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Abstract

The extensive usage of composite materials in modern induapplications implies a great range of possible struc-
tural failure modes for which the structure has to be fretjyeand thoroughly inspected. Nonlinear guided wave
inspection techniques have been continuously gainingtadteduring the last decade. This is primarily due to their
sensitivity to very small sizes of localised damage. A nunafeomplex transformation phenomena take place when
an elastic wave impinges on a nonlinear segment, inclutiemgéneration of higher and sub-harmonics. Moreover, the
transmission and reflection déieients of each wave type become amplitude dependent. lwihils a generic Finite
Element (FE) based computational scheme is presenteddatifying guided wave interactiorffects with Localised
Structural Nonlinearities (LSN) within complex compositeuctures. Amplitude dependent guided wave reflection,
transmission and conversion is computed through a Wave enite Element (WFE) method. The scheme couples
wave propagation properties within linear structural vepudes to a LSN and is able to compute the generation of
higher and sub-harmonics through a harmonic balance piajecA Newton-like iteration scheme is employed for
solving the system of nonlinearftirential equations. Numerical case studies are presemtedhf’eguides coupled
through a joint exhibiting nonlinear mechanical behaviour

Keywords: Wave Interaction with Damage, Finite Elements, CompoditecBires, Nonlinear Ultrasound, Structural

nonlinearities

1. Introduction

Modern industrial structures are increasingly made of oositp layered materials due to their well-known ben-
efits. Composite structures may however exhibit a greaetyadf structural failure modes (including delamination,
fibre breakage, matrix cracking and debonding) and mustdogiémtly inspected in order to ensure continuous struc-
tural integrity. An increasing tendency within the StruetuHealth Monitoring (SHM) community is the 'shift to
the left’ maintenance strategy [1] for which the earliessgible detection of damage is important. When it comes
to the aeronautical industry, approximately 27% of an ayeraodern aircraft’s lifecycle cost [2] is spent on inspec-

tion and repair. The use of fitine’ structural inspection techniques currently leads toassive reduction of the
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aircraft's availability and significant financial losses fbe operator. The online nondestructive detection anll eva
uation of damage in industrial structural components isasBmount importance for monitoring the condition and
residual life estimation of in-service structures. Linalirasonic Guided Wave (GW) techniques have been widely
employed for this purpose. These techniques however areply sensitive to gross defects but much less sensitive
to micro-damage. Nonlinear acousto-ultrasonic techrigbave been steadily receiving increasing attention durin
the last decade. Complex wave phenomena such as higher limarsionic wave generation, nonlinear resonances
or mixed frequency response can be induced by the two pahsiqurces of nonlinearity in the structural system,
namely nonlinear elasticity and contact nonlinearity.

Elastic wave distortion and generation of higher harmodiasng propagation in nonlinear media has been re-
ported as early as in [3]. The first attempt for modelling wiateraction with nonlinear joints can be found in [4, 5]. It
has been widely demonstrated that nonlinear ultrasonimiqoes can be successfully deployed for detecting cracks
as well as distributed structural deterioration (e.g. gia) [6, 7, 8, 9, 10, 11, 12]. The success of the developed
methods is based on predicting and measuring the nonlfiesaimduced wavefects which are pronounced in dam-
aged and degraded structures but nearly unmeasurableumdagnaged ones. A number of Nonlinear Elastic Wave
Spectroscopy (NEWS) approaches [13, 14, 15] have also hesenged and proved capable of detecting the pres-
ence of damage of very small sizes (in the order of 0.1mm) mpmsite structures. Wave propagation and material
degradation detection in 1-D and 2-D media was investigdeaigh a spring model in [16, 17]. A numerical scheme
for predicting nonlinear wave interaction with an intedaaf rough surfaces in contact was presented in [18]. The
non-collinear mixing of bulk shear waves investigated ifl][firesented significant potential for assessing material
state than other nonlinear ultrasonic techniques becaissens nonlinearities can be both independently measured
and largely eliminated. The development of an analyticanework for modelling the multi-modal guided wave
interaction with damage was presented by the authors o2[P0Jn [22], a numerical scheme was presented in order
to quantify the amplitude of the reflected compression anddigh waves when impinging at the edge of an elastic
plate. In [23] the authors coupled linear to nonlinear FEhsegts and investigated wave interaction with damage in
3-D solid media by means of a Landau’s theory. Detection tifd@ damage in composite structures through higher
harmonics generations has also recently been reportedlBé]short reviews provided by the authors in [25, 26] are
informative on the general progress of nonlinear ultrassnivhile a comprehensive outline on the techniques dedi-
cated to predicting and measuring higher harmonic gemeratimetallic structures is presented in [27]. An inclusive
review on modelling wave-crack nonlinear interaction pdraena can be found in [28]. Despite the aforementioned
attempts to capture wave interaction with LSNs, there isenuly no generic computational scheme for predicting
these quantities for composite layered structures.

