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Abstract. In situations where rapid decisions are required or a large number of 

design alternatives is to be explored, numerical predictions of construction pro-

cesses have to be performed in near real-time. For the design assessment of com-

plex engineering problems such as mechanised tunnelling, simple numerical and 

analytical models are not able to reproduce all complex 3D interactions. To over-

come this problem, in this paper a novel concept for on-demand design assess-

ment for mechanized tunnelling using simulation-based meta models is proposed. 

This concept includes: i) the generation of enhanced simulation-based meta mod-

els; ii) real-time meta model-based design assessment in the design tool, and; iii) 

the implementation within a unified numerical and information modelling plat-

form called SATBIM. The capabilities of this concept are demonstrated through 

an example for the evaluation of tunnel alignment design and the assessment of 

the impact of tunnelling on existing infrastructure. Moreover, meta models are 

used for fast forward calculation in sensitivity analyses for the evaluation of the 

importance of model parameters. The concept proved its efficiency by assessing 

the design alternatives in real-time with the prediction error of less than 3% com-

pared to complex numerical simulation in presented example. 

Keywords: Building Information Modelling, Numerical analysis, Meta models, 

Level of Detail, Soil-structure interaction, Real-time prediction. 

1 Introduction 

Complex engineering problems, such as mechanized tunnelling, require reliable design 

assessment from early design over to construction and operation phases. In situations 

where quick decisions are required, or when a large number of alternatives has to be 

tested, the predictions have to be performed in near real-time. This can be achieved 

using analytical and empirical solutions. However, these introduce a number of as-

sumptions and simplifications associated with them. For example, analytical and em-

pirical solutions do not take three-dimensional effects and complex interactions be-

tween individual components into account, and they are usually characterized with a 

simple linear elastic response [1]. On the other hand, complex 3D numerical simula-

tions are able to reproduce all complex soil-structure interaction effects induced by the 

tunnelling process, however, they are often characterised by high computational cost, 
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and are difficult to operate in real-time [2]. This can be overcome using computationally 

efficient meta models instead of the original, detailed numerical models [3].  

Meta modelling is understood differently in different domains. In model-driven soft-

ware engineering, for example, a meta model specifies the structure, the semantics, and 

the constraints for a family of models in a certain domain, e.g. in cyber-physical sys-

tems modelling [4]. While a model is, simply speaking, an abstraction of phenomena 

in the real world, a meta model is a further abstraction that specifies the properties of 

the model itself [5], In other domains, meta models have also been developed to serve 

as “surrogate models” for expensive simulation processes in order to improve the over-

all computational efficiency. In that sense, they have been applied to solve a number of 

practical engineering problems in the last years. Meta models are extensively used for 

prediction, sensitivity analysis, pattern recognition, and design optimization [6]. In tun-

nelling applications, meta models trained using field monitoring data collected during 

the tunnel construction process [7] or complex simulation models [8] have been applied 

for predicting the surface settlements induced by tunnelling. Apart from the prediction 

speed, the advantage of using meta models is their ability to learn from the different 

types and large amount data and therefore interpret and summarise existing knowledge 

in different forms compared to physical models.   

Simulation models, on the other hand, are complex and require a large amount of 

project-specific information that is often available in the form of dispersed resources 

usually either given in some Computer Aided Design (CAD) format, or, more recently, 

stored in a Building Information Model (BIM) together with other relevant data about 

design and construction [9, 10].  One of the challenges during the optimisation of a 

project design is to preserve the consistency between design alternatives and the corre-

sponding design assessment across different sub-models and throughout different 

phases. Currently, this is usually an error-prone process, involving manual conversion 

of data from a BIM or similar storage to a format accepted by numerical design tools. 

An efficient solution to solve this problem is an integrated design-analysis-assessment 

framework where the numerical simulations are automatically generated based on the 

geometry and semantics stored in BIM design tools such as Revit [11]. Therefore, we 

proposed a unified platform for information, numerical modelling and visualisation of 

simulation results called “SATBIM” (Simulations for multi-level Analysis of interac-

tions in Tunnelling based on the Building Information Modelling technology) [12]. In 

this paper, this platform is extended with a tool for meta model-based design assess-

ment. 

