Title: Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: Application of Py-GC/MS

Authors: Xiomar Gómez*a, William Meredithb, Camino Fernándeza, Mario Sánchez-Garcíae, Rebeca Díez-Antolíneza, Jorge Garzón-Santose, Collin E. Snapeb.

Affiliations:

a Chemical and Environmental Bioprocess Engineering Department, Natural Resources Institute (IRENA), University of León, Avda. de Portugal 41, 24071, León, Spain.
b Faculty of Engineering, University of Nottingham, The Energy Technologies Building, Innovation Park, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK.
c Research Institute of Vine and Wine (IIVV), University of León, Avda. de Portugal 41, 24071, León, Spain.

* Corresponding author:

E-mail address: xagomb@unileon.es

This is a pre-print of an article published in Environmental Science and Pollution Research. The final authenticated version is available online at:

Cite as:

Abstract

The anaerobic digestion process of swine manure was studied when char was used as supplement for improving performance. The use of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was proposed for assessing the organic matter degradation. The assessment on biogas production was carried out using samples of swine manure (SM) supplemented with char in one case and pre-treated by microwave irradiation in the other. This experimental set-up allows for the comparison of the biological degradation observed under these two different configurations and therefore aids in understanding the effect of char particles on the process. Results showed similar performance for both systems, with an average improvement of 39% being obtained in methane production when compared to the single digestion of SM. The analysis of digestate samples by Fourier Transform Infrared (FTIR) Spectroscopy and Py-GC/MS showed improved degradation of proteins, with the Py-GC/MS technique also capable of identifying an increase in microbial derived material when char was added; therefore highlighting the relevant role of carbon conductive particles on biological systems. Py-GC/MS along with the use of (FTIR) Spectroscopy has proven to be useful tools when evaluating anaerobic digestion.

Keywords: Biochar, PY-GC/MS, FTIR, microwave pre-treatment, anaerobic digestion
Introduction

The potential use of carbon-based conductive materials in anaerobic digestion processes has gained great interest in recent years due to a great variety of reports claiming the benefits associated with the increase in methane yields and attenuation of inhibitory effects (Cai et al. 2016; Cuetos et al. 2016). Biochar (obtained from the thermochemical conversion of biomass) and its use in land application has been traditionally proposed as a means for increasing the carbon storage capacity of soils, enhancing their properties and influencing the soil bacterial community (Wang et al. 2015) and a suitable soil amendment for minimising the negative effects of heavy metals on soils (Gusiatin et al. 2016). In recent years, the addition of biochar to digestion systems has proven to be a good alternative for providing new synergies between two traditional processes, as it is the pyrolysis of lignocellulosic biomass and the digestion of wastes (Song et al. 2017). In addition, the use of microalgae chars (Kim et al. 2016) and lignocellulosic biomass offers a good prospect to escape from the dilemma of biofuel versus food production (Roth and Spiess 2015).

Recent approaches for increasing the economic feasibility of waste treatment processes involve the conjunction of thermal and biological treatments in an attempt to increase energy efficiency and reduce the volume of side streams which can find limited disposal options. Swine manure is an organic stream that presents a high energy-production potential (Han et al. 2018). However, the use of complex substrates has been associated with inefficiencies in the digestion process due to the slow rate of the first hydrolysis stage. In an attempt to increase biogas yield and improve the degradation of organic materials, the application of different pre-treatments have been studied (e.g. thermal,
alkaline, acid, chemical, mechanical, etc.) (Feki et al. 2015; Donoso-Bravo et al. 2016; Martínez et al. 2017), although in some cases, their large scale implementation may be limited due to their low economic feasibility.

On the other hand, the combination of anaerobic digestion and pyrolysis allows for new synergies, which results in improvements thanks to the addition of biochar to the reactor liquor. Recent studies on the performance of anaerobic digestion supplemented with char report on the enhancement of the process by avoiding inhibitory conditions or promoting the growth of methanogens (Luo et al. 2015; De Vrieze et al. 2016). Direct interspecies electrons transfer (DIET) has also been suggested as one of the reasons for obtaining better degradation rates when carbon-based conductive materials are added (Dang et al. 2016). Although, several reports can be found in literature about the effects of adding conductive carbon materials to biological systems, there is still missing information about the evolution of the organic matter during biological transformations, and to what extent the improvement obtained with the addition of conductive materials may be comparable to those obtained from the application of different pre-treatment technologies.

Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) has been widely applied for the study of complex materials such as soil organic matter and recently for biomass characterisation (Liu et al. 2016; Zhu et al. 2016). The main advantages of the pyrolysis route for analysing complex organic samples are minimal sample preparation, minimum time of analysis and relative low cost (Prasad et al. 2006). There exists a wide experience in the application of spectroscopic techniques for evaluating the transformation of the organic material by biological process such as composting, soil
organic matter degradation and anaerobic digestion (Mopper et al. 2007; Kataki et al. 2017) allowing to elucidate the main relevant factors involved. In the present research the use of Py-GC/MS, along with spectroscopy techniques as it is Fourier Transform Infrared (FTIR) Spectroscopy has been investigated as tools for evaluating the effects of biochar addition on anaerobic digestion systems.

The aim of this experimental work was the assessment of the anaerobic digestion of swine manure (SM) following biochar addition as a means for improving system performance. A comparison of performance is carried out to evaluate the effect of supplementing the process with biochar particles. The process was evaluated using as substrates SM and pre-treated SM by microwave irradiation. The pre-treated system was used as reference for evaluating the modifications attained during digestion. Py-GC/MS and FTIR were used for evaluating the biological performance.

