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 32 

Abstract  33 

Questions: Is there evidence of recent altitudinal range shifts in a hyper-arid Middle Eastern 34 

desert mountain flora? 35 

How do the directions of shift for upper and lower altitudinal range limits of plants vary?  36 

Location: Hyper-arid mountain desert, St Katherine Protectorate, South Sinai, Egypt.  37 

Method: We tested for shifts in both upper and lower altitudinal range limits by comparing a 38 

1970s dataset of recorded species’ limits with recent surveys using altitudinal transects across 39 

36 sites. Altitudinal limits between 63 paired upper-limit and 22 paired lower-limit values from 40 

the 1970s and 2014 were compared using paired t-tests; binomial tests were used to indicate 41 

the dominant direction of change. The upper and lower limits of 22 species were considered 42 

together to allow assessment of overall altitudinal range-size changes. In order to avoid the 43 

potential effect of yearly environmental fluctuations on the distributions of annual species, 44 

subsets of upper and lower limit shifts were taken for perennials, and trees and shrubs. 45 

Results: Our results show significant overall upslope shifts in mean upper altitudinal limits 46 

and significant overall downslope shifts in mean lower altitudinal limits. A majority of assessed 47 

species expanded their altitudinal ranges, but the responses of individual species varied. Since 48 

perennial herbs/graminoids, and trees and shrubs, show strong patterns of change, we suggest 49 

there has been a long-term shift in altitudinal range in South Sinai’s mountain flora. Greater 50 

research effort needs to be focussed upon the drivers of range-shift responses in arid regions. 51 

 52 

 53 

 54 

 55 

 56 
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 57 

Introduction 58 

 Recent range shifts in both latitudinal and altitudinal distributions have been recorded 59 

across animal and plant taxa in response to changes in climate, with ranges expanding at high 60 

latitudes and altitudes, and contracting at lower latitudes and altitudes (e.g. Wilson et al. 2005; 61 

Chen et al. 2011). Lower latitudinal and altitudinal range limits, the rear or trailing edges of 62 

distributions, have received little attention (Hampe & Petit 2005), despite these margins often 63 

contributing to higher levels of regional genetic diversity (e.g. Hewitt 2004) and being 64 

important in the maintenance of biodiversity (Hampe & Petit 2005). Given the potential 65 

conservation implications of the lower-margin shifts of plants, it is therefore surprising that 66 

empirical studies are so poorly represented in the literature (Lenoir & Svenning 2015). It is true 67 

that lower limits are harder to assess, with a less clear-cut position influenced by a multitude 68 

of factors rather than mainly climatic (e.g. biotic interactions, and propagules moving downhill 69 

under gravity). Nevertheless, in arid regions, water availability is a crucial factor, which is 70 

expected to ameliorate towards higher elevations through convective cloud formation, and 71 

hence lower limits may be more easily recognised.  72 

 Under conditions of global warming it seems logical that up-slope range shifts of plants 73 

attributed to changing climatic factors would be the norm(Klanderud & Birks 2003; Walther 74 

et al. 2005; Stöckl et al. 2011; Gottfried et al. 2012; Pauli et al. 2007, 2012; Jump et al. 2012; 75 

Matteodo et al. 2013; Wipf et al. 2013). It is important to note that changes such as these are 76 

not necessarily always consistent with temperature being the sole dominant factor inducing 77 

change (Grytnes et al. 2014). However it seems probable that changes in both the thermal 78 

regime and water availability will be the main drivers of altitudinal changes, with adverse 79 

changes in both (e.g. warmer and drier) causing the greatest pressure (McCain & Colwell 80 

2011). 81 
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 Globally, mountainous regions represent important hotspots of endemism (e.g.  Körner 82 

2003; Nagy & Grabherr 2009), but mountain species are especially vulnerable to extinction 83 

due to habitat loss induced by climate change, because shifting climatic zones will reduce 84 

suitable habitat area, leading to ‘mountain-top extinctions’ (Dirnböck et al. 2011). Plant species 85 

in arid regions may also be very susceptible to climate change, and the loss of arid-land 86 

endemics may occur in both lowland (Foden et al. 2007) and mountain (Van de Ven et al. 2007) 87 

environments under increased levels of global warming.   88 

 There are very few studies of recent altitudinal changes in plant distributions from 89 

subtropical or arid regions (Jump et al. 2012; Lenoir & Svenning 2015). We study here the 90 

flora of the hyper-arid desert mountains of South Sinai, Egypt.  Egypt and the wider Middle 91 

East region has seen recent temperature increases (Domroes & El‐ Tantawi 2005; Zhang et al. 92 