In the unified design-analysis-visualisation platform SATBIM, we developed a 

novel concept for on-demand design assessment at the design phase using simulation-

based meta models, as “surrogate models”, for real-time prediction. To this end, Section 

2 presents: i) a brief description of the unified design-analysis-assessment platform; ii) 

the concept for on-demand real-time design assessment using simulation-based meta 

models; iii) the meta modelling techniques and requirements for generation of enhanced 

meta models, and iv) the importance of sensitivity analysis in this concept.  The imple-

mentation of this concept within the unified numerical and information modelling plat-

form SATBIM is given in Section 3. Finally, in Section 4, we present a numerical ex-

ample for the evaluation of tunnel alignment design and the assessment of the impact 
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of tunnelling on existing infrastructure. Moreover, the importance of model parameters 

is evaluated by means of sensitivity analysis. 

2 Methodology 

In order to enable on-demand design assessment in engineering design environments, 

a unified platform for information and numerical modelling considering a multi-level 

representation, extended with a tool for real-time prediction is proposed in this paper.  

 

2.1 On-demand design assessment in information models 

Unified platform for information and numerical modelling. SATBIM is an inte-

grated, open-source platform for information modelling, structural analysis and visual-

isation of the mechanised tunnelling process. Based on a parametric BIM for tunnelling 

[13], a multi-level simulation model is developed to support engineering decisions dur-

ing the project life cycle and to allow for the evaluation and minimisation of risks on 

existing infrastructure (see Fig. 1). Within this platform, industry-standard tools (Au-

todesk Revit) are employed for the design of the tunnel structure and the surrounding 

infrastructure with consideration of different Levels of Detail (LoDs) for all system 

components (soil, tunnel structure, tunnel boring machine, existing buildings). Based 

on the multi-level, parametric BIM, multi-level numerical models for each component 

are developed, considering proper geometric as well as material representation, inter-

faces and the representation of the construction process. The numerical models are then 

fully automatically instantiated and executed based on the geometry and semantic ex-

ported from BIM using newly developed software SatBimModeller [12]. Finally, the 

simulation outputs are read back and visualised within Revit. 

Fig. 1. Concept for integrated SATBIM platform for design, numerical analysis and assessment 

on different LoDs. 
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In the SATBIM framework, a multi-scale modelling concept is applied to the shield 

tunnelling components (soil, TBM, lining, buildings) to enable efficient representation 

of the tunnelling process with different LoDs as the calling process requires. For exam-

ple, on the kilometre scale, a low LoD is applied to represent the general alignment of 

the track and surrounding infrastructure, while on the centimetre scale, all details are 

captured with the highest LoD of each component. The multi-level approach is also 

useful over different project stages due to the availability of the information and details 

at the different design phases. At early design stages only basic requirements are 

known, and therefore lower LoDs can be represented, while towards the final design 

and over the construction phase the highest LoDs are represented within information 

and numerical models. Such an integrated multi-scale design-numerical approach con-

tributes to modelling efficiency by minimising the time needed for model generation as 

well as computation.  

This model is used as a basis for i) information modelling, ii) numerical modelling for 

the generation of the data set for meta model training and iii) visualisation of numerical 

assessment results.  

Real time-design assessment. To enable real-time assessment, meta models are trained 

a priori using a process-oriented simulation model generated from a multi-level tunnel-

ling information model (TIM) using the SatBimModeller [12]. Apart from settlements, 

output parameters include the lining stresses, pore pressures, and damage estimates for 

existing buildings. Figure 2 illustrates the use of simulation-based meta models for real-

time predictions. For different design alternatives, with particular design parameters, 

simulation models are automatically generated and executed using the SatBimModel-

ler. The simulation results are stored in a format suitable for meta model training. The 

data set obtained from the simulation model is trained by means of a hybrid training 

algorithm (described below) to create enhanced meta models. Finally, the resulting 

meta model is implemented in Dynamo (a visual programming tool for Revit) to enable 

interactive visualisation of the effects of design choices within the Revit design envi-

ronment. 

 

Fig. 2. Workflow of real-time predictions for design assessment within SATBIM. 
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2.2 Meta models for real-time prediction 

Machine learning methods. For the purpose of real-time predictions of tunnelling-

induced effects such as surface settlements, risk on building damage, etc., a meta model 

is employed to substitute for computationally demanding 3D numerical simulations. 

An algorithm is developed to select an optimal meta model by evaluating and compar-

ing different methods for data training: 

 Polynomial Regression (PR), 

 Artificial Neural Networks (ANNs), 

 Support Vector Regression (SVR) (with Radial Basis Function (RBF) ker-

nel SVR-RBF and Polynomial kernel (SVR-Poly). 

