


Abstract—The constant growth of air traffic, the demand for
performance optimization and the need for decreasing both
operating and maintenance costs have encouraged the aircraft
industry to move towards more electric solutions. As a result of
this trend, electric power required on board of aircraft has
significantly increased through the years, causing major changes
in electric power system architectures. Considering this scenario,
the paper gives a review about the evolution of electric power
generation systems in aircraft. The major achievements are
highlighted and the rationale behind some significant
developments discussed. After a brief historical overview of the
early DC generators (both wind- and engine-driven), the reasons
which brought the definitive passage to the AC generation, for
larger aircraft, are presented and explained. Several AC
generation systems are investigated with particular attention
being focused on the voltage levels and the generator technology.
Further, examples of commercial aircraft implementing AC
generation systems are provided. Finally, the trends towards
modern generation systems are also considered giving prominence
to their challenges and feasibility.

Index Terms— MEA, AEA, Aircraft Electric Power
Generation, HEP, HVDC

NOMENCLATURE

AEA All Electric Aircraft
APU Auxiliary Power Unit
ATRU Autotransformer Rectifier Unit
ATU Autotransformer Unit
CF Constant Frequency
CSD Constant Speed Drive
ECS Environmental Control System
GCU Generator Control Unit
HP High Pressure
HVDC High Voltage DC
IM Induction Machine
IDG Integrated Drive Generator
LP Low Pressure
MEA More Electric Aircraft
n Rotational speed of the generator shaft [rpm]
N1 Rotational speed of the low pressure spool [rpm]
N2 Rotational speed of the high pressure spool [rpm]
p Number of poles pair of the main generator
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PDC Power Distribution Centre
PEC Power Electronics Converter
PM Permanent Magnet
PMSM Permanent Magnet Synchronous Machine
SiC Silicon Carbide
SR Switched Reluctance
SRM Switched Reluctance Machine
TRU Transformer Rectifier Unit
VFG Variable Frequency Generator
VS Variable Speed
VSCF Variable Speed Constant Frequency

I. INTRODUCTION

ECONDARY power systems allow for aircraft safe
operation and ensure passengers’ comfort. For conventional

aircraft, secondary power systems combine pneumatic,
hydraulic, mechanical and electric power and their energy
consumption represents approximately 5% of the total fuel
burnt during the flight [1].
With the advent of the more electric aircraft (MEA) initiative,
electric power systems are progressively taking the place of
pneumatic, hydraulic and mechanical power systems [2-4].
Over time, this trend has led to an increase of required electric
power, particularly for larger aircraft [5-7], as shown in Fig. 1.
For instance in the B787, several loads, which were
traditionally supplied by pneumatic bleed system, are now
electrically-driven [8]. These loads include (but are not limited
to) wing ice protection, environmental control system (ECS)
and the engine starting system [9]. Therefore, an important
player in all of this is the need of on-board electrical power
generation. In Fig. 2, a general system-level scheme, regarding
the historical evolution of on-board electrical power generation
and distribution, is reported [1, 7].

The electric power demand on-board of aircraft begun with
the requirement of starting the main engines. Hence, power
generation on aircraft dates back to the First World War period
(1914-18), when the starting capability and also wireless
telegraphy were introduced on-board of military aircraft [10].
At the time, wind-driven generators were generally preferred to
batteries, mainly due to their better reliability and the poor
energy density of the available batteries in the period. Between
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the two world wars, electric services, such as lighting,
signalling and heating, were brought into use [3, 11, 12] and
with them the power generated by the wind-driven generators
escalated from 250W up to 1000W. Higher power ratings were
achieved by increasing the generated voltage levels. Indeed, the
6Vdc system (already in use in the automotive industry) was
soon replaced by the 12Vdc system, which had been upgraded
to the 28Vdc system by 1936 [13].

Fig. 1. Evolution of electrical power need (in grey short to medium range
aircraft and in black medium to long range aircraft).

Fig. 2. Electric generation systems evolution.

As the aircraft travelling (ground) speed begun to exceed
280km/h (around 1934), the drag forces related to wind-driven
generators started to become a significant issue [14]. For this
reason, wind-driven generators were superseded by engine-
driven generators. During Second World War (1939-45),
engine-driven generators were improved, in terms of
power/weight ratio and reliability, however generation was still
in DC. In the 1940s and 1950s, twin 28Vdc engine-driven
generators became a standard on-board of many aircraft. Apart
from its main two 12kW engine-driven generators, it employed
one or two batteries (as emergency power source) and a power
converter, which fed the AC electric loads [14]. In the 1950s,
three-phase generators were mounted on British V-Bombers.
These military aircraft used four AC generators providing about
40kVA each, at 400Hz frequency and 115/200Vac voltage [1].
At that time, V-Bombers were one of the first aircraft to
implement parallel AC generators [15]. Thirty years later, the

V-Bombers were decommissioned, however, their power
generation system is still in service today on the VC-10
air-to-air refuelling tankers. Generating AC voltage at constant
frequency required a coupling mechanical gearbox between the
variable-speed prime mover (i.e. engine shaft) and the generator
[16]. This complex hydromechanical unit introduced reliability
issues, due to increased component count (with several moving
parts), which needed frequent maintenance [17]. In the early
1990s, the need for more energy-efficient aircraft promoted the
MEA concept, which was already known since 1940s. As a
result of this trend, commercial aircraft implementing more-
electric features are nowadays available and some examples are
the A380 and the B787 [3].