The FE based wave propagation analysis within periodicttras was firstly considered in [29]. The wave
dispersion characteristics within the layered media camadmirately predicted for a very wide frequency range,
by solving a polynomial eigenvalue problem for the propagatonstants to be sought. The work was extended
to 2-D media in [30]. The WFE method was introduced in [31] mdler to facilitate the post-processing of the
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eigenproblem solutions and further improve the computaligficiency of the method. The vibration of a uniform
waveguide through the WFE technique was investigated in 332 The method was also employed in order to
predict the dynamic and vibroacoustic response [34, 35p8Blyered structures. The same FE based approach has
been employed in order to compute the reflection and trassonigodficients of waves impinging on linear joints of
finite dimensions [37, 38].

In this work, a generic FE-based scheme for computing wateedntion with LSNs is presented for the first time.
Guided wave reflection, transmission and conversion is edetpthrough a wave and finite element approach. The
scheme couples wave propagation properties within linteactsiral waveguides to a LSN and is able to determine the
generation higher and sub-harmonics for each wave typedghra harmonic balance projection. The new approach
can predict reflections and transmissions at harmonic &ecjes with a speed that is orders of magnitude faster than
conventional transient FE solutions. The structure carf bextrary complexity, layering and material charactiécs
as FE modelling is employed. A Galerkin projection is usettansform the system of nonlineari@rential equa-
tions of motion into a set of nonlinear algebraic equatiohgtvis subsequently solved through a Newton'’s iteration
method. The generation of wave harmonics, as well as ardplitlependent wave reflection and transmission coef-
ficients are reported through the exhibited numerical casdies. This is the first approach that can accurately and
efficiently map the frequency-dependentinteractions of glidaves with nonlinearities in complex structures.

The paper is organized as follows: In Sec.2 the formulatidh@wave and finite element method for predicting
acoustic and ultrasonic GW interaction with LSNs is preséntA description of the Galerkin projection as well as
of the Newton'’s iteration scheme employed for solving th&tey of nonlinear dierential equations is also given. In
Sec.3 the proposed method is validated for twfiedént waveguides through comparison to full transient Fityses.

Conclusions on the presented work are given in Sec.4.

2. Elastic wave interaction with structural nonlinearities

2.1. Computing wave propagation in a layered structure tigtoa wave and finite element method

Elastic wave propagation is considered in théirection of the linear layered waveguide of Fig.1. The peab
can be condensed using a transfer matrix approach as in J3#.frequency dependent DynamicfBtess Matrix

(DMS) of the waveguide’s periodic segment can be partitibnigh regard to its leftight sides and internal DoF as

D, Dy Dir qc fL
DL Dy DR g (=90 1)
DrL. Dri Dgrr ar fr

with g the displacement anfdthe forcing vectors. Using a dynamic condensation for therival DoF the problem

S

can be expressed as
D —DuD,'Di. Dir-DuD;'Dir
DrL— DriD;'Di.  Drr— DriD;'Dir
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Figure 1: Caption of the WFE modelled composite waveguidb tie left and right side nodeg , gr bullet marked. The range of interior nodes

q is also illustrated.

Assuming that no external forces are applied on the segremtisplacement continuity and force equilibrium equa-

tions at the interface of two consecutive periodic segmeatsls + 1 give

97t = a3

fot =13

®)

Using Egs.2,3 the relation of the displacements and forteeedeft and right sides of the segment can be written as

PP
forl fe

and the expression of the symplectic transfer matroan be formulated

T Dy D12

D21 Dzz |01

with
D11 = —=(Dr — DuiD;'Dir)*(DiL — Dui D} D)

D1, = (DLr — DuiD;'DiR)
D21 = —Dgre + DriD;*DiL+ ©)
+(Drr— DriD};'Dir)(DLr — D1 Dj'Dir) (DiL — DuiD;'Di)
D22 = —(Drr— DriD;}'Dir)(Dir — Dy D} 'Dir) ™
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With a wave propagating freely along tixadirection, the propagation constant= ek« relates the right and left
nodal displacements and forces by
dg = 70¢
fr=—f

(7)

By substituting Egs.3,7 in Eq.4, the free wave propagasatescribed by the eigenproblem