In the following, the fundamentals of the prediction models used in this paper are de-

scribed.  

Polynomial regression. This is a meta modelling approach for modelling the relation-

ship between a scalar dependent variable y (output or target variable) and one or more 

independent variables x (in our case the input vector). For given a data set 

{yi, , xi1, … , xip}i=1
n of n patterns, a polynomial regression model assumes that the rela-

tionship between the dependent variable y and the p vector of input variables xi is mod-

elled as an nth degree polynomial in x [14].  

 𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯ +  𝛽𝑚𝑥𝑖

𝑚 + 𝜀𝑖 (𝑖 =  1, 2, … , 𝑛) (1) 

Where 𝜷 are regression coefficients and an εi  is an “error variable” that adds noise 

to the polynomial relationship between the dependent variable 𝐲 and inputs 𝐱. In our 

application, we are using second-order polynomials, so that the model now becomes: 

 𝑦𝑖(𝛽, 𝑥 ) =  𝛽0 +  ∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1 +  ∑ 𝛽𝑖𝑖𝑥𝑖

2
 

𝑛
𝑖=1 +  ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 = 𝑿𝑇𝜷 + 𝜀𝑖

𝑛
𝑗>𝑖

𝑛
𝑖=1  (2) 

The vector of estimated polynomial regression coefficients is estimated using the 

Ordinary Least Squares (OLS) method, as the simplest and thus most common estima-

tion method. The OLS method minimizes the sum of squared errors and residuals in 

statistics, and leads to a closed-form expression for the estimated value of the unknown 

parameter 𝛽: 

 �̂� = (𝑿𝑇𝑿)−1𝑿𝑇𝒚. (3) 

This is the unique least-squares solution as long as 𝑿 has linearly independent col-

umns. 

Artificial neural networks. This method of machine learning, as an attempt of mimick-

ing the human brain and neural learning, is capable of learning the pattern associated 

with a large body of data [15, 2]. In this method, the relationship between the input 

parameters xi (accepted through the input neurons) and output yk (corresponding to 

output neurons) is established through a network of hidden neurons with corresponding 

connection weights 𝐰: 
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 𝑦𝑘(𝑥, 𝑤) =  𝑓 (∑ (𝑤𝑗𝑘 + 𝜃𝑗)𝑓 ∑ (𝑤𝑖𝑗𝑥𝑖 + 𝜃𝑖) 
𝑛
𝑖=1  

𝑚
𝑗=1 ) (4) 

In this equation,  𝑤𝑖𝑗  are connection weight between input and hidden neurons, 𝑤𝑗𝑘  are 

connection weights between hidden and output neurons, 𝜃 is bias and 𝑓() an activation 

function used to transform the input values and transfer them to the next layer. The 

relation between the input and output is established by a training procedure, adjusting 

the connection weights 𝒘 in order to minimise the error 𝐸 between output 𝒚 and target 

values 𝒕 for number of patterns m. Using a gradient descent method, the connection 

weights are updated as follows: 

    𝑤𝑖𝑠 = 𝑤𝑖𝑠−1 + Δ𝑤 = 𝑤𝑖𝑠−1 − 𝛾
𝜕𝐸

𝜕𝑤
       𝑤ℎ𝑒𝑟𝑒        𝐸 = ∑ (𝑦𝑘 − 𝑡𝑘)2𝑚

𝑘=1         (5) 

Where 𝛾 is a learning rate. The training procedure is performed in a number of iter-

ation steps is and the weights 𝒘 are updated for all connections between input-hidden, 

hidden-hidden, and hidden-output neurons. The quality of the meta model training de-

pends on both i) the network architecture (number of hidden layers and hidden neurons) 

and learning parameters (number of iteration steps and learning rate 𝛾). 

Support vector regression. This is a machine learning method where the so-called sup-

port vectors determine the approximation function [16]. In this method the multivariate 

regression function f(x) is established based on the input data set  x to predict the output 

data y = f(x) such as: 

 𝑦 = 𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥, 𝑥𝑖) + 𝑏𝑥𝑖𝜖𝑆𝑉  (6) 

where K is a kernel, n is the number of training data, b is an offset parameter of the 

model, 𝛼𝑖 and 𝛼𝑖
∗ ≠ 0  are Lagrange multipliers of the primal-dual formulation of the 

problem, and SV is the support vector set. The transformed regression problem may be 

solved by quadratic programming and only the input data corresponding to the non-

zeros 𝛼𝑖 and 𝛼𝑖
∗ contribute to the final regression model.  