Starting from the dawn of aviation, this paper presents a
survey on the evolution of electrical power generators for
aerospace applications. In particular, DC power generation is
discussed in Section II, where the technologies implemented
pre- and post- World Wars are examined. In Section III, the AC
power generation technologies, such as constant frequency
(CF) and variable speed constant frequency (VSCF) systems,
are described and their main advantages and drawbacks are
highlighted. Section IV deals with “unconventional systems”,
such as switched reluctance machine (SRM) based systems, for
generating electric power on-board of military aircraft. Recent
achievements and today’s generation systems employed in
MEA are considered in Section V. The challenges and
forthcoming developments regarding the power generation on
the future aircraft (i.e. multi-spool generation and HVDC
systems) are briefly reviewed in Section VI. Finally, Section
VII provides a summary through more than a hundred years of
electric power generation on-board of aircraft.

II.DC GENERATION

In the early days, electric power on aircraft was mainly used
for communication and ignition systems. Indeed, the first DC
generators were typically rated for less than 500W and usually
adopted 6Vdc and 12Vdc voltage levels [11, 12]. As previously
mentioned, the installation of lighting, signalling and heating
systems increased the electric power requirements. Hence, the
generator capacity rose up to 1kW (value retained till the
beginning of World War II [18]), as well as the voltage level,
which was increased to 28Vdc. Higher generated voltage
allowed for savings on cables and commutators weight [13, 19,
20].

A. Pre-World War II

The majority of the first DC generators relied on wind-driven
technologies [19]. This topology of generator was most
commonly mounted externally on the aircraft’s landing gear
strut. However, as aircraft speeds increased, requirements for
more refined flight dynamics started to push towards fully
retractable landing gear and thus wind-milling generators
became obsolete. The era of engine-driven generators thus
began [21]. Table I combines the two ‘families’, i.e.
wind-driven and engine-driven generators, and reports the main
characteristics of some of these early DC aircraft generators
[11, 12, 19, 21]. Engine-driven DC generators were designed
for speeds between 3200rpm and 6000rpm, according to the



prime mover speed, and allowed for short time overloads [19].
The overload capability was usually aimed at 50% of the rated
power. In order to ensure light weight, the generator housing
and its accessories, such as supporting brackets, were typically
made of magnesium alloys [20, 22]. Indeed, these alloys were
preferred to aluminium alloys, because their mass density is
about two thirds of the aluminium ones.

TABLE I - EARLY DC GENERATORS FOR AIRCRAFT

DC
Generator

Electrical
parameters

Speed
[krpm]

Weight
[kg]

Approx.
date

Power
density
[kW/kg]

Wind
Driven

12V, 250W 3.5 5.5 1924 0.05
12V, 500W 4.5 6.4 1924 0.08

12V, 1kW 3.5 12.3 NA 0.08

Engine
Driven

12V, 500W 3.8 to 6 9.8 1934 0.05
28V, 1kW 3.8 to 6 16.3 1936 0.06

28V, 1.5kW 3.3 to 6 15.4 1941 0.10
28V, 3kW 3 to 6 27.2 1943 0.11

28V, 6kW
3.25 to

4.8
25.4 1944

0.24

28V,
11.2kW

6 NA 1953
NA

112V,
22.5kW

2.9-10 63 1956
0.36

Fig. 3 shows an example of an early engine-driven DC
generator rated 1kW at 28Vdc. In terms of the cooling system,
DC generators were usually air-cooled through a fan (installed
on an engine shaft extension), whose material might vary
according to the mechanical damping required by the engine
[20]. Magnesium or aluminium were usually employed,
however, heavier metals were used if an additional flywheel
effect was needed by the engine. The main components of a
typical DC aircraft generator are reported in Fig. 4, where the
generator exploded view is depicted [20, 23].

B. Post-World War II

After World War II, the trend in aircraft power generation
was to move towards AC generation systems. Nevertheless, DC
generators still continued to be developed and used, mainly
based on the knowledge and expertise gained by their adoption
in the previous years. In the early 1950s, a customized DC
starter-generator was built for the Republic F-84 Thunderjet.

This starter-generator was able to continuously operate at
7500rpm, while providing a current of 400A [24]. In order to
reduce the cabling weight, DC generators operating at 120Vdc
were also introduced on some aircraft [13], since higher voltage
implies lower current for a given power. However, higher
voltage systems always presented (and still do) significant
concerns related to safety and risk, especially for DC systems
dependant on electro-mechanical commutation. Indeed, based
on Paschen’s law, the breakdown voltage between two
electrodes, at a fixed distance in air, decreases with increasing
altitude (i.e. decreasing pressure) [25].

Fig. 3. 1kW at 28Vdc engine-driven DC generator, stored in the Shuttleworth
Museum (Biggleswade, UK).

Fig. 4. Exploded view of a typical 28Vdc aircraft generator [23].

As a consequence, at high altitude, a lower voltage (with
respect to ground level) is necessary to sustain electric arcing,
which is the cause of premature brushes/commutator wear out
and reliability issues. For most small and medium-sized
aircraft, generation at 28Vdc still represents a feasible operating
system [13]. However, low voltage DC systems, which have
been so successful in the past, are no longer sufficient for the
higher amount of electric power demanded today [26],
especially in the case of larger aircraft. For example, the modern
Airbus A380-800 (which operates at 115Vac) counts a total
wire length of about 470km, with a total weight of 5700kg [27].
This weight would be more than tripled, if the aircraft electrical
distribution system voltage was 28Vdc [28]. Nowadays, many
small modern aircraft make use of DC generators for both main
and backup generation systems. Some examples of civil aircraft
employing 28Vdc starter-generators are 1) ATR-600, 2)
Dornier 328, 3) Gulfstream G280 and 4) Falcon 2000. A
number of military aircraft using 28Vdc starter-generators
include 1) the Alpha jet, 2) the C295, 3) the CN235 and 4) the
IJT-36 [29]. In Table II, the main features of the modern DC
generators are listed.

