and 2.2, concerning the winding of image continua and deduce
from these a further result, Theorem 2.4, which shows that the images of certain
continua must stretch radially or wind round the origin. In Section 3 we deduce
Theorem 1.1 from Theorem 2.4.

We prove Theorems 2.1 and 2.2 in Sections 5 and 7, respectively. For both these
theorems we need several results that relate the behaviour of the maximum
modulus and the minimum modulus of f , which are deduced in Section 4 from
a fundamental estimate of Beurling. Theorem 2.1 is proved using an extremal
length argument applied to log f , which is univalent in the upper half-plane for
the functions considered here and in fact for all functions in the Laguerre–Pólya
class. Theorem 2.2 is proved using a new result concerning the location of the
zeros of functions of order less than 1, which may be of independent interest.
This result is proved in Section 6 using estimates for the minimum modulus due
to Cartwright. Note that Theorem 2.2 is needed only for the case of functions of
order at least 1/2 with 0 /∈ F (f).
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2. Winding of image curves

We begin this section by stating two new theorems which show that, for entire
functions of the type covered by Theorem 1.1, the images of certain continua γ
must wind many times round the origin. These play a key role in our proof of
Theorem 1.1. We note that for our present purposes it would be sufficient to
prove these results in the case when γ is a curve rather than a continuum, but
we state these theorems for a continuum because of possible future applications.

We first introduce some notation. We define the maximum and minimum mod-
ulus of an entire function f by

M(r) = M(r, f) = max
|z|=r
|f(z)| and m(r) = m(r, f) = min

|z|=r
|f(z)|, for r > 0,

and the order ρ = ρ(f) of a transcendental entire function f by

ρ = lim sup
r→∞

log logM(r, f)

log r
.

Defining σ by

σ = lim sup
r→∞

logM(r)

rρ
,

we say that the growth of f is of minimal type if σ = 0, mean type if 0 < σ <∞
and maximal type if σ =∞.

We recall the following version of Hadamard convexity: for a transcendental
entire function f , there exists a constant R0 = R0(f) > 0 such that

(2.1) M(rc) ≥M(r)c, for r ≥ R0, c > 1;

see [18, Lemma 2.1]. Throughout the paper R0 denotes the constant in (2.1). We
also recall the well-known property of any transcendental entire function that

(2.2)
logM(r)

log r
→∞ as r →∞.

Next, for r > 0, we write C(r) = {z : |z| = r} and, for 0 < r1 < r2, we write

A(r1, r2) = {z : r1 < |z| < r2} and A(r1, r2) = {z : r1 ≤ |z| ≤ r2}.

Finally we introduce notation associated with the winding of image curves. If γ is
a plane curve with an associated parametrisation and γ meets no zeros of f , then
we denote the net change in the argument of f(z) as z traverses γ by ∆arg f(γ).

If γ is a continuum (that is, a nontrivial, compact, connected subset of C) hav-
ing the property that all the zeros of f lie in the unbounded complementary
component of γ, and if z0, z

′
0 is any pair of distinct points in γ, then we de-

note the net change in the argument of f(z) as z traverses γ from z0 to z′0 by
∆arg(f(γ); z0, z

′
0). This quantity is defined by choosing

• any simply connected domain, G say, that contains γ but no zeros of f ,
• a branch, g say, of log f in G,
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and putting

(2.3) ∆arg(f(γ); z0, z
′
0) = =(g(z′0))−=(g(z0)).

Note that in the case when γ is a simple arc with endpoints z0 and z′0 that meets
no zeros of f , then we have ∆arg(f(γ); z0, z

′
0) = ∆arg(f(γ)).

We now state our first result concerning the winding of the images of certain con-
tinua under a function f that satisfies the hypotheses of Theorem 1.1. Roughly
speaking, this result states that if |f | is neither too large nor too small on a
continuum γ that lies in the upper half-plane and crosses a sufficiently thick
annulus, then the image of γ must wind many times round 0.

Theorem 2.1. Let f be a real transcendental entire function of order less than 2
with only real zeros, and let s and a be positive real numbers such that

(2.4) s ≥ R0 and log s ≥ 64

a2
+

80π

a
.

If γ is any continuum in {z : =z ≥ 0} that meets both C(s) and C(s1+a) with

(2.5) 1/M(s) ≤ |f(z)| ≤M(s), for z ∈ γ,
then there exist a continuum Γ ⊂ γ ∩ A(s, s1+a) and z0, z

′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ 1

10π
logM(s) log sa.

Theorem 2.1 is a generalisation of a similar result proved in [20, Theorem 2.1]
in the case that all the zeros are negative and the continuum γ is a level curve
of f . The proof here is, however, very different to the one given in that paper
since we can no longer assume that |f(reiθ)| is strictly decreasing for 0 ≤ θ ≤
π, for every r > 0, and it uses extremal length together with an estimate of
Beurling. We describe the estimate of Beurling and some of its consequences in
Section 4, and recall the notion of extremal length in Section 5, where we also
prove Theorem 2.1.

Our next theorem concerning the winding of the images of certain continua under
a function f satisfying the hypotheses of Theorem 1.1 is completely new and is
required to deal with a situation that we do not need to consider for functions
of order less than 1/2; see [20, Theorem 2.2]. Roughly speaking, the following
theorem states that if |f | is not too large on a continuum γ that lies in the upper
half-plane and crosses a sufficiently thick annulus, and f takes a very small value
at a point on γ near the outer edge of the annulus, then the image of γ must
wind many times round 0.

Theorem 2.2. Let f be a real transcendental entire function of order ρ < 1 with
only real zeros. There exist K1 = K1(ρ) > 2 and R1 = R1(f) ≥ R0 such that, if

L ≥ K1, s
1/L ≥ R1

and γ is any continuum in {z : =z ≥ 0} that meets both C(s1/L) and C(s) with

(2.6) |f(z)| < M(s1/L), for z ∈ γ,
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and

|f(z′)| < 1

M(s1/L1/8)
, for some z′ ∈ γ ∩ {z : s1/L1/8 ≤ |z| ≤ s},

then there exist a continuum Γ ⊂ γ ∩ A(s1/L, s) and z0, z
′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ logM(s1/L) .

In order to prove Theorem 2.2 we obtain the following result, which gives a fairly
precise statement about the location of the zeros of an entire function of order
less than 1 whose minimum modulus is relatively small on a long interval, and
which may be of independent interest. Note that this result does not hold in the
case α ≥ 1, as shown by the exponential function.