(R
AT

¢q

o5
w
propagation constants and the wave mode shapes for eaahalfiiic waves propagating in the structural waveguide

whose eigenvalueg, and eigenvectorg,, = { solution sets provide a comprehensive description of the

at a specified angular frequeney Both positive going (withy}, and¢;,) and negative going waveg,{ andg,,) are

sought through the eigensolution. Positive going waveslaaeacterised [38] by

lvwl< 1, ©
R(iwp: ¢g) <0if [y =1
stating that when a wave is travelling in the positivelirection its amplitude should be decreasing, or that if its
amplitude remains constant (in the case of propagating svaith complete absence of attenuation), then there is

time averaged power transmission in the positive direction

2.2. Wave interaction with linear localised structural orhogeneities

The layered and periodic in thedirection waveguide of Fig.1 is hereby considered, witlpitgpagation constants
for the elastic waves travelling in thedirection sought as described in Sec.2.1. For the sake gf@ssive presen-
tation of the approach, we are initially assuming a systertwofwaveguides connected through a linear structural
coupling element which is entirely FE modelled and which dié&rent mechanical characteristics than the ones of
the two waveguides coupled to it. A depiction of the systeprésented in Fig.2. As already stated, each waveguide
can be of diferent layering and can also support fefient numbe¥\, of propagating waves at a given angular fre-
guencyw. An extensive description of how to deal with waveguideshgdifferent layouts and meshes can be found

in [37]. Each supported wavemodewith w € [1 - - - W] for waveguide 1 in the system can be grouped as

(Dir,q = | ¢c:,1 ¢a,2 ¢a,W1 |
(Dif = i ¢?,1 ¢?,2 ‘frfr,w1 | (10)
(I’I,q = : ¢§,1 ¢a’2 ¢E,W1 7

1f = | P11 P2 0 Prw |

with each matrix being of dimensioffW;]. Similarly the equivalent expressions for waveguide&. (I)qu, @7 ;. @, @3 ;)

can be obtained with eigenvectors being normalised to umhg wave modes of the entire system can be computed
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Figure 2: Periodic elastic waveguides connected througiupling element exhibiting inhomogeneous but linear meictz behaviour. Coupling
element is depicted in the highlighted frame and is entifeymodelled. A positive going wave of angular frequency» impinging on the

coupling element will give rise to reflected and transmitbetgoing™ waves of the same frequency.

for the fundamental excitation frequenoyand be grouped as

(I)Iq 0

+
®; = .
®;,

(11)

with similar expressions standing fdr;, ®;, ®;. Assuming that the two waveguides have the same number of
degrees of freedomat their interfaces and that the same number of waves is\egtdor both of them in the wave
basis, then the size of the above table will bg X2W]. For each waveguide, the local coordinate system is defined
such that the waveguide’s axis is directed towards the jaimection+). The rotation matrixR, transforms the
DoFs from the local to the global coordinates of the systeon.tife two-waveguide system, rotation matrices can be

grouped in a block diagonal matrix as

Ry O
R = (12)
0 Ry |
[2jx2]]

The equation of motion for the linear, FE modelled couplilegreent can be in general written as
Mz(t) + Cz(t) + Kz(t) = fexdt) (13)

with fex(t) being the external forces applied to the coupling elemgitihé two waveguides. The continuity conditions

for the element give
z(t) = Rq(t) (14)

with g = [qu;][szxl]. The equilibrium at the coupling element gives
fo(t) -Rf() =0 (15)
with f(t) the set of forces applied by the impinging and outgoing wdwehe coupling element.

2.2.1. Calculation of the wave scattering matrix
Waves of the fundamental excitation frequenchaving amplitudes]"* are impinging on the coupling element
from the side of waveguide 1. Their interaction with the dingpelement will give rise to reflected waves of ampli-

tudesa)”” = r;{laf’* in waveguide 1, while they also give rise to transmitted veaveamplitudes”™ = c“zflaj“ in
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the second waveguide witt{, andc, being matrices containing the reflection and transmissaaficients of the
coupling element at frequenay These cofficients define the wave scattering ma®ikof the joint, whose partitions

relate the amplitudes of the incident and scattered waves as
a¥” = SYa”* (16)

with a[‘;’\jvm the vector containing the amplitudes of the incoming wavesing towards the coupling element and
a[“g\x,xll the vector containing the amplitudes of the reflected anustrétted outgoing waves. The wave scattering

matrix S* for the two-waveguide linear system can be written as

i - CGw -+ Ciow
S = Cwi -+ hww -+ Cwaw a7
| Cowz -+ Coww -+ Towaw

d2wx2w]

which can be computed for the selected range of harmonickeofundamental frequeney. The motion of the
waveguides in the physical 3D coordinate system is destiibeerms of displacementgand forced. On the other
hand, in the wave domain the same motion can be describedremaaduperposition of the retained propagating wave

vectors®y, g, @,/ along with their amplitudea“* anda®“~. This superposition can be expressed as

an(t) = @y an " cospt) + Py ay™ cost)
fa(t) = @7 ay™ cost) + @ aly” cost)

n,

(18)

and by concatenating the corresponding vectors and mattieegeneral expressions fgprandf for the system of

waveguides can be expressed as

q(t) = @5 a>* cost) + By ~av” cost)