Comparing Table I and II results, the higher power density
(ratio power/mass) of modern DC generators is immediately
observable. In fact, its value has more than doubled.



TABLE II - CHARACTERISTICS OF MODERN ENGINE DRIVEN DC GENERATORS

FOR AIRCRAFT (COURTESY OF THALES GROUP) [29]

Electrical
parameters

Speed
[krpm]

Weight
[kg]

Approx
Date

Power
Density
[kW/kg]

28V, 4.8kW 8-12.15 7.8-8 2014 0.6-0.62
28V, 6kW 7-12.15 9-11 2014 0.54-0.67
28V, 9kW 4.5-12.3 16-21 2014 0.43-0.56

28V, 12kW 7-12.8 17-19 2014 0.63-0.71

III. AC GENERATION

As mentioned above, most aircraft were still DC powered
even after World War II. However, from the ‘60s onwards,
increasing speeds and aircraft size led to an unprecedented
increase of required electric power. Furthermore,
specifications, such as reliability and power density, became
ever more critical. For these reasons, a general world-wide
move towards AC generation was observed [13, 30], which
reveals several advantages compared to DC generation. First of
all, a significant improvement is achieved in terms of power
density (i.e. AC generators are lighter and smaller in
comparison to equal rated power DC generators). In 1950s
generators, the power density for the DC topology was
generally below 0.5kW/kg [13, 22]. Their AC counterparts
ranged from 0.66kVA/kg to 1.33kVA/kg [13, 18, 22], thus
highlighting the significant benefits of producing electric power
in AC. A relevant advantage is the potentially much higher
operating voltage. In particular, a considerable cabling weight
reduction was accomplished by increasing the operating voltage
(i.e. decreasing the current for the same power) [13]. From a
reliability perspective, the absence of commutators on AC
generators improved maintenance and lifetime performance
[22], despite the higher voltage and power levels.

However, the advent of AC generators also introduced new
challenges, mainly due to 1) the parallel operations, 2) the need
to manage reactive power and 3) the choice of an appropriate
frequency. Indeed, AC generators can be operated in parallel,
when the developed voltages have the same amplitude, phase
and frequency. Conversely, only the same voltage amplitude is
needed for DC generators. Furthermore, unlike AC systems, the
DC ones do not involve reactive power, hence the related issues
(e.g. power factor correction) are avoided.

Several frequency values (60Hz, 180Hz, 240Hz, 360Hz,
400Hz and 800Hz) were initially considered [13]. A frequency
of 240Hz was suggested at the beginning of 1940s, for keeping
motors and transformer weight to a practical minimum [30].
Obviously, this choice was also dictated by the magnetic
materials available at that time. Nevertheless, the frequency
selection must take into account also the generator operating
speed [22]. Considering this aspect, suitable frequency values
were 400Hz and 800Hz. Based on respective needs and
requirements, the Army Air Corps in 1943 chose 400Hz as the
standard frequency, since it appeared to be more feasible for the
generator speed (e.g. 12000rpm for 4-pole machines) [30, 31].
This ‘standard’ of 115/200V at 400Hz frequency has been made
mandatory for use by the US Air Force in 1959 (MIL-STD-704)
and has remained with us to this day.

The voltage level of 115/200V was deemed high enough to

transmit high power over a convenient distance, while still low
enough to avoid the devastating phenomena associated to
corona effects at altitude [11, 12, 19, 21]. An important step
towards the AC generation was made in 1949 with the entry
into service of the Convair B 36, which was equipped with four
30kVA synchronous generator (one per engine) [21, 32]. In the
next sub-paragraphs, the most common AC electric power
systems are discussed and analysed.

A. AC Constant Frequency Systems

The three-stage wound-field synchronous generator is the
most popular AC generator used on aircraft [33, 34]. This
popularity is due to its inherent safety, since the excitation can
be instantaneously removed by de-energising the machine
through direct control of the field [35, 36]. In Fig. 5, a schematic
diagram of a three-stage wound-field synchronous generator is
depicted, where the three principal stages, namely 1) the PM
generator, 2) the main exciter and 3) the main generator, are
shown [37]. The generation system is powered by the PM
generator (1st stage), whose moving PMs induce a three-phase
voltage in its stationary armature. This AC voltage is then
rectified and used for suppling stationary field circuit (i.e. DC
field) of the main exciter (2nd stage), by means of the generator
control unit (GCU). The GCU fulfils two essential tasks on the
DC field: 1) controls the DC voltage amplitude, for regulating
the excitation current of the main generator (3rd stage), and 2)
de-energises the DC circuit in case of anomalous operations
(e.g. excessive overload, short circuit faults etc...) [5, 38]. The
DC field induces a three-phase voltage in the moving armature
of main exciter. Such AC voltage is subsequently converted
into DC, for feeding the moving field circuit of the main
generator. The AC to DC conversion is performed by a rectifier,
which is rotating synchronously with the prime mover shaft.
Finally, the three-phase voltage is available at the output of the
main generator armature. Its frequency depends on: 1) the main
generator number of poles pair (p) and 2) the mechanical
rotational speed of the prime mover shaft (n). Thus, the
frequency is closely reliant on the speed of the prime mover.

Fig. 5. Architecture of the three-stage wound-field synchronous generator.