Theorem 2.3. Let f be a transcendental entire function with f(0) = 1. Suppose
that, for some R > e28, there exists 0 < α < 1 such that

logM(r) ≤ rα, for r ≥ 3R1/(1−α).

If

logm(r) ≤ 1

2
logM(r), for r ∈ (R/4, R/2),

then

n(R1/(1−α))− n(R/e28) ≥ logM(R)

28
− 3

1− α
,

where n(r) denotes the number of zeros of f in {z : |z| ≤ r}, counted according
to multiplicity.

We prove Theorem 2.3 in Section 7 and then Theorem 2.2 in Section 8.

We conclude this section by using Theorems 2.1 and 2.2 to prove the following
theorem showing that the images of certain continua must stretch radially or
wind around the origin. This result plays a key role in the proof of Theorem 1.1.

Theorem 2.4. Let f be a real transcendental entire function of order ρ < 1 with
only real zeros. Let

(2.7) K2 = K2(ρ) = max{K1, 2
8},

where K1 = K1(ρ) is the constant in Theorem 2.2, and R2 = R2(f) satisfies

(2.8) R2 ≥ max{R1, exp(320)} and logM(R2) ≥ 2π,

where R1 = R1(f) is the constant in Theorem 2.2. If L and t satisfy

(2.9) L ≥ K2, t
1/L ≥ R2,

γ is any continuum in {z : =z ≥ 0} that lies in A(t1/L, t) and meets both C(t1/L)
and C(t), and

S = max
z∈γ
|f(z)|,

then at least one of the following must hold:

(1) f(γ) meets both C(S1/(L+2)) and C(S), and S ≥M(t1/L);
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(2) f(γ) meets both C(S1/(L(1−ε))) and C(S), and

S = M(t1−ε), where 0 ≤ ε ≤ 10√
log t

;

(3) there exist a continuum Γ ⊂ γ and z0, z
′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ logM(t1/L) ≥ 2π.

Proof. Suppose that f , L and t satisfy the hypotheses of the theorem.

We consider two separate cases.

(a) First, suppose that

(2.10) S = M(t1−ε), for some ε ∈ [0, 1− 1/L].

Then case (1) must hold if there exists z ∈ γ with |f(z)| ≤ 1, since

S = M(t1−ε) ≥M(t1/L) > 1,

by (2.8) and the fact that t1/L ≥ R2.

If |f(z)| > 1 for all z ∈ γ, then there are two possibilities.

(i) If ε ≤ 10/
√

log t, then case (2) holds since, by (2.1),

M(t1/L) ≤M(t1−ε)1/(L(1−ε)) = S1/(L(1−ε)).

(ii) If ε > 10/
√

log t, then we claim that we can apply Theorem 2.1 to γ with
s = t1−ε and s1+a = t. Clearly (2.5) holds. To show that (2.4) holds, we note
that a = ε/(1− ε) and so, by (2.9), (2.7) and (2.8),

64

a2
+

80π

a
=

64(1− ε)2

ε2
+

80π(1− ε)
ε

<

(
64

100
log t+

80π

10

√
log t

)
(1− ε)

=

(
64

100
+

8π√
log t

)
(1− ε) log t

< (1− ε) log t = log s,

as required.

Thus it follows from Theorem 2.1, (2.9), (2.7), (2.8) and (2.10), together with
the facts that sa = tε and

ε log t > 10
√

log t > 10π,

that there exist a continuum Γ ⊂ γ and z0, z
′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ logM(t1−ε) log(tε)

10π
> logM(t1/L) ≥ 2π.

Thus case (3) holds.

(b) Now suppose that (2.10) does not hold and so

(2.11) |f(z)| < M(t1/L), for z ∈ γ.
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There are two possibilities.

(i) If

|f(z)| ≥ 1

M(t1/L1/8)
, for z ∈ γ ∩ {z : t1/L

1/8 ≤ |z| ≤ t},

then, by (2.11), we can apply Theorem 2.1 with s = t1/L
1/8

and s1+a = t, pro-
vided (2.4) holds. This does hold since a = L1/8 − 1 ≥ 1, by (2.7), and

log s = log(t1/L
1/8

) > log(t1/L) > 320 > 64 + 80π >
64

a2
+

80π

a
,

by (2.9) and (2.8).

Thus, by Theorem 2.1 and (2.8), there exist a continuum Γ ⊂ γ and z0, z
′
0 ∈ Γ

such that

∆arg(f(Γ); z0, z
′
0) ≥ logM(s) log sa

10π

≥ logM(t1/L
1/8

) log s

10π

≥ logM(t1/L) ≥ 2π.

Thus case (3) holds.

(ii) If

|f(z′)| < 1

M(t1/L1/8)
, for some z′ ∈ γ ∩ {z : t1/L

1/8 ≤ |z| ≤ t},

then it follows from Theorem 2.2, with s = t, and (2.8) that there exist a con-
tinuum Γ ⊂ γ and z0, z

′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ logM(t1/L) ≥ 2π.

Thus case (3) holds. �

3. Proof of Theorem 1.1

In the proof of Theorem 1.1, we use the following standard distortion theorem
for iterates in escaping Fatou components; see [4, Lemma 7].

Lemma 3.1. Let f be a transcendental entire function, let U ⊂ I(f) be a simply
connected Fatou component of f , and let K be a compact subset of U . There
exist C > 1 and N ∈ N such that

|fn(z0)| ≤ C|fn(z1)|, for z0, z1 ∈ K, n ≥ N.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let f be a real transcendental entire function of order
ρ < 1 with only real zeros and suppose that U is a wandering domain of f
such that Un is unbounded for all n ∈ N, where Un denotes the Fatou component
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containing fn(U). Since U is wandering we may assume without loss of generality
that

(3.1) 0 /∈ Un, for n ∈ N.

(In fact this is the only point in the proof where we use the fact that U is a wan-
dering domain, so our proof also rules out the existence of unbounded periodic
Fatou components for which all Fatou components in the cycle are unbounded
and omit 0.) Note that the Fatou components Un are all simply connected since
they are unbounded; see [2].

We will show that the existence of such a wandering domain U leads to a con-
tradiction, thus proving Theorem 1.1. The idea of the proof is as follows: we
start with a curve γ0 that lies in U and we assume that the curve meets two

circles of the form C(r
1/L0

0 ) and C(r0), for some sufficiently large values of r0

and L0. We then obtain a contradiction by repeatedly applying Theorem 2.4
to show that either the forward images of this curve must experience repeated
radial stretching, and so contradict Lemma 3.1 eventually, or fn(γ0) must wind
round 0, for some n ∈ N, and hence 0 ∈ Un contradicting the assumption (3.1)
about the forward images of U .