(19)
f(t) = Y a”* cospt) + Y "a”” cost)

It is noted that sin terms are not included in the above expaass the phase of each wave scatteringfmdent is
captured by the imaginary part of the sought interactiorffcmentsa®~. By performing the convenient substitution

7 = wt and grouping the trigonometric terms the following expi@ssan be acquired

qa(r) = @5 Toa”" + T1 A~ (20)
. cosr O . ) . ] )
with Tx(7) = , T1(7) = [diag(cos)]pjxp;; @aNd AL being the generalised displacement wave inter-
Cost
action codicient vector written as
Ay~ ={ @ysia | (21)
[2jx1]
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The following expressions can be immediately derived

f(r) = ® Toa”" + TLAY™

. dT2 dTl —
_ w,+ w+ w,
4() = w8 + 0= = A (22)
. o LTy
4() = O G + G5 A

with A{>~ formulated similarly taAy~. Substituting Egs.20,22 into Egs.14,15 and then into Eqixi&s the gener-

alised expression for the equation of motion of the coupdilegnent

T d’T dT
W?MR®Y T ——28%" + w?MR—— AL™ + wCROU —2a** +
ar dr2 dr2 9 dr (23)
+wCRF7{a"" + KROU*Toa®" + KRT1AL™ = ROV Toa%" + RTLAY™

A set of equations with the transmission and reflectiorffomients as unknowns can be obtained through a Galerkin

projection of Eq.23 as

2 d2T1 dT,

[ TT[ 2MR——= T (CRd— +KRT1 [ A - TIRTL A |dr+

0

Ey d’T, dT, (24)
TT |w?MR®G" —== + wCR®y* —= + KR®Y' T, — RO T, | a”* dr = 0

5 dr2 a9 dr f

A Newton’s iterative scheme can be eventually employed dtepto extract the wave interaction ¢beientsS® out

of Eq.24 by exciting one by one the incoming waves for eachegaide (that is by setting all wave amplitudesfi*

to zero except for the investigated incoming wave). As namatverse is involved for the computation of the wave
interaction cofficients (in contrast to [38]), a reduced wave basis can bimestavithout ill-conditioning of the above
expressions. It should be stressed that modelling noneceative waveguides and coupling elements implies that all
computed wavenumbers will be complex and the strict distindetween evanescent and propagating waves breaks
down. In that case, an extended wave basis should be ret@ith@gaves having a non-negligible real wavenumber
part should be kept) in order to take into account for waveremsions induced by material damping. In most practical
situations however, the assumption of a conservative aayplement yields reliable results for the wave interactio

codficients as discussed in [39].

2.3. Wave interaction with structural nonlinearities

It is hereby assumed that the modelled coupling elementégha specific and known nonlinear mechanical
behaviour. It is still given that an incident wave of fundante frequencyw is impinging on the coupling element,
however this localised nonlinearity in the system will giige to a number of waves of super-harmorie) and
sub-harmonicd/h) frequencies during the interaction process (see Fig.Be Wave basis for each waveguide can
be computed and grouped as in Eq.11, however in order togineg@/e motion in multiple sub-harmonics and super-
harmonics then the corresponding wave bases should alsecheléd in the following calculations. The number
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Figure 3: Periodic elastic waveguides connected througiupling element exhibiting inelastic mechanical behawidupositive going wave of
angular frequency impinging on the coupling element will give rise to reflectl transmitted outgoing waves of multiple subharmonic and

superharmonic frequencies.

of higher harmonic$l and subharmonicld, to be computed and included in the wave basis depends ondiee or
of nonlinearity of the modelled coupling element (see al&®, R1]). Therefore each supported wavemuadeith
w € [1---W,] for each waveguide in the system has to be computed for thersand sub-harmonidsv with

he[l/Hpy---1---H]and be grouped as

hw,+
(th,+ — (I)l,q 0 (25)
q hw,+
0 @t |
-q [2jx2W]

with similar expressions standing fdrrf“”’*, (I)g“"’, (I)rf‘“’”. The equation of motion for the nonlinear, FE modelled

coupling element can now be generically written as
Mz(t) + Cz(t) + Kz(t) + fni = fexdt) (26)