Materials and methods

Substrates and inoculum

SM was collected from a livestock farm located in the surroundings of the City of León (Spain). The manure was stored at 4 °C until required for use. The anaerobic sludge used as inoculum was obtained from the wastewater treatment plant of León where the anaerobic digester operates under mesophilic conditions (32 – 34 °C at an average hydraulic retention time of 30 d). The digested sludge obtained from the wastewater treatment plant was stored in closed vessel with a biogas release device and at room
temperature conditions (22 °C) for a month. This was done to allow the release of biogas and avoid interferences during the batch experiments.

The chemical characteristics of SM and inoculum are presented in Table 1. Char was produced from residual biomass of almond shell provided by “BIOTERM AGROFORESTAL SL” (Córdoba, Spain). Raw biomass and char samples were characterised as described by Alburquerque et al. (2016). Almond shells had volatile matter (VM) content of 821.4 g/kg and an ash content of 5.5 g/kg. The char was produced in a semi-continuous electrically heated reactor at 550 °C. The char thus produced had a VM content of 88.6 g/kg and an ash content of 31.2 g/kg. Further details of the operating conditions and char chemical and physical characteristics are described by Gómez et al. (2016). The mean particle size was 225 µm for the biochar fraction used for digestion experiments.

Table 1

Batch digestion experiments

Digestion experiments were performed using SM and microwave pre-treated SM as the substrate. Batch digestion tests were carried out in Erlenmeyer flasks with a working volume of 250 mL. Flasks were stirred at 125 rpm and maintained at 35 ± 1 °C by means of a water bath. Each reactor contained 1.5 g of volatile solids (VS) from manure. Inoculum was added to attain a VS ratio of 1.0 —inoculum-substrate (I/S)—. Water was added to complete the 250 mL volume. Four reactors were used in each experiment. Two replicates were used for measuring biogas production and
composition, while the other two were used for monitoring the liquid phase. A control assay was also run in parallel to measure the background gas production from the inoculum. Reactors were denoted as SM for the one digesting this substrate and SM_MW for the one treating microwave pre-treated SM.

Char was added to a set of batch digestion experiments to evaluate the effect on gas production and organic matter degradation. 3.0 g of char (dry basis) were added to each batch reactors. The experimental conditions were kept the same way as described above but with the addition of char in this latter case. Therefore, these reactors were denoted as SM_Char and SM_MW_Char.

Gas and liquid samples were taken twice a week to measure the composition of biogas and the concentration of volatile fatty acids (VFAs). Gas production was measured daily using a liquid displacement bottles filled with an acid and high salinity solution to avoid CO₂ absorption. The gas stored by these devices was sampled using gas syringe and composition was measured by gas chromatography as described in analytical techniques section. The duration of the experiments was based on the observation of total stoppage of gas production.

Curves of specific methane production were fitted to a modified Gompertz equation (1). This model has been successfully tested for adjusting biogas data obtained from batch digestion assays (Cuetos et al. 2013):

\[
P(t) = P_{\text{max}} \cdot \exp \left[-\exp \left(\frac{R_{\text{max}}}{P_{\text{max}}} (t - \tau) + 1 \right) \right] \tag{1}
\]
Where $P(t)$ is the cumulative values of the specific methane production (mL/kg VS), P_{max} is the maximum value obtained for the specific methane production (mL/kg VS), R_{max} is the maximum production rate (mL/kg VS d), λ is the lag-phase time (d) and e is 2.71. The software OriginPro was used for fitting data to the equation and obtaining the model parameters $P_{\text{max}}, R_{\text{max}}$, and λ.

Microwave pre-treatment

SM was pre-treated using a 1500 W/2455 MHz microwave oven MARS (CEM, North Carolina, USA). The pre-treatment assay was performed by fixing power at 600 W (maximum efficiency 80%). The temperature was increased with a ramp of 10 ºC/min until reach 80 ºC and hold during 15 min. Temperature was controlled by an Infrared (IR) temperature probe. The fresh SM was pre-treated by microwave (solid content of 23.1 g/L, see Table 1). 500 g of this substrate were pre-treated by equally distributing the sample in 10 rotating vessels on the carousel.

Analytical techniques

Kjeldahl nitrogen (KN), total solid (TS), VS, alkalinity, ammonium, and pH were measured in accordance with American Public Health Association (APHA) standard methods (2012). Total phosphorous (TP) was measured by the use of inductively coupled plasma atomic emission spectrometer (ICP-AES) (Perkin Elmer Optima 2000 DV). Gas production data were normalised to standard temperature and pressure (0 ºC and 1 atm). Biogas composition and VFAs were analysed using a gas chromatograph (Varian CP 3800 GC) as described by Martínez et al. (2017).
Proximate analysis was performed according to ASTM 3302 for total moisture, UNE 3219 for analysing volatile matter and UNE 32004 for ash analysis. Proximate analyses of the oven dried samples were carried out using a LECO MAC-300 thermogravimetric analyzer (TGA). A LECO CHN-600 apparatus was used for the analysis of C, H and N according to ASTM 5373. Sulphur was measured on a LECO SC-132, according to ASTM 4239. The O content was calculated by difference of the sum of C, H, N, and S values from 100% (on a dry ash-free basis). Biochar particle size analysis was performed using a Laser Diffraction particle Size Analyser LS 13 320 Beckmann Coulter. Samples selected for analysis were those comprising the initial state of the experiment (SM and inoculum) and those obtained from the final stage of the batch digestion test (digestates from the different experimental sets).