The kernel K is a non-linear mapping from an input space onto a characteristic space 

through a dot product of the non-linear kernel function 𝜙(𝑥). In this application, two 

different types of kernel functions are tested: 

 Polynomial function: (𝛾 (𝑥, 𝑥′) + 𝑟)𝑑 where d is the polynomial degree 

and r is an independent coefficient 

 Radial basis function exp (−𝛾 ‖𝑥 − 𝑥′‖
2

), with 𝛾 is a coefficient greater 

than 0. 

Enhanced meta model. In all training methods, the simulation model input param-

eters 𝑥𝑖 are taken as input variables for the meta model training while the tunnelling-

induced effects, i.e. outputs of complex numerical summations (settlements, risk of 

damage, etc.) are target values for meta model training. Meta models are then trained 

to predict the output for given input values minimising the error between the target and 

output values. In order to achieve the best prediction capabilities of the meta model, the 

following steps are taken: 
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 data normalisation, 

 data split, and 

 optimisation of free parameters of machine learning methods. 

In order to achieve better training performance, all input-output pairs are normalised, 

i.e. mapped to the interval [0.1; 0.9] using a data normalization algorithm. For a param-

eter V the normalized value 𝑉𝑛𝑜𝑟𝑚 is obtained as 

 𝑉𝑛𝑜𝑟𝑚 =
𝑉−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
(�̅�𝑚𝑎𝑥 − �̅�𝑚𝑖𝑛) + �̅�𝑚𝑖𝑛 (7) 

where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximal and minimal value of the variable V, and  �̅�𝑚𝑎𝑥  

and �̅�𝑚𝑖𝑛 are the maximal and minimal values of the variable V after normalization, 

defined as 0.1 and 0.9.  

For the training of the enhanced meta model, the data set is split into data for training, 

testing and validation of the meta model, according to prescribed portions, splitting the 

data of the whole set at random (see Fig. 2.). The learning process is performed with 

the training set, while the test set is used to test the prediction performance. Finally, the 

meta model quality is evaluated with the validation set. This data split is important i) to 

avoid model overfitting and ii) to double-check the prediction capabilities of the trained 

meta model. 

Some of the mentioned machine learning methods are characterized by having pa-

rameters which influence the training performance (eg. neural networks: number of 

hidden layers, nodes and learning rate). In order to have enhanced meta models, those 

parameters are optimized with the Particle Swarm Optimization (PSO) method [17] as 

shown in Figure 3.   

 

Fig. 3. Algorithm for generation of enhanced meta models. Optimisation of free parameters with 

the PSO method and selection of the best model with minimum error on the validation set. 

In the PSO method, the system is initialized with a population of random solutions. 

PSO then searches for optima by updating subsequent generations. The potential solu-

tions, called particles, “fly” through the problem space by following the current opti-

mum particles. Each particle belongs to a swarm and has two properties: velocity (𝑣𝑖𝑗) 

and position (𝑥𝑖𝑗). The particle keeps track of its coordinates in the problem space, 

which are associated with the best solution (fitness), and achieves the particle-best 
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value 𝑝𝑏𝑒𝑠𝑡 (𝑥𝑖𝑗
𝑝𝑏𝑒𝑠𝑡

). If a particle takes the complete population as its topological 

neighbours, the best value is a global best 𝑔𝑏𝑒𝑠𝑡 (𝑥𝑖𝑗
𝑔𝑏𝑒𝑠𝑡

 ). The new velocity and posi-

tion of the particles are updated in each iteration using the following equations: 

 

 𝑣𝑖,𝑗+1 =  𝑤𝑖𝑗  +  𝜙1𝑟1(𝑥𝑖𝑗
𝑝𝑏𝑒𝑠𝑡

− 𝑥𝑖𝑗) + 𝜙2𝑟2(𝑥𝑖𝑗
𝑔𝑏𝑒𝑠𝑡

— 𝑥𝑖𝑗) 

𝑥𝑖,𝑗+1 = 𝑥𝑖𝑗 + 𝑣𝑖,𝑗+1                                                          (8) 

Where 𝑤 are weights, 𝑟1 and 𝑟2 represent random numbers uniformly distributed 

over [0; 1] and 𝜙1 and 𝜙2 are so-called cognition and social learning factors. 