For on-board power generation, the prime mover is usually
the main aircraft engine, whose speed varies across a wide
range, from idle to full power. Hence, the prime mover variable
speed represented the main challenge in the adoption of the
three-stage wound-field synchronous generator and actions
were required for addressing this issue. Therefore, the engine



and the three-stage generator shaft were mechanically coupled
through a variable-ratio transmission gearbox referred as
constant speed drive (CSD) [39], like schematically illustrated
in Fig. 6. The CSD converts the input variable speed to the
output constant speed, which is used to drive the AC generator.
By using CSDs, the challenge of variable speed was eliminated,
at the cost of a bulky, expensive and component count
enhancing, extra gearbox. Constant frequency generation
systems adopting CSDs and producing 115/200V at 400Hz have
been widely used in aircraft since the 1960s [40].

The 1970s saw a move towards integrating the generator
stages and the CSD into a single unit, in order to achieve weight
reduction, as well as enhanced reliability [40, 41]. In that
period, CSDs had far longer mean time between failures with
respect to generators [40]. Consequently, the integration into a
common housing improved the overall system-level reliability
[39]. Considerable reduction in weight and size was obtained
by designing a common oil system for both generator cooling
and CSD lubrication [42]. This compact unit was named
integrated drive generator (IDG) and allowed a power density
improvement from 0.88kVA/kg (typical value for CSD +
generator systems) to about 1.5kVA/kg [35, 43, 44]. IDG
systems were very popular for over 20 years, due to their
efficiency and power density values. Indeed, a number of
aircraft, such as the A320, A330, A340, B747, B757, B767 and
B777, implemented IDG systems [6, 14]. The block diagram of
an IDG system is shown in Fig. 6 [16], while, civil and military
aircraft employing traditional AC constant frequency systems
are listed in Table III [3, 45-48]. IDGs usually have a short-time
overload capability of approximately 185% of the rated power
[49]. For example, the 120kVA IDG of the B777 can safely
deliver up to 226.8kVA for 5 minutes, every 1000 hours of
operation [49].

Fig. 6. Constant frequency IDG system.

On civil aircraft, dual spool turbofan engines are commonly
installed. According to the operating pressure, these engines are
characterised by two main sections: 1) the low pressure (LP)
sector, which includes the fan, the LP compressor and the LP
turbine, and 2) the high pressure (HP) sector, which comprises
the HP compressor and the HP turbine [50]. In dual spool
turbofan engines, the IDG is driven by the HP spool (i.e. HP
shaft) through a fixed ratio accessory gearbox, as schematically
reported in Fig. 7 [34, 50, 51]. Considering the GE90 engine
mounted on the B777, the rotational speed of the HP spool is
equal to 9333rpm, while the IDG is driven by a gear-to-core
ratio of 0.79:1 [49]. For sake of clarity, the speed of 9333rpm
(100%) represents the “normal” operating speed, which in some
cases (e.g. during take-off) can be exceeded by some % [52].

TABLE III – POWER RATING FOR AC CONSTANT FREQUENCY SYSTEMS

Aircraft Model
First year
of service

(Approx.)
Passenger
capacity

Main Generators
Power (Excluding

APU)

Convair B-36 1949 (Military) 4x30kVA

Boeing B-52H 1955 (Military) 4x60kVA

Boeing 707 1958 219 4x30kVA

Boeing 727 1964 189 3x38kVA

Vickers VC10 1964 151 4x40kVA

Boeing 737 (NG) 1968 (’97) 210 2x90kVA

Airbus A320 1987 220 2x90kVA

Boeing 747-800 1988 660 4x90kVA

Boeing 767-300ER 1988 258 2x90kVA

Airbus A340 1991 375 4x90kVA

Airbus A330 1992 335 2x115kVA

Boeing 777 1994 396 2x120kVA

Boeing 717 1999 100 2x40kVA

Boeing 767-400ER 2000 256 2x120kVA

Fig. 7. Typical dual spool turbofan engine [50, 53].

B. AC Variable Speed Constant Frequency Systems

The CSD adopted for AC constant frequency systems
required maintenance and contributed in a significant way to
both weight and size of the system. For these reasons, new
approaches for generating AC power at constant frequency
were introduced in the 1980s [54] and they took hold in the
1990s. Indeed in the 1900s, power electronics and
microprocessor technologies were by then mature enough to
allow the significant progress in electrical drives to be
employed also in aerospace [43, 55-57]. The VSCF system
works without the heavy CSD, whereby the three-stage
synchronous generator can be directly coupled to the main
engine shaft. In this case, the frequency of the generated voltage
is variable, so in order to provide constant frequency voltage,
two approaches are adopted. The first method consists in
implementing a DC link between the AC generator and the AC
loads, by means of a rectifier and an inverter [40, 55]. The block
diagram of the VSCF system with DC link is shown in Fig. 8
[38]. The VSCF system using a DC link was mounted on the
MD-90 until 2000 and it is still in used on the B777, for the two
20kVA backup generators [43]. These backup power sources
generators are driven by the engine HP spool through a 2.41:1
fixed-ratio accessory gearbox [49].



Fig. 8. VSCF system using DC link.

Another method for generating constant frequency voltage
involves an AC/AC converter (e.g. cycloconverter or matrix
converter), which is placed between the AC generator and the
AC loads. Fig. 9 reports the block diagram of the VSCF system
with AC/AC converter [39]. This architecture is mainly
implemented on military aircraft, such as for the F-18 fighter
aircraft, the F-117A stealth attack aircraft and the V-22 ultra-
high altitude reconnaissance aircraft [14, 58].

Fig. 9. VSCF system using AC/AC converter.