2005), with average warmest daily maximum temperatures increasing by >1oC since the 1970s 93 

(Donat et al. 2014). Sinai’s southern montane regions contain relatively high levels of 94 

biodiversity (Zalat et al. 2009), and are home to 19 of Egypt’s 33 endemic plant species (Rashad 95 

et al. 2002). The area is recognised as one of the most important centres of plant diversity in 96 

the Middle East (IUCN 1994). Greater botanical diversity has been suggested to occur at higher 97 

altitudes in Sinai due to a diversity of habitat types and favourable environmental factors, 98 

especially the greater water availability, precipitation, and soil moisture retention, in high 99 

altitude areas (Moustafa & Klopatek 1996; Moustafa & Zaghloul 1996).   100 

 Many species of plants in the high mountains of southern Sinai exhibit disjunct 101 

distributions of Holarctic species found more commonly further north, suggesting that these 102 

species are relics of a more humid, colder past (Shmida 1977). The isolation of plants which 103 

thrive in cooler damper climates in refugia on the highest of Sinai’s mountains suggests their 104 

vulnerability to rising temperatures. Recent shifts in plant altitudinal distributions in the Middle 105 
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East are expected, but remain completely unstudied until now, and especially not with the 106 

multifaceted approach of looking at leading and trailing changes simultaneously.  107 

 Therefore, we focus here on the following hypotheses. First we ask whether there is 108 

evidence of recent range shifts in the high mountain flora in South Sinai, predicting that these 109 

should be evident as largely up-slope movements. The null hypothesis is of course no change, 110 

but alternatively the mean response may be zero because of idiosyncratic responses of the 111 

different species, which may not be responding to temperature but to other factors, especially 112 

water balance (cf. Rapacciuolo et al. 2014). Second, we study the directions of shift for upper 113 

and lower altitudinal range limits, and split the species into growth forms to help interpret the 114 

results. The prediction is that upper and lower limits should move in concert, and that all plants 115 

should show the same patterns. 116 

  117 

 118 

Methods 119 

We use the approach of comparing modern with historical data (Stöckl et al. 2011). Ideally the 120 

methodologies and locations should be identical, but in this case the earlier surveys were not 121 

quantitative and did not locate the transects with geographic coordinates. With this caveat, the 122 

unique existence of the earlier data for the Middle East makes the comparison worthwhile. 123 

Study region 124 

The St Katherine Protectorate covers much (4350 km2, almost half the area) of the southern 125 

peninsula of Sinai, encompassing the majority of a high-altitude massif and reaching down to 126 

sea level to form one of Egypt’s largest protected areas (Grainger & Gilbert 2008). An igneous 127 

pre-Cambrian ring-dyke encircles 640 km2 of the centre of the Protectorate. The ring-dyke 128 

contains Egypt’s highest mountain, Mt St Katherine, at 2643 m. The mountainous terrain is 129 

inter-cut with dry steep-sided wadis (valleys). South Sinai receives higher than average rainfall 130 
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(62 mm) (Zahran & Willis 2008) and generally cooler temperatures (summer mean 30oC) than 131 

the rest of Egypt (Grainger & Gilbert 2008). 132 

 133 

Historical data 134 

To assess temporal changes in upper altitudinal range limits, we compared our field data with 135 

a 1970s dataset compiled by Arbel & Shmida (1979) in a semi-quantitative format. Data were 136 

collected during the years 1974-1976 and focused upon the mountainous area within the St 137 

Katherine ring-dyke (see Fig. 1 map-inset: shaded area).  138 

 Vegetation was sampled by recording species richness in quadrats of area 100 m2. 139 

Quadrats were placed along transects divided into altitudinal units of 200 m running up wadis 140 

and mountain slopes. In addition, quadrats were placed wherever habitat type or plant 141 

dominance changed noticeably. Each altitudinal unit was sampled several times in different 142 

locations but the coordinates for each quadrat were not recorded. Additional incidental 143 

vegetation observations were included from lower altitudes in the St Katherine Protectorate 144 

falling outside the ring-dyke and its high mountains; these observations were incorporated into 145 

the main dataset. Unfortunately the only remaining details of the original dataset available to 146 

this study were records of minimum and maximum altitudes for plant species recorded at a 147 

resolution of 100 m altitude, together with a subjective assessment of relative abundance 148 

(common, very frequent, frequent, rare, very rare, found once) and statements of their common 149 

habitats (gorges, weathered slopes, gravel wadis, rock cracks, wet places, etc) (see Table S1).     150 

 151 

New data 152 

Quantitative data were collected during field surveys running from late October to mid-153 