The details about the optimisation algorithm are presented in Section 3.1. 

 

2.3 Sensitivity analysis for model evaluation 

Sensitivity analysis is a vital tool in the SATBIM framework for performing the fol-

lowing tasks: 

 determination of the sensitivity/importance of the component LoD for a de-

fined analysis scenario and w.r.t. design parameters, 

 general study of sensitivity/importance of design parameters (geometrical, 

material and process) for predefined analysis scenarios, and 

 generation of reliable meta models based on important parameters determined 

by the sensitivity analysis. 

In this paper, we give an example of how sensitivity analysis can be used to evaluate 

the importance of input parameters for design assessment.  For this purpose, the One at 

Time (OAT) design method is used. This method is based on the discretization of the 

inputs in levels, allowing a fast exploration of the model behaviour and identification 

of the influential inputs. In this variance-based method, the importance of the input 

parameter is quantified through i) the absolute mean 𝜇∗ of the elementary effect 𝐸𝐸𝑖 , 

representing the total sensitivity index and a measure of the overall effect of a factor on 

the output and ii) the standard deviation 𝜎, which detects the interaction effects with 

the other parameters as well as the nonlinear relation between the corresponding in-

put/output [18,19]. The elementary effect 𝐸𝐸𝑗
𝑖  of the jth parameter 𝑋𝑗  in the ith repetition 

as well as 𝜎  and 𝜇∗  are  calculated as: 

 𝐸𝐸𝑗
𝑖 =

𝑌(𝑋1,… 𝑋𝑗+Δ,…𝑋𝑘)−𝑌(𝑋1,… 𝑋𝑗,…𝑋𝑘) 

Δ
 ;   

           𝜎𝑗 = √
1

𝑛
∑ ‖𝐸𝐸𝑗

𝑖 − 𝜇𝑗‖𝑛
𝑖=1           𝑎𝑛𝑑               𝜇𝑗

∗ =
1

𝑛
∑ ‖𝐸𝐸𝑗

𝑖‖𝑛
𝑖=1   (9) 

 where Y(Xj) is an output and 𝛥 is a predetermined multiple of 1/(𝑝 − 1), with p denot-

ing the number of intervals of Xj.  

If predictions in real-time are required and the simulation-based meta models are 

used as a tool, it is necessary to ensure the robustness and reliability of those meta 

models. One very important aspect of the robustness is that the meta models are defined 

with input parameters which are denoted as “important”, i.e. which have a significant 
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effect on the output. This can be ensured by performing sensitivity analysis a priori to 

meta model generation. This will be an important matter of further research within 

SATBIM framework. 

3 Workflow and implementation 

In this section, the details of the implementation of robust meta models, visualisation 

of the simulation results and sensitivity analysis for evaluation of the numerical models 

are described. 

 

3.1 Implementation of the enhanced meta models 

The algorithm for the robust meta model training is implemented in Python following 

the main idea described in Fig. 3 and applying the methods of machine learning de-

scribed in Section “Machine learning methods”. For the implementation, the Python 

library SciKitLearn for supervised learning is used [20]. This toolkit contains imple-

mentation of regression models, ANNs and SVR.  However, in order to achieve robust 

learning, the PSO method was implemented to optimize training parameters of different 

machine learning models. Moreover, the following additional methods were imple-

mented: 

 ReadDatasetFile()for reading the data set with its associated arguments file, 

and the training portion, test portion, validation portion; 

 ComputeError() with arguments training method, training set, test set; 

 ForwardPass() with arguments weights, data set, method parameters; 

 ViewPerformance() with arguments training set, test set, validation set. 

 

The main function for robust meta model training is given in Listing 1. As outlined in 

Listing 1, the free parameters of each machine learning methods are iteratively updated 

with the PSO method. To this end, the free parameters are initialised as particles char-

acterised with position 𝑥𝑖𝑗  and velocity 𝑣𝑖𝑗 , moving through the solution space itera-

tively updating according to Eqn. (8) with the objective to minimise the prediction error 

of the validation set. 
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Listing. 1. Algorithm for generation of enhanced meta models. Optimisation of free parameters 

with PSO and selection of the best model with minimum error on the validation set. 