with fy the nonlinear force vector induced by the coupling elensentierent inelastic behaviour. The same conti-
nuity and equilibrium conditions for the element are apphbes expressed by Eqgs.14,15. Waves of the fundamental
excitation frequency having amplitudes,"* are impinging on the coupling element from waveguide 1. Fmhe
considered harmonimw, they give rise to reflected waves of amplitu@é‘é’ = r'i“ia‘f’* in the first waveguide, while
they also generate transmitted waves of amplituaﬂ@s’ = chia‘i“ in the second waveguide wiﬁ’jﬁ andc*z‘f‘i being
matrices containing the reflection and transmissiorffaments of the coupling element at each harmdmnic These

define the wave scattering mat® of the joint
- = Swaot (27)

which now has to be computed for each considered sub-hacraadisuper-harmonic frequency. The wave scattering
matrix S now projects the incoming waves* of fundamental frequenay to each of the higher and sub-harmonics
hw. The matrix can be computed for the selected range of hasaatfithe fundamental frequeney Similarly to
Eq.18, a superposition expression can be written for the vdeere wave energy escapes towards higher and sub-

harmonics as

Hm
Un(t) = ®jygay™ cost) + Z @[5 )" costwt) + 3, @R~ ah* cosot)
h=2
i (28)
fa(t) = @Y " cosput) + 2 @~ al” costwt) + 3, @M al*” cosfot)
h=2 ’
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and by concatenating the corresponding vectors and mattieegeneral expressions fgrandf for the system of
waveguides can be expressed as
H o oh Ho
q(t) = @5 a>* cosEt) + ¥ @Y a™ " cospwt) + Y, @~ a™ cosfwt)
h=1 h=2
; A (29)
f(t) = @ a>* cospt) + 3, @ a cospwt) + 3 @ a" cosfwt)
h=1 h=2
The above expressions can be employed to perform a cydtosay projection of the behaviour of the system through
the Harmonic Balance Method (HBM) [40]. By performing thengenient substitutionr = wt once again and

grouping the trigonometric terms the following expressian be acquired
q(T) = (Da“’+T2a+ + Tlﬂaj’_ (30)

with T»(7) expressed as in Sec.2.2 ahf(r) = [diag(co&)[zszj], diag(cos 2)p2jx2j}, - - - ,diag(cosHT)[zszj]][zszjH],
while Ay~ is the generalised displacement wave interactiorfficdent vector now written as
@y SYavt

(])éw,* SPugw.+

Ao — Ce (31)
q (Dghw—s§4wefg+

w1
@®;m " Snvaet
q [2jHx1]

The expressions of Eq.22 are still valid and Eq.23 for theegalised equation of motion of the coupling element is
now modified as

T T aT
W?MR®Y* ——2a%" + MR —— AL™ + wCROS —2a** +
dT dr? dr2 7 9 dr (32)
+CR- G + KRG Toa"" + KRT1IAG™ + fy = ROYToa" + RTLAT
T
It is noted thatK in the above expression represents the elastic part of tlehanéal behaviour of the coupling
element. A set of nonlinear, algebraic equations can beragtahrough a Galerkin projection [41] of Eg.32 back

onto the set of harmonic solutions as

2Hr d2T1 dT,

[ |77 [w"MR—= + wCR—= + KRT1 | Ay~ - TRT1 A}~
5 1 dr2 dr a 1 f
2Hm

TT ZMRtl)“"*—dZTZ CR®%+
of 7w gz e “

dr+

drz

or + KR(DEU’-"TZ - R(I)‘;)’JrTg

vt dr+ (33)

2Hm
f TIfNLdT =0
0
A Newton’s iterative scheme similar to the one employed i6.32 can be used to extract the wave interaction
codficientsS”/Hn ... S» S ...SHe gut of Eq.33 by exciting one by one the incoming waves for agateguide.
The generic iterative procedure of the employed Newtontewlischeme is presented in Algorithm 1.
11



Algorithm 1 Newton-like iterative scheme for computing the wave intéom cosficients for localised structural

nonlinearities
1: Set convergence criteria for the iterative process

2: Input the total number of investigated super-harmoHiesd sub-harmoniddy, the amplitudes of waves moving
towards the nonlinearitg®*, the grouped displacement and force eigenvectors formleaﬂiwaveguide@g““,
o), ™, @™~ as well as the structural description of the nonlinear cagglementV, C, K andfy,

3: Inputinitially assumed complex values for the reflectiod &nansmission cdcients under investigation

4: i « 1 Substitute set of transmission and reflectionfitgoients inS, then computeAy ™, A7~

5: Numerically evaluate Eq.33

6: Numerically evaluate the Jacobian matrix of sensitivit@sach wave interaction cfieeient sought