The VSCF systems, apart for some noteworthy exception
previously mentioned, did not get the same level of diffusion of
IDG systems. This can be safely attributed to the role played by
the power electronics converter (PEC) (either AC/DC or
AC/AC), which processes all the generated power and
represents a single point of failure. Therefore, the PEC needs to
be designed for the full power rating and with high reliability
requirements [38]. In addition, several aircraft energy-
consuming loads (e.g. wing ice protection, galley ovens, cargo
heaters) are frequency insensitive (i.e. resistive loads) [9]. Thus,
they can be directly supplied by the variable frequency
generator (VFG), without the need of PECs. This feature led to
the variable frequency systems that are discussed in Section V.

C.Concluding remark

In general, VSCF systems are more flexible than constant-
speed constant-frequency systems (i.e. IDG systems), due to the
inherent distribution of components throughout the aircraft
[55]. Indeed, the IDG systems make use of the CSD, which
must be placed close to the main engine, while the PECs of the
VSCF system can be either installed close to the engine or in a
different location (e.g. close to the electric loads), allowing
aircraft weight distribution optimisation. Despite their
advantages, the VSCF systems remain a rare choice for civil
aircraft, due to the reliability level of PECs. In fact, the PECs
have not yet reached a proper reliability level for making the
VSCF systems a viable option [38].

IV. UNCONVENTIONAL SYSTEMS

In terms of DC generation, the majority of aircraft employ
28Vdc or 120Vdc generators, while the three-stage
synchronous-generator producing 115/200V at 400Hz is the
common solution in case of AC generation. However, some

exceptions to these widespread solutions can be found in
military applications. These particular generation systems are
also known as “unconventional systems” and the more
important are considered in this section.

SRMs have been in use since the nineteenth century [59], but
their need for custom-built power electronics and control
algorithms prevented a more extensive implementation.
Regarding the SRM structure, its stator is equipped with
concentrated windings wound around the stator poles, while the
rotor is a totally passive salient-pole geometry (i.e. solid or
laminated electrical steel without any permanent magnets
(PMs) or field windings). The SRM working principle is based
on the natural tendency of any system to come to rest at the
‘minimum-energy’ position. The stator poles (when excited)
attract the nearest rotor poles (i.e. position of minimum
reluctance for the magnetic flux) [60]. In order to operate the
SRM as a generator, the phase must be excited as the rotor poles
move through the aligned position [60]. Precise rotor position
monitoring, as well as, accurate control algorithms are
necessary for optimal power generation.

Due to developments of both power electronics and design
procedures, SRMs have become suitable candidates for
integrated starter-generators [61-66]. The success of the SRM
relies on its inherent fault tolerance capability and rotor
robustness [67-71]. Indeed, adopting a multiphase design,
together with the power segmentation approach (i.e. each
machine phase is supplied by an independent PEC), allows to
safely operate the machine even under electromagnetic and/or
PEC faults [72]. The absence of PMs reduces the risks
associated with machine winding faults [71] and favours
operations in harsh environments, where PMs could be subject
to demagnetisation or performance derating. Finally, the
salient-pole one-material rotor is easy to manufacture and
makes the SRM convenient for high speed applications [70].
These features have contributed to the SRMs employment,
mainly on military aircraft. In 2005, the Lockheed Martin F-22
came into service. This is a modern two engine combat aircraft,
using as many switched reluctance (SR) generators. Although
the electric power is generated at 270Vdc, the F-22 is fitted with
electric loads requiring 115Vac and 28Vdc, which are supplied
through PECs [14]. Fig. 10 shows the F-22 power generation
and distribution systems [14]. A similar architecture has been
also implemented on the Lockheed Martin F-35 (i.e. single
engine combat aircraft), that was launched in 2015. For
redundancy purposes, an 80kW double channel SR generator is
adopted [73, 74].

Considering voltage level, reliability, efficiency and fault-
tolerance capability, traditional brushed DC machines cannot
reach the same performance of SRMs. Thus, SRMs are suitable
for generating DC power at high voltage, avoiding the electric
arcing issue typical of the brushes/commutator system. SRMs
are characterized by indisputable advantages (i.e. rotor
robustness and inherent fault tolerance capability),
notwithstanding their drawbacks (i.e. uncustomary PECs and
complex control algorithms) restrict a wider adoption. In fact,
while very popular for military aircraft due to the lower power
generation requirements, as the demanded power increases (i.e.



in civil aircraft), AC generation is then generally preferred, for
the reasons discussed in Section III.

Fig. 10. F-22 power generation and distribution system [58].

V.THE MORE ELECTRIC AIRCRAFT ERA

The above is all related to existing and consolidated systems
for on-board electrical power generation. However, as
previously mentioned, a considerable shift towards more
electric systems is in play today. The MEA concept revolves
around the idea of replacing most of the aircraft secondary
systems, currently operated by mechanical, hydraulic and
pneumatic power, with systems powered by electricity [38, 75].
Some early examples of the MEA concept go back to the mid-
1950s with the Vickers Valiant V-Bomber and the Bristol
Brabazon 167 [1]. Albeit the feasibility and availability of the
MEA concept is debatable and is still in question today, a
revamped interest in the MEA initiative started in the early
1990s, when the US Air Force began several research programs
concerning MEA. In particular, these programs focused on
improving reliability, fault tolerant capability and power quality
of existing MEA systems, with the final purpose of reducing
both fuel burn and weight of aircraft secondary power systems
[2]. An immediate consequence of the MEA concept is the
significant increase (in the absolute numbers) of the required
electric power. For this reason, today, electrical power
generation is a major game-changing factor across the whole
industry.