 

3.2 Real-time design assessment in Revit 

Having established enhanced meta models, we can use them for the fast prediction of 

the effect of design actions in Revit. In order to do that, a Dynamo node was developed 

to calculate the forward pass of the meta model based on the model parameters set in 

Dynamo. The trained meta model is imported as a text file, while parameters are set 

using value boxes or sliders as shown in Fig. 4(a). The “meta model prediction” node 

calculates the forward pass, i.e. the analysis response for the selected design parameters. 

The results are then displayed in Revit with a “visualisation node”. This node is visu-

alising simulation results, highlighting both the contour-fill coloured surface for the 

output quantities as well as the deformation for the case of surface settlements (which 

is made more visible using a deformation scale factor).  

"Training, testing and validation of meta models."     

def main(): 

    methods = [ linear_model.SGDRegressor(),  

        svm.SVR(kernel='rbf', C=5, gamma=0.4),  

        svm.SVR(kernel='poly', C=1e3, degree=3),  

        MLPRegressor(solver='lbfgs', alpha=1e-4, random_state=1, max_iter=5000] 

"Optimize model parameters."     

    for clf in methods: 

            param_svr_new = PsoOptimize(clf, model_param_, bx, by, bxt, byt, 20, 20 ) 

            clf.set_params(C = param_svr_new[0]) 

                 clf.fit(bx, by)        

            rrmse = ComputeError(clf, bxt, byt) 

            tot.append(rrmse) 

 "Choose best model, test and plot results."     

    clf = meth[BestModel(tot)] 

    rrmse_test = ComputeError(clf, bxt, byt ) # rRMSE of test set 

    rrmse_train = ComputeError(clf, bx, by ) # rRMSE of tran set 

    tr = clf.predict(bx) # training forward pass 

    p = clf.predict(bxt) # test forward pass 

    v = clf.predict(bxv) # validation forward pass 

    ViewPerformance(by, tr, byt, p, byv, v) # plot image 
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(a)                                                                            (b) 

Fig. 4. (a) Dynamo node for real-time design assessment based on meta models; (b) visualisation 

of numerical results in Revit using contour-fill coloured and deformed surface for surface settle-

ments and contour-fill coloured surface for risk of tunnelling on buildings [18]. 

This simple and intuitive representation is crucial for improving the understanding of 

tunnelling-induced effects by design engineers who can’t afford computationally ex-

pensive numerical simulations or non-experts who may be involved in the decision pro-

cess of the project development. Apart from surface settlements, the risk on existing 

infrastructure is also visualised as shown in Fig. 4(b), where the buildings are sorted in 

relative scale from green (safe) to red (in risk) based on the influence of the tunnel 

excavation [21]. 

 

3.3 Sensitivity analysis based on meta models 

Calculation of the sensitivity measures is implemented in Python as shown in Listing 

2. For the forward calculation of the effect of parameter variation onto the output, the 

meta models trained by means of finite element simulations are applied. This offers 

significant advantages, since the calculation of the elementary effect requires a large 

number of forward calculations to ensure the uniqueness of the solution. As explained 

in the previous section, meta models are excellent tools for interpolation and extrapo-

lation of the trained data set, and therefore a reasonable solution for the forward calcu-

lations in this manner. In Listing 2, the following steps are performed: 

 define the set of parameter ranges to be investigated (𝑏𝑥𝑡); 

 use the meta model to predict the model output (sens_test) based on given 

input (𝑏𝑥𝑡) and trained meta model synaptic weights (weights) using the For-

wardPass() method; 

 calculate the 𝜇𝑗
∗ (mean of the absolute value of 𝐸𝐸𝑖) using the ComputeVari-

ance() method; 
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 calculate the 𝜎 (standard deviation of 𝐸𝐸𝑖) using the ComputeDeviation() 

method; 

Listing. 2. Algorithm for sensitivity analysts based on meta models. 

4 Examples 

4.1 Real-time prediction 

In the example presented in this paper, we consider the problem of a tunnel passing in 

the vicinity of an existing building (see Fig. 5). The investigated design and modelling 

parameters are: i) building LoDs (1, 2 and 3); ii) the distance of building’s centreline 

from the tunnel in Y direction (0, 10, 20, 30, 40, 50, 60 m) and; iii) the tunnel overbur-

den (5, 10, 15, 20, 25m). SatBimModeller is used for the generation and execution of a 

large number of simulations in order to obtain the data set for meta model training. In 

this numerical experiment containing 105 simulations for the construction of 25 tunnel 

rings with combination of three parameters (building LoD, overburden and distance), 

the selected monitoring quantities are the vertical displacements of the building top. 