A key fact needed to obtain these contradictions is that the real function f has
the following symmetry property:

f(z) = f(z), for z ∈ C.

This property implies that F (f) is symmetric with respect to the real axis.

Let K2 = K2(ρ) and R2 = R2(f) be as defined in Theorem 2.4. We begin by
taking

(3.2) L0 ≥ 2K2 ≥ 29, µ(r) = M(r1/L0)

and then

(3.3) r0 ≥ RL0
2 > exp(320L0)

such that, for r ≥ r0,

(3.4) µ(r) > r16 and hence µn(r)→∞ as n→∞.

Now suppose that (Ln) and (rn) are sequences with the following properties: for
each n ≥ 0, either

(3.5) Ln+1 = L0 and rn+1 ≥M(r1/Ln
n )

or

Ln+1 = Ln(1− εn) and rn+1 = M(r1−εn
n ),(3.6)

where 0 < εn ≤
10√
log rn

and m(r) ≤M(r1−εn
n ), for r1−εn

n ≤ r ≤ rn.

Then we claim that, for each n ≥ 0,



BAKER’S CONJECTURE 11

(3.7) εn <
1

4n+1
and rn+1 ≥ µ(rn).

This is true for n = 0 since, by (3.2) and (3.3),

(3.8) ε0 ≤
10√
log r0

≤ 10√
320L0

≤ 10√
320× 29

<
1

4

and hence

1− ε0 ≥
3

4
>

1

L0

so that, by (3.5) and (3.6),

r1 ≥M
(
r

1/L0

0

)
= µ(r0).

Now suppose that

εk <
1

4k+1
and rk+1 ≥ µ(rk), for 0 ≤ k ≤ n.

Then, by (3.4), rn+1 ≥ µn(r0) > r16n

0 and so, by (3.6), (3.2) and (3.3),

εn+1 ≤
10√

log rn+1

<
10

4n
√

log r0

≤ 10

4n
√

320× 29
<

1

4n+2
.

So, by (3.5) and (3.6), rn+2 ≥ µ(rn+1). Thus (3.7) follows by induction.

We note that it follows from (3.7), (3.5) and (3.6) that, for n ≥ 0,

L0 ≥ Ln ≥ L0

n−1∏
m=0

(1− εm) ≥ L0

n−1∏
m=0

(
1− 1

4m+1

)
≥ 1

2
L0,

and so

(3.9) L0/2 ≤ Ln ≤ L0, for n ≥ 0.

Now let γ0 be the curve described earlier and suppose that there exist curves
γn ⊂ fn(γ0) such that, for n ≥ 0, we have

(3.10) f(γn) ⊃ γn+1,

(3.11) γn ⊂ A(r1/Ln
n , rn), and γn meets both C(r1/Ln

n ) and C(rn).

(These conditions formalise what we mean by saying that the images of the
curve γ0 experience ‘repeated radial stretching’.)

We deduce, by (3.10), that there is a point z ∈ γ0 such that, for n ≥ 0,

(3.12) fn(z) ∈ γn, so |fn(z)| ≥ r1/Ln
n ≥ (µn(r0))1/L0 ,

by (3.2), (3.9) and (3.7). Together with (3.4), this implies that U ⊂ I(f). Since
it also follows from (3.9), (3.7), (3.10) and (3.11) that

sup{|fn(z)| : z ∈ γ0}
inf{|fn(z)| : z ∈ γ0}

≥ rn

r
1/Ln
n

≥ rn

r
2/L0
n

= r1−2/L0
n

≥ µn(r0)1−2/L0 > µn(r0)1/2 →∞ as n→∞,
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we have a contradiction to Lemma 3.1.

To construct the sequences (Ln), (rn) and (γn) above, we proceed as follows.
Take L0 and r0 to satisfy (3.3) and (3.4), and γ0 to satisfy (3.11). Suppose that,
for k = 1, . . . , n, we have chosen curves γk and positive numbers rk and Lk such
that (3.11) is satisfied with n replaced by k and, in addition, either (3.5) or (3.6)
and also (3.10) hold, with n replaced by k for k = 0, 1, . . . , n − 1. To complete
the proof we show that we can choose a curve γn+1 and positive numbers rn+1

and Ln+1 so that (3.10) and also either (3.5) or (3.6) hold, and (3.11) holds with
n replaced by n+ 1.

To do this we apply Theorem 2.4, with

t = rn and L = Ln,

to a curve γ′n meeting C(r
1/Ln
n ) and C(rn), chosen such that γ′n ⊂ {z : =z ≥ 0}

and

(3.13) γ′n ⊂ γn ∪ γ∗n,

where ∗ denotes reflection in the real axis.

Note that the hypotheses of Theorem 2.4 are satisfied since L0 ≥ Ln ≥ L0/2 ≥
K2(ρ), by (3.9) and (3.2), and

r1/Ln
n ≥ µn(r0)1/Ln ≥ r

1/L0

0 ≥ R2,

by (3.7), (3.4), (3.9) and (3.3).

If case (1) or case (2) of Theorem 2.4 holds for γ′n, then the same case holds
for γn, by the symmetry of f in the real axis, and so we can choose rn+1, Ln+1

and γn+1 ⊂ f(γn) so that they satisfy either (3.5) or (3.6), (3.10) and also (3.11)
with n replaced by n+ 1, as required.

Thus, to complete the proof it is sufficient to show that if case (3) of Theorem 2.4
holds for γ′n, then we obtain a contradiction.

If case (3) holds for γ′n, then the image under f of some subcurve of γ′n winds
round 0 through an angle of at least 2π. Hence, by the symmetry of f in the real
axis, the Fatou component Un+1 that contains fn+1(U) also contains a Jordan
curve that surrounds 0. Since Un+1 is simply connected, it must contain 0. This,
however, contradicts our assumption (3.1), so the proof is complete. �

4. Applications of a result of Beurling

Many authors have studied the relationship between the maximum modulus and
the minimum modulus of a transcendental entire function, in particular the fact
that, in some sense, if the minimum modulus is small, then the maximum mod-
ulus is forced to have large growth; see [10, Chapter 8] for many such results.

In our proofs of Theorems 2.1 and 2.2 we need new results of this type, which
are consequences of the following result from Beurling’s thesis [5, page 96]. For
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any subset E of (0,∞) we denote by m`(E) the logarithmic measure of E:

m`(E) =

∫
E

dt

t
.

Lemma 4.1. Let f be analytic in {z : |z| < r0}, let 0 ≤ r1 < r2 < r0, and put

E = {t ∈ (r1, r2) : m(t) ≤ µ}, where 0 < µ < M(r1).