The surface of solid samples obtained after dismantling of reactors was analysed by scanning electron microscopy (SEM). Char and digestate samples were obtained after sedimentation of the reactor liquor and drying at 105 ºC. Samples were ground using an agate mortar. Samples were sputter-coated with gold in high vacuum (0.05 – 0.07 mbar) with a coater Blazers SCD 004. The samples were examined using a JEOL JSM 6840 LV scanning electron microscope.

Infrared spectra of substrate and digested samples were recorded using an FTIR Thermo Scientific Nicolet iS5 (ID7 ATR accessory, a monolithic diamond ATR crystal with high-efficiency) spectrophotometer over the 4000 – 650 cm⁻¹ range at a rate of 0.5 cm/s. Sixteen scans were collected with 0.482 cm⁻¹ spacing, averaged for each spectrum and corrected against ambient air as background.
Py-GC/MS analysis was conducted using a CDS Analytical 5200 pyroprobe, coupled with an Agilent GC-MS (7890B GC; 5977A MSD). The probe has a temperature range of 1–1400 °C, and a heating rate up to 20 °C/ms. A sample of homogeneous powder (approximately 5 mg) was placed in a quartz capillary tube (length 25 mm; diameter 2 mm) and secured at each end with quartz wool. Pyrolysis was carried out to a final temperature of 700 °C, with a heating rate of 20 °C/s and the final temperature then held for 60 s. Products were retained on a Tenex trap before desorption at 280 °C (for 4 min) and passage to the GC via a heated transfer line (310 °C). Product separation was performed on an HP-5MS column (30 m x 250 μm x 0.25 μm). The GC oven temperature was initially held at 50 °C for 0.5 min, then heated to 300 °C at a rate of 4 °C/min, where it was held for 5 min. The MS (EI of 70 eV) scanned in the mass range of m/z 40 – 400, with an ion source temperature of 200 °C. Individual compounds were identified using a NIST MS library and published data.

Two multivariate statistical methods, Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used for the evaluation of the samples based chromatograms obtained from Py-GC/MS. HCA was used to classify the studied samples into different groups. Grouping in clusters was carried out using Ward’s algorithm. Results are presented in the form of dendrograms.

PCA can be applied by creating a discrete data set of signals and representing these as linear combinations of a set of factors. The major advantage of this statistical method is...
its ability to reduce the dimensionality of the data set by eliminating redundant dimensions and identifying meaningful underlying variables that better represent the differences and similarities in a specific data set (Abdulla et al. 2013). Usually, only the first few principal components in a descending order explain the maximum of the total variance of all original variables. The score plot of the first principal components was used to investigate the inter-relationships between the samples, as it allowed the observation of clusters of samples (Martínez et al. 2016). Both HCA and PCA were performed using OriginPro software.

3. Results and discussion

3.1. Digestion experiments

Results from proximate and ultimate analysis are shown in Table 2. The inoculum sample presents high ash content associated with the degree of mineralisation of this sample. The digested sludge presented a low volatile content. This sludge was previously stored at room temperature to avoid interferences with the biogas production of the samples during the batch experiments. During this storage period, microbial activity led to the reduction in volatiles and readily degradable material resulting in a decrease in total solid content and enrichment in complex compounds and minerals.

Table 2

Digestate obtained from the experiment treating SM as sole substrate, presented also a marked increase in the ash content. This is explained by the high value of the substrate,
with an ash content of 27.2%. The mixture of this material with the inoculum which was also characterised by high inorganic concentration leads to an initial ash content of 33.6%. Starting the digestion with such high mineral content results in a digestate with remarkably high mineral components. The increase in ash content was of 38.8%, which was also similar to the cases of the pre-treated SM batch experiment.

The pre-treatment of the substrate by microwave (MW) irradiation did not have any effect on results obtained from proximate analysis, with similar values in volatiles and ash content being reported. The addition of char to the mixture highly affected results from proximate and ultimate analysis due to the high organic carbon content of this material, but no effect was observed on elements measured.

Differences in methane production and its rate can be observed in Fig. 1a. The digestion of SM was characterised by a delay in biogas production (See \(\lambda \) value in Table 3) probably caused by the change in environmental conditions. Previous to the experiments, the inoculum was stored at room temperature conditions for a month period without any kind of substrate being supplied. The change from the storage to the conditions of the experiments may explain the delay observed in the production of biogas for all assays studied. In addition, the ammonium content of this inoculum was much lower than that of the substrate (Table 1); therefore the initial value of the batch reactors was in the range of 1300 to 1400 mg/L (See Fig. 1b). This change in ammonium concentration and the high mineralisation of the inoculum used may be the main reason for explaining the null biogas production during the initial stage.
The addition of char resulted in a decrease in the lag phase and also affected in a positive way the methane production rate and the final cumulative value. Positive effects have also been observed by different authors when evaluating the use of char and conductive carbon materials in anaerobic digestion (Liu et al. 2012; Cuetos et al. 2016; Dang et al. 2016). The aggregation of cells is considered a key factor for efficient methanisation as a direct result of better electron transfer between obligate H$_2$-producing acetogens and methanogens. Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate (Dubé and Guiot 2015). It is believed that an improvement in this mechanism by the presence of conductive materials directly results in higher gas yields. It is considered that the presence of conductive carbon materials allows for an effective connection between cells that are not strictly in physical contact with each other. It is suggested that electron transport carriers associated with the outer surface of the cell are able to make the required electrical contacts with the conductive material (Chen et al., 2014; Lovley 2017) resulting in an enhancement of methane production (Wang et al., 2017).