This results in a data set of 2554 monitoring samples. This set is used for the generation 

of the meta model for prediction of building settlement w.r.t building LoD, overburden 

and distance. In the next step, this meta model is used for the forward calculations of 

sensitivity analyses. 

"Calculate sensitivity measures for data set “bxt” ."     

def main(): 

"Read meta model ."     

    w = ReadWeights(weights)  

    sens = [] 

    devs = [] 

    bxt = [[0 for x in xrange( input_size)] for x in xrange(n_delta*time_steps)]  

        for i in range (0, n_delta): 

            for j in range (0, time_steps): 

                bxt[i*time_steps+j][1] = 0.1+0.8/(n_delta-1)*i 

                bxt[i*time_steps+j][3] = 0.1+0.8/(time_steps-1)*j 

 

        sens_test = ForwardPass(w, bxt, arch_ann, 1, 'relu') 

        variance = ComputeVariance(sens_test, n_delta, time_steps) 

        dev = ComputeDeviation(sens_test, n_delta, time_steps) 
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Fig. 5. Parameters for investigation of the building LoD sensitivity. Left: Design alternatives in 

terms of building distance from the tunnel alignment; Right: depth of tunnel w.r.t. foundation of 

the existing building. 

Meta model training for the prediction of building settlement. The procedure and 

the algorithm described in Sections 2.2. and 3.1. are applied for the meta model training 

based on a data set of 2554 samples. Here, the data set is divided into portions of 80%, 

15% and 5% samples for training, testing and validation, respectively.  

 

Fig. 6. (a) Training performance of the meta model using the various machine learning tech-

niques; (b) convergence of the optimization process of the ANN architecture. 

 

Figure 6(a) shows the relative Root Main Square Error (rRMSE) for different ma-

chine learning techniques applied for the data training. From the figure, it is clear that 

the optimized ANN shows the best performance for data set training. Figure 6(b) shows 

the convergence of the optimization of the ANN architecture leading to a minimized 

error for the test sample. PSO is used as optimization algorithm to determine the num-

ber of neurons in the hidden layers and the learning rate. From Fig. 6(b), it can be seen 

that the optimal solution is reached within approx. 22 iterations leading from non-opti-

mized model with 18% rRMSE to the optimized model with less than 3% rRMSE of 

the test set.  
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Fig. 7. Comparison between vertical displacements of the building obtained from the FE simu-

lation and predictions of the trained meta model for the training, test and validation sets for the 

model with best performance 

Figure 7 shows the comparison between the data set and meta model prediction for 

the training, testing and validation set for the best meta model. From this figure, it can 

be concluded that the optimized ANN meta model has excellent prediction capabilities, 

with the error on test and validation set being less than 3%. 

 

On-demand design assessment in Revit. Figure 8 illustrates how simulation-based 

meta models can be used for real-time prediction and design assessment in Revit. In 

this example, to assess the impact of tunnel construction on an existing building, the 

influence of the distance of the tunnel from the existing building and the tunnel depth 

is evaluated directly in the design tool. The design parameters are set by user using 

value boxes and sliders in Dynamo as illustrated in Fig. 8. This design assessment ap-

proach can be applied in the early design phase when exploring different design alter-

natives to minimize the impact of tunnel construction on the existing building. Using 

the meta model, the results of the analysis are obtained and visualised instantaneously, 

while the full finite element simulations would have taken hours to calculate. Another 

advantage of using meta models for real-time design assessment is that meta models 

are able to interpolate and to certain extent extrapolate the prediction for the explored 

range of parameters. Thus, for a discrete number of test simulations characterised with 

a given range of input parameters, using the meta models, the response can be obtained 

for an infinite number of (continuous) parameter combinations within this range. 

 

Fig. 8. On-demand design assessment in Revit based on simulation-trained meta models for dif-

ferent tunnel offset and tunnel depth from the existing building and LoD of building model.  
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4.2 Evaluation of the LoD importance 

A variance-based global sensitivity analysis has been conducted in order to measure the 

sensitivities of the model output (settlements at the building top) to the input parameters 

(building LoD, overburden and distance). In this methodology, the importance of the 

input parameter is quantified through two sensitivity measures 𝜎  and 𝜇∗  as explained 

in Section 2.3. 