Then

(4.1) log
M(r2)

µ
>

1

2
exp

(
1

2
m`(E)

)
log

M(r1)

µ
.

We remark that Beurling proved this estimate with the first constant on the right-
hand side equal to π/(4

√
2), but for simplicity we use the value 1/2 here. We

also remark that further applications of Lemma 4.1 were given in [21] and [22].

Our first application here of Lemma 4.1 is an estimate for the growth of the
maximum modulus over an interval on which the minimum modulus is less than
the maximum modulus to a fixed power less than 1.

Lemma 4.2. Let f be a transcendental entire function and suppose that

logm(t) ≤ (1− δ) logM(t), for r ≤ t ≤ rk,

where r > 1, k ≥ 1 + 4 log 2/ log r and 0 < δ < 1. Then

logM(rk) > rδ log k/(16 log 2) logM(r).

Proof. We begin by putting κ = 1 + 4 log 2/ log r and taking n to be the largest
integer such that

κn ≤ k.

Note that, by hypothesis, n ≥ 1.

Then, for 0 ≤ m ≤ n, we put rm = rκ
m

. For 0 ≤ m < n, we apply Lemma 4.1 to
the interval (rm, rm+1) with µ = M(rm+1)1−δ to deduce that

logM(rm+1) >
(
2δr−(κ−1)/2

m + 1− δ
)−1

logM(rm)

=
(
2δr− log 4/ log r

m + 1− δ
)−1

logM(rm)

≥
(
2δr− log 4/ log r + 1− δ

)−1
logM(rm)

=
1

1− δ/2
logM(rm).

Hence

(4.2) logM(rk) ≥ logM(rn) >

(
1

1− δ/2

)n
logM(r).

Now,

κn+1 > k,
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so

(4.3) n ≥ n+ 1

2
>

log k

2 log κ
=

log k

2 log(1 + 4 log 2/ log r)
≥ log k log r

8 log 2
.

Thus, by (4.2) and (4.3),

logM(rk) ≥
(

1

1− δ/2

)log k log r/(8 log 2)

logM(r)

= r− log(1−δ/2) log k/(8 log 2) logM(r)

> rδ log k/(16 log 2) logM(r),

as required. �

Next we prove a local version of a cos πρ-type result. (For a description of classical
cosπρ-type results, see [10].) In [21] we used Beurling’s estimate in Lemma 4.1
to obtain a local result of this type for functions of order less than 1/2. Here
we need a result that can be applied to functions of order less than 1. In fact,
Lemma 4.3 can be applied to functions of any order, and shows that the minimum
modulus cannot be too small everywhere on an interval in relation to the value
of the maximum modulus at the upper end of the interval. This result is not
sharp but it is sufficient for our purposes.

Lemma 4.3. Let f be a transcendental entire function, 0 < δ ≤ 1 and

0 < λ ≤
(

δ

2(1 + δ)

)2

.

If M(λr) ≥ 1, then

m(t) >
1

M(r)δ
, for some t ∈ (λr, r).

Proof. If the conclusion is false, then it follows from Lemma 4.1 with µ = 1/M(r)δ

that

logM(r)1+δ >
1

2
exp

(
1

2

∫ r

λr

dt

t

)
logM(r)δ.

This implies that

(1 + δ) logM(r) >
1

2

√
1

λ
δ logM(r),

which in turn implies that λ >
(

δ
2(1+δ)

)2

. This, however, is a contradiction. �

5. Proof of Theorem 2.1

The proofs of Theorems 2.1 and 2.2 both use the notion of extremal length and
we begin this section by summarising some of the key results about extremal
length that we use. For more details see, for example, [1].
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Let Ω ⊂ C be a domain and let Γ be a collection of rectifiable arcs in Ω. For a
Riemannian metric ρ|dz| on Ω, each γ ∈ Γ has a well-defined length

L(γ, ρ) =

∫
γ

ρ |dz|

and Ω has a well-defined area

A(Ω, ρ) =

∫ ∫
Ω

ρ2dx dy.

We put
L(Γ, ρ) = inf

γ∈Γ
L(γ, ρ)

and define the extremal length of Γ in Ω to be

λΩ(Γ) = sup
ρ

L(Γ, ρ)2

A(Ω, ρ)
,

where the sup is taken over all ρ such that 0 < A(Ω, ρ) <∞.

The following key results about extremal length can be found in [1, pages 50–53].

Lemma 5.1. Let Ω ⊂ C be a domain and let Γ be a collection of rectifiable arcs
in Ω. If F is a conformal map on Ω, then λΩ(Γ) = λF (Ω)(F (Γ)).

Lemma 5.2. Let Ω ⊂ C be a domain and let Γ and Γ′ be collections of rectifiable
arcs in Ω. If every γ ∈ Γ has a subarc γ′ ∈ Γ′, then λΩ(Γ) ≥ λΩ(Γ′).

These two lemmas can be used to give the following distortion theorem for con-
formal mappings, which is used in the proof of Theorem 2.2. Roughly speaking,
this result states that if a quadrilateral is ‘long and thin’ in a certain sense re-
lated to one choice of opposite sides, then its image under a conformal mapping
cannot be long and thin with respect to the other choice of opposite sides. The
result is of independent interest and may be known, but we are not aware of a
reference; see Figure 1 for the quadrilaterals involved.

Theorem 5.3. Let Q be a quadrilateral, that is, a Jordan domain together with
four boundary points that divide ∂Q into two pairs of opposite sides α, α′ and
β, β′. Let φ be conformal on Q and let a, b, A and B be positive constants such
that

(5.1) |<z′ −<z| ≥ a, for z ∈ α, z′ ∈ α′,

(5.2) |=z′ −=z| ≤ b, for z ∈ β, z′ ∈ β′, <z = <z′,

(5.3) |<w′ −<w| ≤ A, for w ∈ φ(α), w′ ∈ φ(α′), =w = =w′,

(5.4) |=w′ −=w| ≥ B, for w ∈ φ(β), w′ ∈ φ(β′).

Then
a

b
≤ A

B
.
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Figure 1. Geometric properties of a quadrilateral and its image

Proof. By an approximation argument, we can assume that ∂Q is a piecewise
analytic curve. We let I denote a union of vertical crosscuts Ix of Q, with real
part x and height h(x) that separate α from α′, which can be chosen, by (5.1),
so that h is defined and measurable on an interval J of length ã ≥ a (see, for
example, [16, p. 93]). Then let ρ = χI be the characteristic function of I.