The irradiation of the substrate by MW resulted in the loss of ammonium. The pre-treated sample of SM presented an ammonium concentration of 2775 mg/L which resulted in slightly lower values of ammonium content for batch reactors using this substrate (see Fig. 1b). This change may not seem relevant enough to be considered as the responsible for the difference observed in the lag phase values. The addition of char
and the application of a pre-treatment may have facilitated the degradation of the organic material by the anaerobic microflora causing as a result a reduction in the initial lag-phase observed for these systems. The final ammonium concentration measured at the end of the digestion tests present similar values for the four assays evaluated (see Table 3).

MW irradiation also exerted a positive effect on methane production. Digestion systems fed with the pre-treated substrate showed higher methane content in biogas probably as a result of a better degradation of nitrogen containing material. Higher release of ammonium is observed in Fig. 1b for pre-treated systems, although at the end of the digestion these reactors presented lower ammonium content which may be explained by the loss of this compound by volatilisation. However, the addition of char in experiments using pre-treated SM did not report additional significant changes in the performance of the digestion process. Methane curves obtained from these experiments presented a quite similar gas evolution profile to those from the pre-treated system without biochar.

The pre-treatment may have facilitated the degradation of complex material like proteins and the lipid fraction of the SM. This effect is observed by the slope of the cumulative methane production curve, which represents the methane production rate. SM digestion systems present a change in the slope of the curve associated with the complexity of the material being degraded. Right after the lag phase, the slope of the curve obtained for the SM digestion system was 25 mL CH₄/kg VS d (days 10–19) and this value was reduced to 6.4 mL CH₄/kg VS d on the following stage (days 21–39). The SM_Char system presented a similar behaviour, but with higher rates being
obtained in each stage (29.4 and 9.0 mL CH\textsubscript{4}/kg VS d for the two different stages). The application of MW irradiation resulted in a homogenous degradation profile, where differences in the methane production rate were eliminated once the lag phase had elapsed. The improvement of MW pre-treatment on anaerobic digestion has been demonstrated by several authors (Tyagi et al. 2014; Yeneneh et al. 2017). Changes experienced by the organic material and modifications in the specific surface area of the organic particles have been proposed as the reasons given for obtaining an enhancement in digestion when MW pre-treatment is applied (Martínez et al. 2017). In the present study the methane yield from pre-treated systems and biochar aided systems was about 420 mL CH\textsubscript{4}/g VS, while in the SM reactor this value was 28\% lower.

The addition of char did not represent any significant changes in the evolution of NH\textsubscript{4}+ content in the different experiments. Values of this parameter were quite similar for the different experiments indicating that the adsorption of this cation on the char surface can be disregarded as the cause for improving the performance of the digestion process when SM was treated.

Fig. 1 also presents the evolution of VFA in batch tests. The anaerobic degradation of SM was characterised by high VFA production (Fig. 1c). These high values along with the negative effects associated with the ammonium levels in the reactor may have been responsible for the delay observed at the initial stage of the trial. Ammonium content in the reactor was below the threshold value considered as inhibitory (3.0 - 3.7 g/L for ammonium values and 1.0 -1.1 g/L for free ammonia values (Gallert and Winter 1997; Moestedt et al. 2016)). However, the ammonium concentration may have been high enough to affect the performance of the microflora since the anaerobic consortium had
not been previously adapted to this type of substrate and was stored at room temperature
to avoid interference with the background biogas production.

Acetic acid reached values around 3 500 mg/L at the initial stage of the fermentation,
indicating that the acidification stage and the subsequent consumption of this acid may
be suffering imbalances. The addition of char did not change this trend, but the carbon
particles may have offered a protective site to the anaerobic microflora explaining
therefore the lower values of λ obtained for the SM_Char system. On the other hand, the
application of the MW pre-treatment favoured the consumption of this acid due to the
volatilisation of ammonium experienced by the substrate, lowering its level in the
reactor and therefore enhancing the performance of acetotrophic methanogens. Acetic
acid concentration in pre-treated reactors was below 1 500 mg/L. Values of λ were
similar for both systems and were close to that derived from the SM_Char system,
corroborating the hypothesis of available protective sites for anaerobic microflora.

Scanning electron microscopy

Images of the char surface and dried digestate particles are shown in Fig. 2, with the
porous structure of char being easily observed. Digestate material, obtained from the
SM batch digestion experiment, presents an irregular surface which is very different
from the surface observed from the solid particles obtained from the experiment of SM
digestion supplemented with char. The surface of particles presents a more corrugated
structure with the porous associated to the char particles being observed at the centre of
the photograph. Digestate solid particles seem to be fully covering the carbon
conductive material. Surface analysis performed by the same microscope, reported a
carbon content of 87.1 ± 1.1% for the char particles, this value was just 41.7 ± 1.7% for the SM digestate and was increased to 65.9 ± 1.6% as a result of the presence of char in the sample.