 

Fig. 9. Sensitivity of the building LoD for different building distance from the tunnel alignment 

for tunnel overburden of 10m: a) absolute mean of 𝐸𝐸𝑖; b) standard deviation of 𝐸𝐸𝑖.  

 

Fig. 10. Sensitivity of the building LoD for different tunnel overburden for building distance of 

0 m: a) absolute mean of 𝐸𝐸𝑖; b) standard deviation of 𝐸𝐸𝑖.  

In Figures 9 and 10, the sensitivity measures for the selected LoD of the building to 

vertical displacements are shown. From the plots, we can conclude that the global sen-

sitivity 𝜇∗ as well as the interaction effect indicated by 𝜎 of the LoD drops with the 

increase of the distance of the building from the tunnel and the increase of the overbur-

den of the tunnel. It is for instance obvious that when the distance of the building from 

the tunnel is approximately 4D, the selected building LoD becomes irrelevant, meaning 

that we can choose the lowest LoD and reduce computational costs. 

Looking more closely at the results of the sensitivity measures 𝜎  and 𝜇∗ of the build-

ing LoD for different values of tunnel overburden (Fig. 10), we can see that both the 
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global sensitivity and the interaction effect reduce with the increase of the overburden. 

However, these sensitivity measures are still significant even for the overburden of 25m 

- especially 𝜎, which detects a nonlinear relation between the input and the output. This 

is due to two reasons: first, because the chosen limit of the overburden of 25m (2.5 D) 

from the tunnel crown is still in a zone of large influence, and second because of the 

building distance from the tunnel in Y direction of 0 m, where the interaction effect is 

the strongest (see Fig. 9). 

5 Conclusions 

In this paper, a concept for on-demand tunnelling design assessment in an engineering 

design environment is proposed. To this end, simulation-based meta models, trained a 

priori with complex 3D numerical simulation models, are employed for real-time pre-

diction. The unified design-analysis- assessment platform SATBIM is used as a design 

tool, and as a basis for generation of a large number of simulations for creating a data 

set for meta model training. Moreover, a strategy and algorithm for generation of en-

hanced meta models based on different machine learning techniques is proposed. In the 

example given in this paper, we demonstrated on-demand design assessment of effects 

of tunnelling on existing building in Revit. Finally, meta models are applied for sensi-

tivity analysis to explore the importance of model parameters. 

In general, real-time predictions are required if a large number of alternatives has to 

be explored and if decisions have to be made in real-time (e.g. setting support pressures 

during the tunnel construction process). Meta models have been chosen in this approach 

to substitute complex 3D numerical simulation, since they have been recognised by the 

practitioners as an efficient method which compromises complexity and speed of cal-

culation [22]. Meta models are able to account for the individual behaviour of each 

component and their complex interactions, giving a more physical response. Conse-

quently, different design assessment measures can be evaluated at the same time (sur-

face settlements, risk on buildings, stresses in tunnel structure). Certainly, to generate 

these meta models, a large number of simulation runs has to be performed a priori, and 

these calculations will require a significant amount of time. However, the advantage is 

that the generation of simulations is automatized and instantaneous by applying Sat-

bimModeller and that the used simulation models can be parallelised [23]. Secondly, 

since meta models are able to interpolate and to a certain extent extrapolate the predic-

tion from given parameter ranges, one can test an infinite number of parameter combi-

nations within the chosen range from a discrete number of simulations used for meta 

model training. Another tradeoff is that trained meta models are characterised with a 

certain prediction error. Therefore, different machine learning methods and optimiza-

tion were used here in order to ensure the best training performance. Consequently, in 

the example given in this paper, the prediction error is less than 3% and therefore ac-

ceptable for most engineering applications. 

Finally, another important application of meta models, the sensitivity analysis and 

evaluation of the model output, is demonstrated by an example. Here, meta models are 

proved useful for fast prediction, since a large number of forward calculation have to 
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be performed to obtain sensitivity measures. By applying meta model-based sensitivity 

analysis, we evaluated the importance of the building model LoD for numerical assess-

ment. The results can be used in the future to select optimal LoD of building compo-

nent. This then would lead to optimal information and numerical models in terms of 

model size and computational efforts. 

The SATBIM toolkit will be made available as open source software together with 

tutorials, a complete manual, and a number of benchmark examples. The project’s 

Github repository (not yet public) can be found at: https://github.com/satbim. 
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