7: if Sensitivity satisfies the corresponding convergencerimii¢hen

8:  Solution corresponds to a local minimum

9: if Value of Eq.33 satisfies the corresponding convergenaicnitthen

10: Solution corresponds to global solution of wave interattiogficients and process can end
11: €ese

12: Radically alter the assumed interaction fméents and go to Step 4

13:  endif

14 else

15:  Use Jacobian in order to alter the assumed refletttenmsmisison ca@cients for converging towards a local
minimum.i < i + 1 (next solution step). Go to Step 4

16: end if
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Figure 4: Periodic elastic waveguides connected througiupling element exhibiting inelastic mechanical behavidupositive going wave of

angular frequency impinging on the coupling element will give rise to reflecutl transmitted outgoing waves of multiple subharmonic and

superharmonic frequencies.

2.4. Generalization to an arbitrary number of connected &gides

The scheme presented in Sec.2.3 can be generalised toémolu@ than two waveguides connected at the nonlin-

ear coupling element. In the general case, we are assumirggensofN waveguides as in Fig.4. As already stated,

each waveguide can be offiirent and arbitrary layering and can also supporti@dint numbew, of propagating

waves at a given frequency. Each supported wavemodith w € [1 - - - W;] for the nth waveguide in the system can

be grouped as
oot

(I)hw,+ —

n,f

hw,—
D g

hw,— _
(I)n,f -

_ [ hw,+
= ¢q,l

| hw,+
o

hw,—
| ¢q,1

hw,—
P11

hw,+
¢q,2

hw,+
P12

hw,—
¢qy2

hw,—
P12

hw,+ ]
¢qu |
hw,+
o
hw,—
¢q,W |

hw,—
e

(34)

with each matrix being of dimensiorj k Wy]. The wavemodes of the entire system can be computed for each

waveguiden with n € [1---N] and for the fundamental excitation frequenayas well as for the higher and sub-

harmonicdw with h e [1/H,---1---H] and be grouped as

hw,+ _
(I)q =

ho,
ot 0
hw,
0 @k
o 0

13

hw,+

Na  Irjnsxwn

(35)



with similar expressions standing fdff‘“”*, (I)S“’”, (I)rf‘“’”. For each waveguide, the local coordinate system is defined
such that the waveguide’s axis is directed towards the {dinéction+). The rotation matriR, transforms the DoFs

from the local to the global coordinates of the system. Ratahatrices can be grouped in a block diagonal marix

as
Ry O 0
0 R, -~ O
R = (36)
0 0

[INx]N]
The procedure then follows the same steps through Eq.26.88Hug order to sought the set of transmission and re-
flection codficients for each harmonic frequency and each modelled wéegthen a single wave type is impinging
on the coupling element. The increase in the number of waslegand the size of the concatenated wave basis can
radically increase the computational burden of the itegagiolution scheme. Parallel computing algorithms can be

employed as the most straightforward tool to minimise thepatational cost.

3. Numerical case studies

3.1. Validation of wave interaction c@ieients through full FE simulations

The above exhibited scheme will be validated through fulltFdhsient simulations. The entire 1D structure
is modelled through linear, brick solid FE and the displaertad);, corresponding to a certain propagating wave
modew are imposed on one of its engg (see also Fig.5 for illustration). A Hanning-windowed sigjoontaining
11 cycles is selected in order to minimise spectral leakagthe propagating packet. The displacements at a certain
monitoring cross-section of the waveguide laying befoeeltBN at distancg;, are recorded along with the incident
and reflected wave signatures. The reflectiorfiicient is defined as the ratio of energies of the reflected bmrea
the incident one. These wave packet energies ffacterely be computed through a Fourier transform over tine ti
ranges corresponding to wave incidence and reflection. &me gransform can directly furnish the wave energies
at each generated sub-harmonic and super-harmonic. Tissiemcodicients can be computed through the same
approach with the monitored cross-section laying aftet BH.

Spatial (element size) and temporal (integration time)stegolutions of the finite element model are chosen to
ensure solution convergence while ensuring the model ctatippal size is reasonable. Time step is selected equal

to

with fmax the maximum harmonic frequency considered in the problehe dlement size is chosen equal
max

to ;(')” where Amin is the minimum wavelength to be taken into account in the waags (estimated through the

computed wavenumbers from the wave and finite element scheBee.2.1). This discretisation is adequate to avoid
spatial aliasing and ensure the inclusion of higher haroeojdi2]. The smaller the integration time stdpttie better

the accuracy of the numerical result which however induag®ater computational cost.
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Figure 5: Schematic representation of the computationflefatior/transmission cdécients through a transient FE analysis. A Hanning windowed
signal is imposed on one end of the waveguide and the res®nseasured at monitoring cross-sectign The energy of each wave packet is

then calculated through a Fourier transform.