A. Modern MEA programmes

A number of aircraft have been claimed to incorporate MEA
designs, nevertheless it is widely acknowledged that the two
programmes, which have really and seamlessly integrated the
MEA concepts, are the long-haul, wide bodied commercial
aircraft known as the Boeing 787 and the Airbus A380 [38].

These aircraft are characterized by an intensive electrification,
since services like the ECS (for B787) and flight-control electro
hydrostatic actuators (for A380) are electrically powered.
Consequently, their electric generation capability is roughly of
an order of magnitude greater than all other aircraft. Both the
B787 and A380 have replaced the traditional generation system
employing IDGs, by VFGs directly coupled to the engines. The
B787 main electrical power generation relies on four 250kVA
VFGs (two per each main engine), while the A380 uses four
150kVA VFGs (one per engine), as reported in Table IV [3].

The implementation of the so-called bleed-less architecture
permits to electrically supply services (e.g. ECS and wing ice
protection), which were pneumatically operated on
conventional aircraft. In bleed-less technology, no HP air is
extracted from the engines (i.e. no-bleed air), allowing more
efficient thrust production and engine operations [7, 8, 76].
Indeed, in most conditions, conventional pneumatic systems
withdraw more power than needed, causing excess energy to be
dumped overboard [8].

TABLE IV - POWER GENERATION CAPABILITIES FOR SOME MODERN AIRCRAFT

Boeing 787 Airbus A380

No. of engine 2 4

No. generator per engine 2 1

Generator rating 250kVA 150kVA

Generating output voltage 230V AC 115V AC

No. generator per APU 2 1

Generator rating per APU 225kVA 120kVA

The bleed-less architecture of the B787 reduces the fuel
consumption by 2% (at cruise condition) with respect to a
similar-sized traditional aircraft (e.g. B767) [8]. Nonetheless,
removing the pneumatic system increases the complexity of the
electric power distribution network [9]. This aspect is
highlighted in Fig. 11, where the B787’s distribution system is
schematically compared with that of a traditional aircraft,
together with some examples of electrically-operated loads [9,
43]. As earlier mentioned, several energy-consuming loads are
frequency-insensitive. Therefore, they are directly supplied by
the VFGs, without the need of PECs (see Fig. 11, B787
diagram). The other loads (operating at 115Vac, 270Vdc or
28Vdc), are connected to the VFGs through transformers and/or
PECs, implementing the so-called hybrid distribution system.

The transition to a more electric architecture, the adoption of
energy efficient engines and the intensive use of lightweight
composite materials have contributed to a considerable
reduction of the B787’s operating cost with respect to its
predecessor the B767-300/ER [77, 78]. In particular (based on
airlines’ data), the block hour operating cost reduction is about
14% [78-80].



Fig. 11. Simplified diagrams of electric distribution systems for both B787 and traditional aircraft.

B. Modern developments at component level

Currently, three-stage wound-rotor generators are used as
VFGs. However, PM generators can and are being considered
as alternative, thanks to their higher power density (from
3.3kVA/kg to 8kVA/kg) [61-63]. Variable frequency generation
systems do not require the CSD between AC generator and
main engine, since they are directly coupled (i.e. direct-drive
application), as sketched in Fig. 12.

Fig. 12. VFG systems.

The absence of a gearbox improves the system-level
reliability, due to the reduced component count, whilst other
advantages are associated to the weight and size of the system
[47]. As a consequence of the shaft variable speed, the VFG
output voltage is variable in amplitude and frequency.
Considering the case of a three-stage wound-rotor generator
used as VFG, the output voltage amplitude is regulated by
acting on the field current through the GCU, as mentioned in
Section III. Conversely, reactive power is injected into the
armature circuit (by using a PEC), when a PM generator is
employed as VFG [81]. According to the aircraft mission
profile, the output frequency varies from 360Hz to 800Hz
during take-off and landing, while it is almost unchanged for
the rest of the flight (about 80%-90% of the total flight
duration). Challenges related to the VFGs adoption are the
cooling system and the mechanical design. In effect, the
proximity to the main engine imposes a careful thermal
management. Besides, the direct-drive application subjects the
rotor to high accelerations, which must be accounted during the
mechanical design [82].

C.Overall power generation

An overall view of how the MEA initiative is influencing the
required ratings of on-board electrical generators is summarized
in Fig. 13. For the years from 1940s to 2010s, Fig. 13 shows the
trend of the generated power on some of the more common
aircraft, where the absolute power (in terms of total electrical
power generation) is translated to the rating requirements of the
single component [45-48]. As highlighted in Fig.13, the global
rated power has significantly increased, in the last ten years. It
is perceived that this tendency is mainly caused by the move
towards the MEA concept. Indeed, for the 20 years prior to the
MEA era (from 1970s and 1990s), the main generator rated
power remained unchanged and equal to about 90kVA [1, 52].

VI. FUTURE TRENDS BEYOND THE MEA

While the aerospace community is still debating the
feasibility and implementation of the MEA, a new movement,
that has taken hold over the last couple of years and is creating
a lot of excitement, is represented by both the hybrid
gas/electric propulsion and the all-electric aircraft (AEA).
Although in recent years the price of Jet-A fuel has considerably
dropped, forecasts suggest a turnaround during the next decade
[83]. At the same time, year-over-year, the passenger-travel
growth has averaged 6.2%, from 2012 to 2017, and it is
expected an even higher growth rate in the next 20 years [83,
84]. The two aforementioned factors, together with the airlines’
need for reducing aircraft operating cost, are encouraging
aerospace industries in developing more energy efficient means
of air transportation [85-89]. The hybrid gas/electric propulsion
and/or the AEA concept aim at lowering or completely
removing the traditional air-breathing engines, which depend
on the Jet-A fuel, as a main energy source [87, 90]. In the
upcoming sub-sections, the main ideas that go beyond the
conventional MEA initiative are introduced and examined.