If Γ is the collection of arcs in Q that join α to α′, then

L(Γ, ρ) = inf
γ∈Γ

L(γ, ρ) ≥ ã

and

A(Q, ρ) =

∫ ∫
I

ρ2 dx dy =

∫
J

h(x) dx.

Since h(x) ≤ b for x ∈ J , by (5.2), we deduce that

(5.5) λQ(Γ) ≥ L(Γ, ρ)2

A(Q, ρ)
≥ ã2

ãb
=
ã

b
≥ a

b
.

Now let Γ′ denote the collection of arcs in Q that join β to β′. Then (see [1,
page 53]),

(5.6) λQ(Γ′) = 1/λQ(Γ).

Now φ(Γ′) is the collection of arcs in φ(Q) that join φ(β) to φ(β′), and

(5.7) λQ(Γ′) = λφ(Q)(φ(Γ′)),

since φ is a conformal map. By using a similar argument to the above, involving
horizontal crosscuts of φ(Q), we deduce from (5.3) and (5.4) that

(5.8) λφ(Q)(φ(Γ′)) ≥ B

A
.

Combining (5.5), (5.6), (5.7) and (5.8) gives a/b ≤ A/B as required. �

The proofs of Theorems 2.1 and 2.2 also use the result that, for the functions f
being considered, log f is conformal in the upper half-plane. Actually this result
holds more generally for all functions in the so-called Laguerre–Pólya class, which
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consists of all entire functions that can be approximated uniformly on compact
subsets of the plane by real polynomials with all zeros real. This class includes
all real functions of order less than 2 with only real zeros; see [24, page 266]. The
conformality of log f follows from a well-known monotonicity property of such
functions (see, for example, [7, Lemma 2.2 and Proposition 4.1]) together with
the Noshiro–Warschawski theorem (see [8, page 46]) but we include the proof for
completeness.

Lemma 5.4. Let f be a transcendental entire function in the Laguerre–Pólya
class. Then

(a) for x ∈ R, |f(x+ iy)| is strictly increasing with respect to y, for y > 0,
(b) any analytic branch of log f is conformal in the upper half-plane.

Proof. It was proved by Pólya [17] that every function in the Laguerre–Pólya
class is of the form

f(z) = czp0eaz+bz
2
∏
j∈N

(
1 +

z

aj

)pj
e−pjz/aj ,

where c ∈ R \ {0}, a ∈ R, b ≤ 0, aj ∈ R \ {0} for j ∈ N, and pj ∈ {0, 1, . . .} for
j ≥ 0.

Let g be an analytic branch of log f in the upper half-plane H = {z : =z > 0},
which exists since f has no zeros in H. For z ∈ H,

(5.9) =(g′(z)) = =
(
f ′(z)

f(z)

)
= =

(
p0

z
+ a+ 2bz +

∑
j∈N

(
pj

aj + z
− pj
aj

))
< 0.

Hence, for each y > 0,

=(g(x+ iy)) = arg f(x+ iy) is strictly decreasing with x, for x ∈ R,

so, by the Cauchy-Riemann equations, for each x ∈ R,

<(g(x+ iy)) = log |f(x+ iy)| is strictly increasing with y, for y > 0.

This proves part (a).

We now deduce that g is one-one in H. For distinct z1 and z2 in H, let γ(t) =
(1− t)z1 + tz2, t ∈ [0, 1]. Then

g(z2)− g(z1) =

∫ z2

z1

g′(z) dz =

∫ 1

0

g′(γ(t))(z2 − z1) dt

= (z2 − z1)

(∫ 1

0

<(g′(γ(t)) dt+ i

∫ 1

0

=(g′(γ(t)) dt

)
.

By (5.9), we deduce that g(z2) 6= g(z1), as required for part (b). �

We now give the proof of Theorem 2.1.
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Figure 2. Some sets in the proof of Theorem 2.1 - the domain Ω is shaded

Proof of Theorem 2.1. We show first that

(5.10) logM(s1+a/2) > 2 logM(s).

In order to show this, we first note that it follows from (2.4) and (2.1) that

logM(s1+a/4) ≥ (1 + a/4) logM(s).

Hence, by Lemma 4.1, with r1 = s1+a/4, r2 = s1+a/2 and µ = M(s),

(5.11) logM(s1+a/2) >
1

2
sa/8 log

M(s1+a/4)

M(s)
+logM(s) ≥

(a
8
sa/8 + 1

)
logM(s).

It follows from (2.4) that

a

8
sa/8 =

a

8
exp

(a
8

log s
)
≥ a

8

(a
8

log s
)
≥ 1,

and this together with (5.11) implies (5.10).

By (2.5), there is a component, G1 say, of {z : |f(z)| < M(s1+a/2)} such that
γ ⊂ G1. Since γ joins C(s) to C(s1+a), the component G1 contains {z : |z| <
s1+a/2}. Hence G1 is symmetric with respect to the real axis, and ∂G1 meets
C(s1+a/2) and C(s1+a). Let Γ ⊂ A(s1+a/2, s1+a) be a subcontinuum of γ that
meets C(s1+a/2) and C(s1+a); such a subcontinuum exists by [20, Lemma 3.3],
for example.

Let

Ω = A(s1+a/2, s1+a) ∩ {z : =z > 0} and β = ∂G1 ∩ Ω,

and denote by ∆ the collection of all rectifiable arcs in Ω that join Γ to β; see
Figure 2. We also denote by ∆0 the collection of all rectifiable arcs in Ω that
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join the real interval [−s1+a,−s1+a/2] to [s1+a/2, s1+a]. Then, by the symmetry
property of G1, every arc in ∆0 has a subarc in ∆ and hence, by Lemma 5.2,

(5.12) λΩ(∆) ≤ λΩ(∆0) =
2π

a log s
.

Let F be an analytic branch of log f on the upper half-plane. Since f is a real
transcendental entire function of order less than 2 with only real zeros, and hence
in the Laguerre-Pólya class, we deduce by Lemma 5.4 part (b) that the branch F
is conformal on the upper half-plane. Note that F extends continuously to Γ∪β
(this may include some points on R, but f(z) 6= 0 at such points). Thus every
element in F (∆) is an arc in F (Ω) that joins F (Γ) to F (β). Moreover, by
Lemma 5.1,

λΩ(∆) = λF (Ω)(F (∆)).

We next find a lower bound for this extremal length.