Fig. 2

Results from FTIR analysis

The degradation of the organic material was studied by means of FTIR spectroscopy. Assignment of main absorption bands was based on Cuetos et al. (2009) and Fierro et al. (2016). Initial samples and digestates were evaluated. Fig. 3 shows the different spectra obtained.

Fig. 3

The spectrum of inoculum and substrate shows similar bands with the latter presenting higher intensities in some particular regions. A broad absorption band at 2 500–3 800 cm⁻¹ is attributed to O–H vibration and it was common to all samples analysed, with the exception made for the sample of char. The peak centred at 3 400 cm⁻¹ is ascribed to hydrogen vibrations of the OH groups of alcohols, phenols and organic acids, but also to amide hydrogen vibrations. The presence of aliphatic compounds is observed in the range 2 800–3 000 cm⁻¹, along with the signals at 1 450–1 410 cm⁻¹ associated this latter with the CH₂ scissor deformation vibration. The SM sample presents a higher intensity band in this region which is significantly reduced after the anaerobic treatment (see spectra from digested samples). The protein region associated with nitrogen containing
compounds (absorption bands at about 1 650 and 1 540 cm\(^{-1}\)) also presents high intensity in this same sample while it was highly attenuated in the inoculum sample. This is also the case for the region at 1 300–1 230 cm\(^{-1}\), which was ascribed to phospholipids (PO\(_2\)) asymmetric stretching, C–O in carboxylic acids and protein amide III band (C–H and N–H) (Provenzano et al. 2015).

The inoculum sample also presents an important band at 1 630 cm\(^{-1}\) ascribed to aromatic structures, which also remains clearly identifiable in digestate samples. The high intensity band at 1 030 cm\(^{-1}\) was also recurrent in the different samples obtained from the digestion experiments and was also reported as characteristic of sludge and digestates (Fierro et al. 2016).

The degradation of SM under anaerobic conditions leads to the consumption of readily degradable organic matter, therefore the decrease in signals ascribed to aliphatic and carbohydrate regions are in consonance with this statement. The digestate samples present a relative increase of the aromatic signal (1 630 cm\(^{-1}\)) with regard to that of proteins at 1 550 cm\(^{-1}\). In addition, the application of microwave pre-treatment allows for an improvement in the degradation of these compounds, an effect which was observed from the change in the relative intensity of the protein peak, with the SM_MW sample presenting a decrease in the intensity of this peak when compared to the one at 1 630 cm\(^{-1}\). This effect was also observable when Char was added to the digestion process. However, the combination of pre-treatment and char addition did not lead to additional modifications in the organic matter. Digestate sample obtained in this latter case (char addition and MW pre-treatment), presented a similar FTIR spectra to that of
the char supplemented digestate. That is, with similar relative intensities when
comparing signals at 1 630, 1 550 and 1 410 cm\(^{-1}\).

3.4. Results from Py-GC/MS analysis

Pyrograms represented in Fig. 4 show a wide diversity of peaks in SM_substrate sample
and inoculum. Clear differences are easily observable for some major peaks. The first
volatile compounds obtained present as main components butane and acetic acid (see
supplementary material SM1 and peak identification table in SM3). These short chain
compounds were reduced in digestate samples, with the exception of the SM_Char
digested sample which presents a relative intensity similar to that obtained for toluene.
Phenol derivatives can arise from the decomposition of proteins, polycarboxylic acids
(Bracewell et al. 1980) or polysaccharides (Wilson et al. 1983). The different
performance in the digestion system when char was added to aid in the mineralisation of
the organic material is also observed in the Py-GC/MS profiles. The addition of char
allowed for a faster start-up of the batch digestion tests and aided in the degradation of
proteinaceous material as it was also observed in FTIR spectra. In the present case, this
behaviour is corroborated by the differences observed from the relative intensities of
toluene, C\(_2\)-benzene, styrene and phenol peaks with regard to those ascribed to short
chain molecules. The presence of toluene and styrene has been associated as a lignin
pyrolysis product; although styrene arises also very probably from non-hydrolysable
proteins, peptides and tannins (Dignac et al. 2006).

Fig. 4
Organic compounds of the furan type were identified among the pyrolysis products of the inoculum sample (furfural and 5-methyl furfural, see supplementary material SM1 and SM3), but were not discernible in the substrate sample neither in the digested samples. These compounds are considered as the pyrolysis products of polysaccharides (Dignac et al. 2005; El Fels et al. 2014) and furane type compounds have also been identified (furane and benzofurane) in the pyrolysis products of humic acids (Zhao et al. 2012) with their presence in the inoculum sample being probably associated with humic and fulvic substances.

Indole and methyl-indole were identified in the samples studied. These compounds have been recognised as pyrolysis products derived from tryptophan (Kebelmann et al. 2013). Other microbial pyrolysis products selected for tracking microbial signals, this case in sediments, are Benzyl nitrile, 2-furanmethanol, indole, phenol and pyrrole (Zhu et al. 2016). In the present study, phenol and Indole were clearly discernible in all chromatograms. Benzeneacetonitrile and benzenepropane nitrile can be also ascribed to microbial signals (See supplementary material).

Terrestrial lignocellulosic biomass yields a range of products such as acetic acid, furfural, syringol, vanillin, guaiacol, cresol, 2,3-dihydro-benzofuran, coniferyl alcohol and levoglucosan (Wu et al. 2010). Many of these compounds were also identified in the substrate and digestate samples, with particular incidence of cresol which presents a high intensity signal in the chromatograph of inoculum and digested samples.