Fig. 13. Power rating of the main generators of some common aircraft (in red medium to long range aircraft, in black short to medium range aircraft).

A. Multi-spool generation and HVDC systems

Currently on modern large aircraft, turbofan engines are
generally employed for propulsion. The main electrical power
generator is usually driven by the HP spool (as shown in Fig. 7
and discussed in Section III), principally because the higher
speed of the HP spool allows smaller size generators. Further,
assuming N1 and N2 as rotational speeds of the LP and HP
spools respectively, N2 varies in a narrower range (from idle to
full power) with respect to N1 [50, 52]. For these reasons, no
generation activity was traditionally done on the LP spool (i.e.
low speed). In conventional turbofan engines, the electric
power extracted from the HP spool is a small fraction of the
total engine power. However, the trend towards (and beyond)
the MEA is resulting in an ever-growing demand for more on-
board electric power; thus, any potential source of power needs
to be fully utilised. Therefore, generating through multiple
spools (i.e. exploiting both HP and LP spools, as prime mover
for electrical generation) is fastly becoming justifiable [34, 65,
91, 92]. The main challenge rising from using both HP and LP
spools [5, 93] consists in the particular design attention required
by the LP spool driven generator, due to the wider speed range
and harsher operating conditions [67]. Indeed, N2’s full-power
to idle ratio (N2Max/N2min) is usually around 2:1, whereas
N1Max/N1min can be more than 6:1 for high bypass ratio engines
[52]. For sake of completeness, full-power to idle ratios are
reported in Table V for some common dual spool turbofan
engines, together with the “normal” operating speed of N1 and
N2 [52].

With regard to the electrical machine topology, permanent
magnet synchronous machines (PMSMs), induction machines
(IMs) and SRMs are possible candidates for the LP spool
generators [68, 94, 95]. Nevertheless, each of these machines
reveals advantages and disadvantages. The principal benefits of

PMSMs are: 1) excellent power density, 2) high efficiency and
3) well-established control strategies; whilst, their drawbacks
are: 1) high cost, 2) inability to operate at elevated temperatures,
3) dependent on power electronics and 4) medium reliability
and fault tolerance capability. As matter of fact, the excitation
field produced by the PMs is practically uncontrolled and can
supply winding faults [96-98]. On the contrary, a good level of
reliability and fault tolerance capability is ensured by IMs,
which however do not ‘enjoy’ the power density levels of their
PM counterparts. SRMs cannot compete with PMSMs in terms
of power density and control strategy, albeit their rotor
robustness makes SRMs suitable for working in harsh
environments [72, 99, 100]. Finally, SRMs are also intrinsically
fault tolerant, for the reasons discussed in Section IV.

TABLE V –SHAFT ROTATIONAL SPEEDS FOR COMMON DUAL SPOOL

TURBOFAN ENGINES

Engine
Series

Aircraft
(example)

N1(100%)
[rpm]

N2(100%)
[rpm]

ࡹࡺ ࢞ࢇ
ࡺ 

ࡹࡺ ࢞ࢇ
ࡺ 

GP7200 A380 2467 10998 6.1 1.9
CFM56 B737 5175 14460 5.2 1.8
GEnx-
2B67

B747-8 2560 11377 6.7 2.3

PW1100G A320neo NA NA 5.7 1.8

CF34-8C1
Business

Jet
7400 17820 NA 1.8

V2500 A320 5650 14950 4 NA

PW300
Business

Jet
10608 26956 NA 1.6

GE90 B777 2261 9331 6.1 1.7

Aside from incrementing the generation capability, future
aircraft concepts aim to improve the overall electrical power
system and its architecture. In next generation aircraft, a
significant weight saving could be achieved by increasing the
distribution voltage [33, 101]. As previously mentioned,



considering the same transmitted power, a higher voltage (for
the distribution system) will result in smaller cable cross-
section area. Furthermore, raising the voltage will allow greater
line voltage drop [101]. In fact, the minimum allowed voltage
is 108Vac, for distribution system at 115Vac, instead 250Vdc
are accepted on 270Vdc systems (as per MIL-STD-704F) [100].
For these reasons, high voltage DC (HVDC) distribution
systems at 270Vdc and 540Vdc are under investigation [101,
104]. Regarding the HVDC systems, the most obvious concerns
are safety and the increased risk of electrical system failures,
caused by the low pressure phenomenon, such as corona effects
and insulation breakdown.

The migration to HVDC systems, together with the
implementation of LP spool generators, will also influence the
design of PECs. In this area, some of the main challenges are
imputable to: a) higher operating voltage; b) elevated amount
of power to be handled; and c) wider generators’ operating
(fundamental) frequency (for LP spool generation). Wide band-
gap semiconductors, such as silicon carbide (SiC), are
recognised, by the scientific and industrial communities, as a
technology enabler [105-107].

The major features (particularly convenient for aerospace
application) of SiC-based PECs, over traditional silicon-based
PECs, are a) lower losses, b) better temperature tolerance, c)
higher operating voltage and d) faster switching capability
[105-107]. Reduced losses and high temperature tolerance help
to decrease thermal management specifications [106], hence
smaller and less expensive cooling systems are necessary for
SiC-based PECs. Further, high operating voltage and fast
switching capability lead to a potential decrement of both
PECs’ weight and size [107]. In particular, higher switching
frequencies contribute to the reduction of filtering passive
component size [107], while less series-connected modules
(than traditional silicon-based counterpart) would be adopted
for managing higher voltages [106].