Take z0, z
′
0 ∈ Γ such that

(5.13) θ0 := inf
z∈Γ
=(F (z)) = =(F (z0)), θ′0 := sup

z∈Γ
=(F (z)) = =(F (z′0))

and write θ = θ′0 − θ0 = ∆arg(f(Γ); z0, z
′
0). Let R be the rectangle

R =

{
u+ iv : |u| < logM(s1+a/2), θ0 − log

M(s1+a/2)

M(s)
< v < θ′0 + log

M(s1+a/2)

M(s)

}
and let ρ = χR be the characteristic function of R.

Now

A(F (Ω), ρ) =

∫ ∫
F (Ω)

ρ2 dxdy

≤ Area(R)

= 2 logM(s1+a/2)

(
θ + 2 log

M(s1+a/2)

M(s)

)
.

Since β ⊂ ∂G1 we have that F (β) ⊂ {u + iv : u = logM(s1+a/2)}. From (2.5)
and (5.13) we obtain

F (Γ) ⊂ {u+ iv : |u| < logM(s), θ0 ≤ v ≤ θ′0}.
We deduce that

L(F (∆), ρ) = inf
σ∈F (∆)

∫
σ

χR |dz| ≥ log
M(s1+a/2)

M(s)
,

because every arc in F (∆) joins F (Γ) to F (β) and hence must have a subarc
in R of length at least log(M(s1+a/2)/M(s)); see Figure 3.

Therefore

λF (Ω)(F (∆)) ≥ L(F (∆), ρ)2

A(F (Ω), ρ)
≥

(
log M(s1+a/2)

M(s)

)2

2 logM(s1+a/2)
(
θ + 2 log M(s1+a/2)

M(s)

) .
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Figure 3. The rectangle R in the proof of Theorem 2.1

Together with (5.12) and the conformal invariance λΩ(∆) = λF (Ω)(F (∆)), this
yields

θ ≥
a log s

(
log M(s1+a/2)

M(s)

)2

4π logM(s1+a/2)
− 2 log

M(s1+a/2)

M(s)
.

Using (5.10) and (2.4) now gives

θ ≥
a log s

(
1
2

logM(s1+a/2)
)2

4π logM(s1+a/2)
− 2 logM(s1+a/2) + 2 logM(s)

=

(
a log s

16π
− 2

)
logM(s1+a/2) + 2 logM(s)

≥
(
a log s

8π
− 4

)
logM(s) + 2 logM(s)

=

(
a log s

10π
+
a log s

40π
− 2

)
logM(s) ≥ 1

10π
logM(s) log sa,

as required. �
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6. Proof of Theorem 2.3

The remaining sections of this paper give results that are only needed to deal
with real functions with real zeros that have order in the interval [1/2, 1).

Let f be a transcendental entire function of order less than 1 with f(0) = 1.
In the proof of Theorem 2.3, we use some standard results about the following
quantities:

N(r) =

∫ r

0

n(t)

t
dt and Q(r) = r

∫ ∞
r

n(t)

t2
dt,

where n(r) is the number of zeros of f in {z : |z| ≤ r}, counted according to
multiplicity.

We note that it follows from Jensen’s theorem (see, for example, [24, p.125] for
a proof) that, for r > 0,

(6.1) logM(r) ≥ N(r).

Therefore, for r > 0,

(6.2) logM(r) ≥
∫ r

r/e28

n(r/e28)

t
dt = 28n(r/e28)

and

(6.3) n(r) log 3 ≤
∫ 3r

r

n(t)

t
dt ≤ N(3r) ≤ logM(3r).

We also use the following results proved in [18, Lemma 3.3 and Lemma 3.5].
Note that similar results were proved by Cartwright [6, page 83] for functions of
order zero.

Lemma 6.1. Let f be a transcendental entire function of order less than 1 with
f(0) = 1. Then, for r > 0,

logM(r) ≤ N(r) +Q(r).

Lemma 6.2. Let f be a transcendental entire function of order less than 1 with
f(0) = 1, and let 0 < η < 1/4. Then, for R > 0,

logm(r) > N(R)− (1 + log(2e/η))Q(R),

for 0 ≤ r ≤ R/2 except in a set of intervals, the sum of whose lengths is at most
2ηR.

In [18, Lemma 3.5] we stated Lemma 6.2 with the condition that R is sufficiently
large but inspection of the proof shows that the result in fact holds for all R > 0.
Taking η = 1/16, we obtain the following corollary of Lemma 6.2.

Corollary 6.3. Let f be a transcendental entire function of order less than 1
with f(0) = 1. Then, for R > 0,

logm(r) > N(R)− 6Q(R)

for 0 ≤ r ≤ R/2 except in a set of intervals, the sum of whose lengths is at most
R/8.
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We are now in a position to prove Theorem 2.3.

Proof of Theorem 2.3. Let f be a transcendental entire function with f(0) = 1
and suppose that, for some R > e28, there exists 0 < α < 1 such that

(6.4) logM(r) ≤ rα, for r ≥ 3R1/(1−α).

Recall that Theorem 2.3 states that, if

(6.5) logm(r) ≤ 1

2
logM(r), for r ∈ (R/4, R/2),

then

n(R1/(1−α))− n(R/e28) ≥ logM(R)

28
− 3

1− α
.

In order to prove this, we begin by noting that it follows from (6.4), (6.5) and
Corollary 6.3 that

1

2
logM(R) ≥ N(R)− 6Q(R)

and so

logM(R) ≥ 2N(R)− 12Q(R).

Together with Lemma 6.1, applied with r = R, this implies that

(6.6) Q(R) ≥ 1

14
logM(R).

We now note that it follows from (6.3) together with (6.4) that

Q(R) = R

∫ R1/(1−α)

R

n(t)

t2
dt+R

∫ ∞
R1/(1−α)

n(t)

t2
dt

≤ n(R1/(1−α)) + 3αR

∫ ∞
R1/(1−α)

1

t2−α
dt

= n(R1/(1−α)) + 3αR

[
−1

(1− α)t1−α

]∞
R1/(1−α)

≤ n(R1/(1−α)) +
3

1− α
.

Together with (6.6) and (6.2), this implies that

n(R1/(1−α)) +
3

1− α
≥ Q(R) ≥ 1

28
logM(R) +

1

28
logM(R)

≥ 1

28
logM(R) + n(R/e28)

and so

n(R1/(1−α))− n(R/e28) ≥ logM(R)

28
− 3

1− α
,

as claimed. �
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7. Proof of Theorem 2.2

We begin by proving the following result. Recall that R0 denotes the constant
in (2.1).