3.1.1. Projecting structural motion of a waveguide on its/eaasis

The full FE simulations provide a complete description & ¢fobal displacements of a waveguide’s cross-section
as a function of time. In certain cases however wave coraeraay take place at the point of the LSN. It is therefore
essential to decompose these global displacements intmatindependent wave mode displacements using the

wave superposition principle. It is indeed helpful to ndtattonce the wave displacement basis

Dig=| $iy Pia 0 Paw @37

for a certain composite waveguide has been determinedghretandard WFE computations, then any motion within

the structure can be described as a superposition of thasem@de shapes as
q; = (I):{’C;raw’Jr (38)

with a»* the vector of amplitude cdkcients denoting the participation of each wave type in tlebal waveguide
motion and which can be obtained for each cross-section adl iestant in time if the physical displacemeaqts

are known through inverting the above expression (a pseude can be employed when a reduced wave basis is
kept and®y, is not square). By registering* as a function of time for a certain cross-section of the waids)

and employing a Fourier transform, the frequency contenefzh wave type and subsequently the reflection and
transmission cdécients for each investigated wave motion is straightfodatarobtain through the results of a full

FE transient simulation.
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3.2. Validation for an aluminium beam

The computational scheme exhibited above is initially gapin a discretized aluminium beam system as pre-
sented in Fig.6. The configuration comprises two waveguidesng a cross-section of 8muti2mm. The two
waveguides can in general havdfdient characteristics however in this case they are botimess to be made of
aluminium and are connected through a nonlinear elememrged by a third order nonlinearity implemented within
the coupling element. A damping loss factor equaj to 1% was considered. By modelling the identical waveguides

through the WFE approach presented in Sec.2.1, it can bl fimat four waves can propagate within the structure.

Figure 6: Schematic representation of the two healthy aastielmonolayer waveguides (a) and (b) coupled through bream element (c).

In order to validate the presented approach in the lineaadofirst, the results derived through Eq.24 are initially
compared against the methodology presented in [38] whenedypelastic coupling element is considered connecting
the two waveguides witkc.=Ewy/2 whereE.e stands for the Young's modulus of the coupling element Bpglfor
the one of the waveguides. The results for this linearlyeswftl coupling element using both approaches are presented

in Fig.7.

1eEmmITEOC000 G0 0 @ Q- 8-G85 8.0 = b

al o a

0.8 4

0.61 1

0.4r 1

Wave interaction coefficient

oS )
0. 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency (Hz)

Figure 7: Absolute values of the wave interactionfiognts for a linearly softened coupling element connectiteggtwo waveguides: Reflection
codficients for the pressure wave computed according to therdusaheme (-), Reflection cigients computed as in [38p), Transmission

codficients computed according to the current scheme,(Transmission cd&cients computed as in [38]).

Excellent agreement is observed for the reflection and tnégs$on coéicients, while the interaction céiecients
for the higher and sub-harmonic outgoing waves are as exgp@ctll. A nonlinear coupling element is subsequently
considered comprising a variablefBiessk, being dependent on the instantaneous deformation disthindene
imposed amplitude of the incoming propagating wave is etpudlQum. The results on the harmonic reflections
for a nonlinearly hardening element (computed through Bqga8e presented below in Figs.8, 9. As expected and
16



demonstrated in Fig.9, the LSN gives rise to higher harmaaices which are generally more pronounced at higher

excitation frequencies.

BB O - O --- o ]

0.81 i

Wave interaction coefficients

02 04 06 08 1 12 14 16 18 2
Frequency (Hz) % 10°

Figure 8: Absolute values of the wave reflection and transioscodficients of the pressure propagating wave at frequenéyr a nonlinearly
hardened element witk,=1e13Nm?3: Reflection cofiicients computed according to the current scheme (-), Rieftecoeficients computed
through a full transient FE calculatior)( Transmission cd&cients computed according to the current scheme (-,), Ti&s$on coéicients

computed through a full transient FE calculatiamn)(

It is initially observed that an excellent agreement exigitsveen the presented approach and the full FE transient
solution performed using ANSYS especially for reflections at the excitation frequeney Linear, solid brick
ANSYS® elements were used for the periodic unit cell, as well asHerftll FE model. The exhibited scheme was
programmed using the R2013a version of MATL®BDespite the fact that MATLAR solving capabilities are far
from being optimal, the computational time was reduced bagctof of 11.5 (3350 seconfi®quency for a full FE
computation to 290 seconds for the presented scheme). @imipwtational time reduction owed to the employment
of periodic structure theory will be significantly greater farger and more complex structural models as well as for

higher frequencies (in the MHz range) when a much finer meBtbe/needed for simulating wave propagation.