B. Future aircraft concepts

Some of the most attractive concepts for future aircraft are
represented by hybrid electric (e.g. Pipistrel Hypstair) [108,
109], distributed electric (e.g. NASA-DEP) [110], turbo electric
(e.g. Rolls Royce / Airbus E-Thrust) [111] and fully electrical
(e.g. Airbus E-Fan) aircraft [112]. All these configurations are
characterised by an intensive electrification, since electric
power is not only used for secondary systems, but also for
propulsion purposes. For instance, the Airbus / Siemens / Rolls
Royce “E-Fan X hybrid-electric technology demonstrator” is
anticipated to fly in 2020 [85]. This program has two objectives,
such as: a) replacing one of the four gas turbine engines of a
traditional British Aerospace 146 (as well-known as BAe 146)
with a 2MW electric motor; and b) introducing a 2MW generator
(in the classical turbo-electric system style), powered by a
Rolls-Royce AE 2100, which is used as an auxiliary power unit
(APU) [85]. The success of these concepts, besides from relying
on high performance electrical machines and PECs, will be
strongly dependent on the technological development of energy
storage systems. Modern electrochemical batteries have proven
to be suitable for powering unmanned aerial vehicle and

hybrid/electric light aircraft, for short endurance missions [90,
109, 113, 114]. Nonetheless, for energising a fully-electric,
short-haul civil aircraft, the energy density of the currently
available battery technologies needs to improve by at least eight
or ten-fold.

C.Electrical systems and sub-systems in future aircraft

As previously pointed out, high power density and reliable
electrical machines and PECs will be the key enabling
technologies, in future aircraft systems. Significant work across
a range of aviation authorities has recently gone into defining
road-maps for the technology requirements of such systems [86,
87, 115].

1) High power density specifications

For electrical systems, it is clear that today’s state of the art
is still not at the demanded power density levels for future
aircraft, comprising all electric and hybrid electric propulsion.
A quantitative analysis, whose results are compiled in Table VI,
indicates the predicted electrical machine power density
specifications for the short-, mid- and long-term future [86,
117]. Considering the analysis outcomes, the long-term goal is
only achievable by the practical application of non-
conventional technologies, such as superconductivity; whereas
the short- and mid-term targets are feasible using more
conventional technologies strengthened by a high level of
innovation. Indeed, electrical machines with power densities
higher than 10kVA/kg have already been manufactured and
tested [117], and an example is reported in the following
sub-section.

TABLE VI – ELECTRICAL MACHINE POWER DENSITY
SPECIFICATIONS FOR FUTURE AIRCRAFT

Time-
lines

Predicted Power
Density

Enabling Technology

By 2025 10kVA/kg
Liquid cooling, Low Loss Steel,

High Breakdown-Strength
Insulating Materials, Additive

Manufacturing, Nanocomposite-
Based Magnetic Materials [86,

116, 118, 119]

By 2035 20kVA/kg

By 2050 40kVA/kg
All the above + Superconducting

materials

2) Enabling technologies

In order to reach such performance, a number of technology
enablers are today being studied and investigated by research
communities. These include new magnetic and electrical
materials [118, 119], advanced modelling [120, 121] and
manufacturing processes [122, 123], new thermal management
techniques [124-126], high-speed systems [116] and better
understanding of failure mechanisms [127, 128]. The latter
involves advancements in power electronics (e.g. wide band-
gap devices), machines (e.g. new, high strength, low losses
steels) and controllers (e.g. high bandwidth control algorithms).
The relationship between the technology impact of the enablers
on the drive (or its components) general performance and the
technology maturity is illustrated in a visually-representative
manner in Fig. 14.



Fig. 14. Enablers: impact vs. readiness.

A power generation system for a more electric business-jet,
implementing some of the aforementioned features, is the
electrical machine described in [129-131], which was
developed within the authors’ organization. This generator is a
45kVA surface mount PMSM, capable of working also as
engine starter (i.e. starter-generator), and it is shown in Fig. 15.

Fig. 15. A state of the art, PM generator developed at the University of
Nottingham.

Some of the innovative attributes characterizing this machine
are: 1) a carbon fibre PMs retention mechanism, 2) low losses,
high grade, non-oriented silicon steel 3) novel thermal
management involving the use of direct oil cooling of the stator
core, 4) advanced high energy density PMs, 5) multi-level PEC
design configuration and 6) the use of higher voltage rating
materials, that allows operation at the new 540V HVDC buses,
being considered for future aircraft. These characteristics have
contributed to achieve a power density higher than 16kVA/kg,
confirming the high impact of some of the technology enablers
reported in Fig. 14 and highlighting the way towards the future
of the aircraft industry.

VII. CONCLUSION

This paper provides a ‘journey’ along the evolution of
electric power generation on-board of aircraft, by addressing
the main technologies adopted over more than a hundred years
time span. The advantages and disadvantages of the most
common generation systems are analysed. The aircraft power
requirements and the generation power trends are reported and
discussed. The level of generated power was firstly affected by
the transition from DC to AC generation. Then a constant

growth rate is highlighted until the recent implementation of the
MEA concept. In fact, the migration to AC variable frequency
generation systems represented an important step towards
modern aircraft. The state of the art and the major challenges of
the MEA concept are also reviewed, keeping in mind the role
played by electrical machines, in terms of power density and
technology. Finally, some considerations related to future
aircraft are drawn.
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