SM_substrate and inoculum samples present a large amount of linear fatty acids as well as sterol components (Wang et al. 2015). Lipid fraction of sewage sludge and compost
has been analysed by different authors using NMR, pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide and spectroscopic techniques (Fierro et al. 2016; Li et al. 2017; Fukushima et al. 2018). In the present study C16 and C18 lipids and their fatty acid forms were identified in the substrate, inoculum and digested sample. These long chain compounds (oleic, stearic, and palmitic acids) have been described as major constituents of wastewaters (Palatsi et al. 2012).

Sterols presented a great contribution to the chromatogram obtained from the Py-GG/MS analysis of the inoculum sample. Among sterols, cholesterol is the main sterol of animal origin and in particular coprostanol which is used as marker of faeces (Volkman 1986). The recurrent appearance of sterols in digested samples is explained by the accumulation of these components during the digestion process. Due to their complex structure, these molecules were not affected by the microbial degradation.

Statistical analysis of Py-GC/MS chromatographs allowed the global evaluation of the samples. Results in Fig. 4 show a high correlation between the inoculum sample and the digested swine manure, irrespectively of the application of the MW pre-treatment. Although biogas evolution from the MW pre-treated sample represented an improvement in the biological degradation of the material which was observed by an increase in the biogas production rate (batch tests) and an improvement in the degradation of proteinaceous material (as observed in FTIR analysis), the digested material presents similar pyrolysis products to those obtained from the SM digestate sample, with the exception of the lipidic fraction which present signals with greater intensities in this latter case.
Statistical analysis also revealed that the presence of char is affecting the distribution of the pyrolysis products with those digestates containing char presenting a closer correlation. Py-GC/MS was capable of discerning differences in the evolution of the organic material when char was added to the digestion process. Pyrograms obtained from the char digestion systems present high intensity signals associated with the presence of microbial biomass and lignocellulosic compounds.

SM_substrate sample on the contrary, presented a great variety of compounds in the lipidic region (high contribution of -CH₂-) which were greatly reduced in all digested samples evaluated remaining only as major components of this region, those with C₁₆ and C₁₈ forms. The degradation of the organic content of SM by anaerobic digestion led to a great decrease of small molecules in pyrograms as evidence of the consumption by microorganisms of less complex compounds leading to the accumulation in digested samples of lignin type material and components derived from microbial biomass. Char addition accentuated the differences related to the distribution of organic compounds and this may be explained by the creation of a more favourable environment leading to an improvement in the development of microbial consortia as corroborated by different authors (Dang et al. 2016; De Vrieze et al. 2016).
4. Conclusions

This study of batch digestion systems of swine manure (SM) showed similar improvements in biogas yields for both the addition of biochar and microwave pre-treatment, demonstrating the great benefits of the addition of conductive carbon materials to biological processes. These results demonstrate the possibility of new synergies between traditional pyrolysis and digestion processes from a perspective of joining these two technologies in future biorefineries.

Py-GC/MS significantly aided in the interpretation of results regarding the transformation of organic components and was capable of discerning differences in the evolution of the different digestion tests by evaluating the distribution of pyrolysis products obtained from digested samples. A relative increase in microbial biomass pyrolysis products and lignin type material was observed for char containing samples while FTIR spectra although providing valuable information was limited in giving an explanation in the different performance when evaluating char supplemented systems and those of the microwave pre-treatment assay.

Acknowledgments

This research was possible thanks to the financial support of Project CTQ2015-68925-R and UNLE15-EE-3070 funded by Ministry of Economía y Competitividad, Spanish Government.
Conflict of interests

Authors declare no conflict of interest

References

https://doi.org/10.1016/j.jclepro.2014.10.080

https://doi.org/10.1016/0165-2370(80)80045-3

https://doi.org/10.1177/0734242X16634196

doi:10.1038/srep05019

Donoso-Bravo A, Ortega-Martinez E, Ruiz-Filippi G (2016) Impact of milling, enzyme addition, and steam explosion on the solid waste biomethanation of an olive oil

Fig. 1 (a) Specific methane production of SM and (b) ammonium content obtained from batch digestion tests. (c) VFA results obtained from the digestion of SM, (d) pre-treated SM (SM_MW), (e) SM supplemented with char (SM_Char), and (f) and pre-treated SM supplemented with char (SM_MW_Char).

Fig. 2 Results from scanning electron microscopy. Surface of char, digestate and digestate containing char particles. Samples were obtained from batch digestion experiments.

Fig. 3 FTIR spectra of the initial and digestate samples obtained from the batch digestion of swine manure (SM), the pre-treated SM (SM_MW) and systems comprising the addition of Char (SM_Char and SM_MW_Char).

Fig. 4 (a) Chromatograms of pyrolysis products released from substrate samples, inoculum and digestates obtained at the end of the experiment. Statistical analysis: (b) HCA and (c) PCA.
Table 1. Chemical characteristics of inoculum and swine manure (SM).

Table 2. Results from proximate and ultimate analysis of initial samples and digestates.

Table 3. Results obtained from batch digestion test of swine manure (SM), pre-treated SM (SM_MW) and char supplemented systems (SM_Char, SM_MW_Char).
Table 1. Chemical characteristics of inoculum and swine manure (SM).