Lemma 7.1. Let f be a real transcendental entire function of order ρ < 1 with
only real zeros. There exist K1 = K1(ρ) > 1 and R1 = R1(f) ≥ R0 such that, if

(7.1) L ≥ K1, s
1/L ≥ R1,

and γ is any continuum in {z : =z ≥ 0} that meets both C(s1/L) and C(s) with

(7.2) |f(z)| < M(s1/L), for z ∈ γ,

and

(7.3) |f(z′)| < 1

M(s1/L1/8)
, for some z′ ∈ γ ∩ {z : s1/L1/8 ≤ |z| ≤ s},

then either
(a) we have

• γ meets {z : <z = s1/L} and {z : <z = s1/L1/8
/16},

• there exists s′′ ∈ (s1/L1/4
,<z′) with m(s′′) > 1/M(s1/L1/8

),

• the number of zeros of f in I = [s1/L3/4
, s1/L1/4

] is at least logM(s1/L3/4
),

or
(b) we have

• γ meets {z : <z = −s1/L} and {z : <z = −s1/L1/8
/16},

• there exists s′′ ∈ (s1/L1/4
,−<z′) with m(s′′) > 1/M(s1/L1/8

),

• the number of zeros of f in I = [−s1/L1/4
,−s1/L3/4

] is at least logM(s1/L3/4
).

Proof. We first put

(7.4) K1 = K1(ρ) = max{exp(200), 1/(1− α)4}, where α =
1

2
(ρ+ 1),

and assume throughout the proof that L ≥ K1.

We shall choose R1 = R1(f) ≥ R0 so that the various conditions required during
the proof hold whenever s1/L ≥ R1(f).

It follows from Lemma 4.3, with δ = 1, λ = 1/16 and r = s1/L1/8
, that, if R1 is

chosen to ensure that, whenever s1/L ≥ R1,

(7.5) M(s1/L) ≥ 1 and s1/L1/8

/16 > s1/L1/4

,

then there exists
(7.6)

s′′ ∈ (s1/L1/8

/16, s1/L1/8

) ⊂ (s1/L1/4

, s1/L1/8

) such that m(s′′) >
1

M(s1/L1/8)
.
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It then follows, by Lemma 5.4 part (a), that we have

|f(z)| > 1

M(s1/L1/8)
, for |z| ≥ s′′, |<z| ≤ s′′.

Thus the point z′ ∈ γ described in (7.3) lies outside {z : |<z| ≤ s′′}. We assume
that <z′ > s′′. (With this assumption we end up with case (a) of the lemma,
as the first two bullet points of case (a) are now satisfied – otherwise, similar
arguments would lead to case (b).)

Since γ meets both C(s1/L) and {z : <z ≥ s′′}, and s′′ ≥ s1/L1/4
, it follows from

Lemma 5.4 and (7.2) that

(7.7) |f(x)| ≤M(s1/L), for s1/L ≤ x ≤ s1/L1/4

.

Since f is real with only real zeros and has order less than 1, we can write

f(z) = czp0
∏
j∈N

(1 + z/aj)
pj ,

where c ∈ R \ {0}, p0 ∈ {0, 1, . . .}, aj ∈ R \ {0} and pj ∈ {1, 2 . . .}, for j ≥ 1,

with 0 < |a1| ≤ |a2| ≤ . . .. We now take s1/L3/4
> |a1| and put

I = [s1/L3/4

, s1/L1/4

].

We write f(z) = g(z)h(z), where

h(z) = czp0(1 + z/a1)p1
∏
aj∈I

(1 + z/aj)
pj .

Our aim is to apply Theorem 2.3 to g in order to show that f has many zeros
in I. To do this, we must check that the conditions of Theorem 2.3 hold. Clearly
g(0) = 1. We first require s1/L to be so large that

(7.8) s1/L ≥ R0 = R0(f) and 4 ≤M(r, h) ≤ 2|h(r)|, for r ∈ I.
It follows from (7.7), (7.8) and (2.1) that, for r ∈ I, we have

|g(r)| = |f(r)|
|h(r)|

≤ M(s1/L, f)

|h(s1/L3/4)|
≤ M(s1/L3/4

, f)1/2

|h(s1/L3/4)|

≤ M(s1/L3/4
, g)1/2M(s1/L3/4

, h)1/2

|h(s1/L3/4)|

≤ 2M(s1/L3/4
, g)1/2M(s1/L3/4

, h)1/2

M(s1/L3/4 , h)

< M(s1/L3/4

, g)1/2 ≤M(r, g)1/2.

Thus

(7.9) logm(r, g) <
1

2
logM(r, g), for r ∈ I,

so the second hypothesis of Theorem 2.3 is satisfied whenever (R/4, R/2) ⊂ I.
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We next recall that f has order ρ < 1 and α = 1
2
(ρ + 1), so there exists r1 =

r1(f) > 1 such that

(7.10) logM(r, f) ≤ rα and |czp0(1 + z/a1)p1| ≥ 1, for |z| = r ≥ r1.

We define R > 0 by R1/(1−α) = s1/L1/4
and note that

(7.11) R = s(1−α)/L1/4 ≥ s1/L1/2

, for s > 0,

by (7.4), and also impose the following further conditions on s1/L:

(7.12) s1/L3/4 ≥ r1 and R/e28 = s(1−α)/L1/4

/e28 > s1/L3/4

.

We note that, if aj ∈ I and |z| ≥ 3R1/(1−α) = 3s1/L1/4
, then |1 + z/aj| ≥ 2. So it

follows from (7.10) and (7.12) that

|h(z)| ≥ 1, for |z| ≥ 3R1/(1−α).

Thus, for r ≥ 3R1/(1−α), it follows from (7.10) and (7.12) that

logM(r, g) ≤ logM(r, f) ≤ rα.

Together with (7.9) and (7.12), this implies that the hypotheses of Theorem 2.3

are satisfied for g with R = s(1−α)/L1/4
and so

n(R1/(1−α))− n(R/e28) ≥ logM(R, g)

28
− 3

1− α
,

where n(r) denotes the number of zeros of g in {z : |z| ≤ r}, counted according
to multiplicity. Clearly zeros of g are also zeros of f and it follows from the
definition of R and (7.12) that zeros of g of modulus between R/e28 and R1/(1−α)

must lie in I = [s1/L3/4
, s1/L1/4

].

To complete the proof of Lemma 7.1 it remains to show that

(7.13)
logM(R, g)

28
− 3

1− α
≥ logM(s1/L3/4

, f).