3.3. Validation for a layered composite beam

The presented approach is next validated for an asymmayéreéd composite beam with aluminium facesheets
and a polyurethane core having a cross-section of 8#mm and the thicknesses of the layers being equal to 1mm,
10mm and 2mm respectively (see Fig.10). The entirety of topagating waves can be sought through WFE and
without the need of any kinematic assumptions for the cormglrictures, as 3D FEs and displacement fields are
employed. In the general case where a nonlinear stress-gtfation is employed for the mechanics of the coupling
element, a dedicated algorithm has to be developed as ini#8rder to compute the nonlinear force vector by
inputting the kinematics of each FE. This however is out efshope of this work, therefore (as with the aluminium
beam case study), nonlinear spring elements will be usedritbiation with linear 3D FEs for whicfy will be
straightforward to compute.
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Figure 9: Absolute values of the wave reflection and transimnscodficients for the pressure propagating wave at harmonic frexyugo for a
nonlinearly hardened element wikh=1e13Nm?3: Reflection cofficients computed according to the current scheme (-), Rieffecoeficients
computed through a full transient FE calculatior), (Transmission cd&cients computed according to the current scheme (-,), TrEsson
codficients computed through a full transient FE calculatia). (

Figure 10: Schematic representation of the two healthy ¢astie composite multilayer waveguides (a) and (b) coupedugh an element (c)

exhibiting structural nonlinearity.

In practice, the wave modes can be excited one-by-one inl &HEutransient simulation by employing the WFE
computeds;,, eigenvectors and applying them as time-dependent harnsésptacement boundary conditions (of
excitation frequencw) at one of the extreme cross-sections of the waveguide. Agytle Hanning window was
used for all transient excitations. The results on the fametstal and harmonic reflections for a nonlinearly hard-
ening element are presented below in Figs.11. Excellemteagent is observed between the fundamental frequency
reflection predictions obtained through the presentedagmpr and through a full FE transient response prediction.
Moreover, good agreement is observed between the two agprsaegarding the reflections computed for the 3
harmonic frequency. The most probable cause of the sligktgiénce observed between the two sets of results is the
fact that in a nonlinear transient FE problem energy is pliytalso channeled towards other harmonics (other than

the second one), which are not included in the harmonic lbalerpansion.

4, Conclusions

A novel comprehensive FE-based computational scheme wasmed for quantifying guided wave interaction

with LSNs. Layered complex structures can be modelled thindbe presented approach as an FE discretization is

18



1LB*—;::“—‘—~ Tom—- o R
(%) —5_‘_:'_“‘ o
g ‘5—““‘~_
5 08f ol
©
3
- 0.6 |
o
0
©
o 0.4 |
£
e
S 0.2 |
=
OV — . 9‘ ‘o
0 0.5 1 15 :
Frequency (Hz) . 105

Figure 11: Absolute values of the wave reflection and trassiom coéicients of the pressure propagating wave for a nonlinearigemed element
with ky=1e13Nm? at: Reflection cofficients at frequency computed according to the current scheme (-), Reflectiofficiemts at frequency
w computed through a full transient FE calculatiar), (Reflection cofficients at frequencyd computed according to the current scheme)(

Reflection co#ficients at frequencyd computed through a full transient FE calculatia), (Transmission cd&cients at frequency computed
according to the current scheme (-,), Transmissiottcients at frequencyw computed through a full transient FE calculatidn)( Transmission
codficients at frequency« computed according to the current scheme-J; Transmission cdécients at frequencyd computed through a full

transient FE calculationt).

employed. The scheme couples wave propagation propeitigisinear structural waveguides to LSNs and is able
to compute the generation of harmonic frequencies for eanstewnode through a harmonic balance projection. The
principal outcomes of the work are summarized as follows:

(i) The presented scheme was validated through comparigb@aull FE transient response prediction. Excellent
agreement is observed between the two sets of results fémtlamental, as well as for higher harmonic frequency
predictions.

(ii) The new approach is able to predict reflections and trassions at harmonic frequencies with a speed that is
orders of magnitude faster than conventional transientdfgiens. The exhibited approach focuses on calculations
for 1D structures with a 2D methodology extension currentiger development.

(iii) Generation of higher order harmonics can become maxinat certain frequencies which can be excited for
facilitating the detection of certain nonlinearity scanar(ideally related to the presence of certain damage).

Future developments are focusing towards modelling andeim@nting realistic damage models as a LSN. Ef-
ficient multiscale damage models are essential to developder to accurately capture the nonlinear mechanics of
advanced damage scenarios, while retaining the size ofEhradelel and the implied required computation@bg at

acceptable levels.
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