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>TS (g/L)</th>
<th>VS (g/L)</th>
<th>TN (g/kg)</th>
<th>P (ppm)</th>
<th>pH</th>
<th>C/N</th>
<th>NH₄⁺ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>23.1</td>
<td>15.2</td>
<td>3.6</td>
<td>12 207</td>
<td>6.9</td>
<td>10.9</td>
<td>3 085</td>
</tr>
<tr>
<td>Inoculum</td>
<td>47.6</td>
<td>27.8</td>
<td>4.2</td>
<td>22 452</td>
<td>7.5</td>
<td>8.5</td>
<td>1 050</td>
</tr>
</tbody>
</table>

Expressed on a dry basis. TS: Total solids. VS: Volatile solids. TN: Total Kjeldahl nitrogen.
Table 2. Results from proximate and ultimate analysis of initial samples and digestates.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Proximate analysis</th>
<th>Ultimate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moisture (%)</td>
<td>Volatiles (%)</td>
</tr>
<tr>
<td>SM_substrate</td>
<td>8.6</td>
<td>61.1</td>
</tr>
<tr>
<td>Inoculum</td>
<td>4.8</td>
<td>49.9</td>
</tr>
<tr>
<td>Char</td>
<td>3.9</td>
<td>8.9</td>
</tr>
<tr>
<td>Digestates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>5.2</td>
<td>44.6</td>
</tr>
<tr>
<td>SM_Char</td>
<td>5.3</td>
<td>31.7</td>
</tr>
<tr>
<td>SM_MW</td>
<td>5.2</td>
<td>44.0</td>
</tr>
<tr>
<td>SM_MW_Char</td>
<td>5.0</td>
<td>30.9</td>
</tr>
</tbody>
</table>
Table 3. Results obtained from batch digestion test of swine manure (SM), pre-treated SM (SM_MW) and char supplemented systems (SM_Char, SM_MW_Char).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SM</th>
<th>SM_Char</th>
<th>SM_MW</th>
<th>SM_MW_Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative CH₄ production (mL)</td>
<td>448.1 ± 19.7</td>
<td>593.1 ± 50.4</td>
<td>625.5 ± 4.1</td>
<td>649.8 ± 36.9</td>
</tr>
<tr>
<td>CH₄ Yield (mL/g VS)</td>
<td>298.7 ± 23.8</td>
<td>395.4 ± 42.7</td>
<td>416.7 ± 27.9</td>
<td>433.2 ± 37.9</td>
</tr>
<tr>
<td>CH₄ (%)</td>
<td>68.9 ± 1.7</td>
<td>69.3 ± 1.7</td>
<td>73.3 ± 1.6</td>
<td>75.3 ± 1.7</td>
</tr>
<tr>
<td>pH<sub>initial</sub></td>
<td>7.0 ± 0.1</td>
<td>7.1 ± 0.1</td>
<td>7.7 ± 0.1</td>
<td>7.9 ± 0.1</td>
</tr>
<tr>
<td>pH<sub>final</sub></td>
<td>8.0 ± 0.1</td>
<td>8.0 ± 0.1</td>
<td>7.8 ± 0.1</td>
<td>8.1 ± 0.1</td>
</tr>
<tr>
<td>Modified Gompertz model parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ (d)</td>
<td>9.19 ± 0.21</td>
<td>6.07 ± 0.22</td>
<td>5.88 ± 0.09</td>
<td>5.83 ± 0.07</td>
</tr>
<tr>
<td>P<sub>max</sub> (mL/kg VS)</td>
<td>349.6 ± 5.1</td>
<td>426.1 ± 6.0</td>
<td>428.8 ± 2.4</td>
<td>441.2 ± 1.9</td>
</tr>
<tr>
<td>R<sub>max</sub> (mL/kg VS d)</td>
<td>21.2 ± 3.9</td>
<td>24.5 ± 4.5</td>
<td>27.5 ± 2.3</td>
<td>28.8 ± 1.8</td>
</tr>
<tr>
<td>R²</td>
<td>0.992</td>
<td>0.990</td>
<td>0.998</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Fig. SM1. Chromatograms of pyrolysis products released from substrate samples, inoculum and char.
Fig. SM2. Chromatograms of pyrolysis products released from digested samples.
Table SM1. Selected pyrolysis fragments identified from substrates and digested samples.