To do this, we first prove that if r2 = r2(f) = |a2|e, then logM(s1/L3/4
, g) > 1,

provided that s1/L ≥ r2. Indeed, in this case, we have s1/L3/4
> |a2|, so a2 /∈ I

and

M(r, g) ≥ |g(ir)|
= |1 + ir/a2|p2

∏
j≥3, aj /∈I

|1 + ir/aj|pj

≥ |1 + ir/a2|p2 ≥ r/|a2|,

and hence

(7.14) logM(s1/L3/4

, g) ≥ log
(
s1/L3/4

/|a2|
)
> 1,

as required.
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We now note that it follows from (7.12), (7.9) and Lemma 4.2 (with δ = 1/2,

r = s1/L3/4
and rk = s1/L1/2

), together with (7.11), (7.14), (7.8) and (7.4), that

logM(R, g) = logM(s(1−α)/L1/4

, g) ≥ logM(s1/L1/2

, g)

≥
(
s1/L3/4

)(logL1/4/32 log 2)

logM(s1/L3/4

, g)

> slogL/(100L3/4)

≥ s2/L3/4

.

Finally we note that it follows from (7.10) and (7.12) that

logM(s1/L3/4

, f) < s1/L3/4

and so (7.13) holds provided that s1/L is so large that we also have

1

28
s2/L3/4 − 3

1− α
≥ s1/L3/4

. �

Finally we use Lemma 7.1 to prove Theorem 2.2.

Proof of Theorem 2.2. Recall that Theorem 2.2 states that if the function f , the
continuum γ and the point z′ satisfy the conditions of Lemma 7.1, with

(7.15) L ≥ K1 = K1(ρ) > 1 and s1/L ≥ R1 = R1(f) ≥ R0,

then there exist a continuum Γ ⊂ γ ∩ A(s1/L, s) and z0, z
′
0 ∈ Γ such that

(7.16) ∆arg(f(Γ); z0, z
′
0) ≥ logM(s1/L) .

Without loss of generality we can assume that the continuum γ lies entirely in
{z : =z > 0}.
We assume that case (a) of Lemma 7.1 holds and let s′′ denote the point described
there; the proof if case (b) holds is similar. We also take the constants K1 =
K1(ρ) and R1 = R1(f) to satisfy the conditions in Lemma 7.1, and also one
further condition below.

In order to prove the existence of a continuum Γ satisfying (7.16), we consider
the pre-images under f of the positive real axis that lie in the upper half-plane
and originate at the zeros of f in the interval I defined in Lemma 7.1 case (a).

By Lemma 7.1, there are at least logM(s1/L3/4
) such zeros, and hence at least

1
2

logM(s1/L3/4
) corresponding pre-images of the positive real axis. We will show

that at least 1
4

logM(s1/L3/4
) of these pre-images must meet γ ∩ A(s1/L, s).

Consider a simply connected domain UI that is bounded by appropriate parts
of γ, the positive real axis, the line C1 = {z : <z = <z′} and the circle C(s1/L).
We note that I ⊂ ∂UI . Also, the pre-images defined above are unbounded and
so each has a first point in {z : =z > 0} at which it crosses the boundary of UI ;

see Figure 4. It is sufficient to show that at least 1
4

logM(s1/L3/4
) of these points

belong to γ.



BAKER’S CONJECTURE 27

Figure 4. Dashed lines show pre-images of the positive real axis
in the proof of Theorem 2.2

We begin by noting that these first crossing points cannot lie in C1 since each of
the pre-images would have to cross {z : |z| = s′′} before crossing C1 and this is
impossible because, by Lemma 7.1,

m(s′′) >
1

M(s1/L1/8)
,

whereas, by (7.3) and Lemma 5.4 part (a),

|f(z)| < 1

M(s1/L1/8)
, for z ∈ C1 ∩ UI .

We now suppose that at least 1
4

logM(s1/L3/4
) of the first crossing points lie in

C(s1/L) and use Theorem 5.3 to show that this leads to a contradiction. We first
note that, provided we choose R1 sufficiently large to ensure that

(7.17) s1/L7/8−1/L ≥ 2(16)2,

we can apply Lemma 4.3 twice, first with δ = 1, λ = 1/16 and r = s1/L7/8
and

then with δ = 1, λ = 1/16 and r = s1/L7/8
/32, to deduce that there exist s1, s2

with

(7.18) s1/L7/8 ≥ s2 ≥ 2s1 ≥ 2s1/L such that m(si) >
1

M(s1/L7/8)
, for i = 1, 2.

Thus, if more than 1
4

logM(s1/L3/4
) of the first crossing points defined above lie

in C(s1/L), then there exists a quadrilateral Q ⊂ UI , bounded by curves α, α′,
which are arcs of the circles C(s1) and C(s2), and by curves β, β′ contained in
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two of the pre-images defined above, such that, for a suitable branch F of log f ,
we have that F is conformal in Q, that

(7.19) =(F (z)) = 0, for z ∈ β,

(7.20) =(F (z)) ≥ 1
2
π logM(s1/L3/4

), for z ∈ β′,
and, by (7.18) and (7.2) together with Lemma 5.4 part (a), that

(7.21) − logM(s1/L7/8

) ≤ <(F (z)) ≤ logM(s1/L), for z ∈ α ∪ α′.
We now consider the quadrilateral logQ, where log is the principal branch of
the logarithm, which has sides logα, log β, logα′ and log β′. This quadrilateral
satisfies the hypotheses of Theorem 5.3 with φ(z) = F (ez) = log f(ez) and with

a = log 2, b = π, A = 2 logM(s1/L7/8

), B = 1
2
π logM(s1/L3/4

),

by (7.18), (7.19), (7.20) and (7.21). It follows from Theorem 5.3 that

log 2

π
≤ 2 logM(s1/L7/8

)
1
2
π logM(s1/L3/4)

=
4 logM(s1/L7/8

)

π logM(s1/L3/4)
≤ 4

πL1/8
,

by (2.1), since s1/L7/8 ≥ R0 by (7.15). However, L1/8 > 4/ log 2, by (7.4), so this
is a contradiction.

To conclude, if K1 and R1 are chosen so as to satisfy Lemma 7.1, and also so
that (7.17) holds, then at most 1

4
logM(s1/L3/4

) pre-images of the positive real

axis defined above leave UI by crossing C(s1/L) and none leave by crossing C1, so

at least 1
4

logM(s1/L3/4
) must leave by crossing γ. Thus there exist a continuum

Γ ⊂ γ ∩ A(s1/L, s) and z0, z
′
0 ∈ Γ such that

∆arg(f(Γ); z0, z
′
0) ≥ 1

2
π logM(s1/L3/4

) > logM(s1/L) .

This completes the proof of Theorem 2.2. �
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