<table>
<thead>
<tr>
<th>No</th>
<th>Compound</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Butane</td>
<td>43, 58</td>
</tr>
<tr>
<td>2</td>
<td>Acetic acid</td>
<td>43, 60</td>
</tr>
<tr>
<td>3</td>
<td>Benzene</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>Toluene</td>
<td>91, 92</td>
</tr>
<tr>
<td>5</td>
<td>C2-benzene</td>
<td>91, 106</td>
</tr>
<tr>
<td>6</td>
<td>Styrene</td>
<td>78, 104</td>
</tr>
<tr>
<td>7</td>
<td>Furfural</td>
<td>95, 96</td>
</tr>
<tr>
<td>8</td>
<td>Pentanoic acid</td>
<td>60, 73</td>
</tr>
<tr>
<td>9</td>
<td>5-Methyl furfural</td>
<td>109, 110</td>
</tr>
<tr>
<td>10</td>
<td>Phenol</td>
<td>66, 94</td>
</tr>
<tr>
<td>11</td>
<td>2-Propenyl Benzene</td>
<td>91, 103, 117</td>
</tr>
<tr>
<td>12</td>
<td>Indene</td>
<td>115, 116</td>
</tr>
<tr>
<td>13</td>
<td>o-Cresol, m-Cresol</td>
<td>107, 108</td>
</tr>
<tr>
<td>14</td>
<td>Acetophenone</td>
<td>77, 105, 120</td>
</tr>
<tr>
<td>15</td>
<td>p-Cresol</td>
<td>107, 108</td>
</tr>
<tr>
<td>16</td>
<td>2-Methoxy-phenol (guaiacol)</td>
<td>109, 124</td>
</tr>
<tr>
<td>17</td>
<td>Benzyl methyl ketone</td>
<td>43, 91, 134</td>
</tr>
<tr>
<td>18</td>
<td>Benzeneacetonitrile</td>
<td>90, 117</td>
</tr>
<tr>
<td>19</td>
<td>2,5-Dimethyl phenol</td>
<td>107, 122</td>
</tr>
<tr>
<td>20</td>
<td>2-Ethyl-phenol, 4-Ethyl-phenol</td>
<td>107, 122</td>
</tr>
<tr>
<td>21</td>
<td>Methyl-phenyl-acetate</td>
<td>91, 150</td>
</tr>
<tr>
<td>22</td>
<td>Naphtalene</td>
<td>128</td>
</tr>
<tr>
<td>23</td>
<td>Coumaran</td>
<td>91, 120</td>
</tr>
<tr>
<td>24</td>
<td>Benzenepropane nitrile</td>
<td>91, 131</td>
</tr>
<tr>
<td>25</td>
<td>2-Butanone-4-phenyl</td>
<td>91, 105, 148</td>
</tr>
<tr>
<td>26</td>
<td>Indole</td>
<td>90, 117</td>
</tr>
<tr>
<td>27</td>
<td>Methyl-naphtalene</td>
<td>115, 142</td>
</tr>
<tr>
<td>28</td>
<td>Vinylguaiacol</td>
<td>135, 150</td>
</tr>
<tr>
<td>29</td>
<td>2-Methyl-indole</td>
<td>130, 131</td>
</tr>
<tr>
<td>30</td>
<td>Tetradecene</td>
<td>41, 43, 55, 70, 83, 97</td>
</tr>
<tr>
<td>31</td>
<td>Tetradecane</td>
<td>43, 57, 71, 85</td>
</tr>
<tr>
<td>32</td>
<td>Ethylguaiacol</td>
<td>137</td>
</tr>
<tr>
<td>33</td>
<td>Eugenol</td>
<td>149, 164</td>
</tr>
<tr>
<td>34</td>
<td>1-Pentadecene</td>
<td>55, 69, 83</td>
</tr>
<tr>
<td>35</td>
<td>Pentadecane</td>
<td>57, 71, 85</td>
</tr>
<tr>
<td>36</td>
<td>1-Hexadecene</td>
<td>55, 69, 83</td>
</tr>
<tr>
<td>37</td>
<td>Hexadecane</td>
<td>57, 71, 85</td>
</tr>
<tr>
<td>38</td>
<td>1-Hexadecanol, 2-methyl</td>
<td>57, 69, 83, 97</td>
</tr>
<tr>
<td>39</td>
<td>Tetradecane, 2, 6, 10-trimethyl</td>
<td>57, 71, 85</td>
</tr>
<tr>
<td>40</td>
<td>1-Dodecanol 3,7,11-trimethyl</td>
<td>57, 69, 83, 97, 111</td>
</tr>
<tr>
<td>41</td>
<td>Tetradecanoic acid</td>
<td>60, 73, 129, 185</td>
</tr>
<tr>
<td>42</td>
<td>Phytol</td>
<td>57, 71, 81</td>
</tr>
<tr>
<td>43</td>
<td>i-Propyl 12-methyltetradecanoate</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Pentadecanoic acid</td>
<td>60, 73, 85, 97</td>
</tr>
<tr>
<td>45</td>
<td>2-Heptadecanone</td>
<td>58, 71</td>
</tr>
<tr>
<td>46</td>
<td>Hexadecanoic acid</td>
<td>60, 73, 83, 129</td>
</tr>
<tr>
<td>No.</td>
<td>Compound</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>47</td>
<td>2-Nonadecanone</td>
<td>58, 71</td>
</tr>
<tr>
<td>48</td>
<td>6-Octadecenoic acid</td>
<td>55, 69, 83, 97, 11</td>
</tr>
<tr>
<td>49</td>
<td>Octadecanoic acid</td>
<td>60, 73, 129</td>
</tr>
<tr>
<td>50</td>
<td>Octadecanamide</td>
<td>59, 72</td>
</tr>
<tr>
<td>51</td>
<td>Cholest-3-ene,(5β)-</td>
<td>135, 147</td>
</tr>
<tr>
<td>52</td>
<td>Cholest-2-ene</td>
<td>147, 161</td>
</tr>
<tr>
<td>53</td>
<td>Squalene</td>
<td>69, 81</td>
</tr>
<tr>
<td>54</td>
<td>Cholesta-3,5-diene</td>
<td>147, 159</td>
</tr>
<tr>
<td>55</td>
<td>Methyl 3-hydroxycholestan-26-oate</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Coprostanol</td>
<td>135, 149, 161</td>
</tr>
</tbody>
</table>