December 2014. Surveys were carried out in the high mountains within the igneous ring-dyke 154 

area over an altitude range of 1324 m to 2629 m (see Fig. 1 for survey locations, Table S3 for 155 
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quadrat GPS locations, Table S4 for site photos and descriptions, and Table S5 for species lists 156 

and abundances by quadrat). We were not able to revisit exact sites surveyed in the 1970s as 157 

quadrat location had not been recorded; instead we surveyed extensively within the same 158 

mountainous region (Fig 1) including the same mountains and habitats as the older surveys. It 159 

is probable that new and old quadrats were close or very close to one another. 160 

Vegetation was sampled along sloped transects running through wadis, mountain 161 

slopes, and gullies. The lengths of each transect were determined by the scale of the landscape, 162 

running from the lower to the upper altitudinal limits to encompass as great an altitudinal range 163 

as possible. As landform/habitat type is a major determinant of the diversity and community 164 

composition of the vegetation in Sinai (Moustafa & Klopatek 1996), the location of transects 165 

was chosen to cover all major habitat types.  166 

 Quadrats of area 100 m2 were demarcated along transects approximately every 50 m 167 

change in elevation where terrain permitted. In total 283 quadrats were placed in 36 sites 168 

covering 28300 m2. Location and altitude above sea level were measured at the centre of the 169 

quadrats using a Garmin etrex 30 hand-held GPS with the GPS+GLONASS (± 3 m) and 170 

barometric altimeter (± 3 m) functions respectively. At each quadrat, we recorded: aspect of 171 

slope to the nearest cardinal point; gradient to the nearest five degrees (360o scale); a brief site 172 

description; and a photograph. All vascular plant species in the quadrats were identified (using 173 

Boulos 1995-2005) and individually counted (with individuals of multiple stemmed/clumping 174 

plants defined as those with stems returning to a common root-stock): plant names follow 175 

Boulos (1995-2005).  176 

A total of 241 species were recorded from the 1970s: of these, notable absences 177 

compared with the plants of 2014 were Lavandula pubescens, and Gomphocarpus sinaicus. 178 

The identity of Chiliadenus montanus was uncertain from records and was therefore not 179 

included in analyses to avoid inaccuracy due to ambiguity. Fagonia arabica and F. bruguieri 180 
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were not differentiated in the earlier dataset, and therefore for the purposes of comparison the 181 

records collected in 2014 were amalgamated for these species. In total, 81 species were 182 

available with upper altitudinal limits from both the 1970s and 2014. The significantly greater 183 

sampling effort required to establish accurately the lower altitudinal limits for the more 184 

widespread species was beyond the scope of this study which deals specifically with the high-185 

altitude flora of South Sinai. However, the lower altitudinal limits of 25 species fell within the 186 

altitudinal range surveyed, thereby permitting their analysis.  187 

 Numerical abundance data were not available for species from the 1970s dataset. In the 188 

2014 dataset, to allow reasonably accurate estimation of altitudinal limits, only species for 189 

which more than 10 individuals had been recorded during the entirety of the 2014 field surveys 190 

were selected (see Table S2). This selection allowed the upper limits of 63 and lower limits of 191 

22 species to be identified. Subsets of upper- and lower-limit shifts were taken for perennials, 192 

and trees and shrubs to allow comparisons to be made that avoided the potential effect of yearly 193 

environmental (specifically rainfall) fluctuation on the distributions of annual species. 194 

 195 

Statistical methods 196 

All statistical and graphical analyses were carried out using R (Version 3.1.2, R Foundation for 197 

Statistical Computing, Vienna, Austria).  198 

(a) Patterns of diversity in the new data 199 

To describe the 2014 dataset, weighted mean (± SE) elevations were calculated for all species 200 

recorded. For each quadrat, the three Hill’s numbers (Chao et al. 2012) were calculated as 201 

measures of components of diversity representing effective species richness. The general 202 

equation is: 203 

  qD = (Σpi
q)(1/(1-q)) 204 
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where q = 0, 1, or 2. Ascending Hill’s numbers (q values) give reducing weight to the less-205 

abundant species, reflecting the relative ecological importance of more abundant species (Hill 206 

1973). Thus 0D measures species richness, 1D represents the number of ‘typical’ common 207 

species, while 2D represents the number of ‘very abundant’ species present in the community 208 

(Chao et al. 2012). Therefore considered together, Hill’s numbers present a picture of 209 

community evenness.   210 

 To describe altitudinal patterns of diversity in the 2014 data, abundances were assigned 211 

to altitudinal bands of 50 m. Smoothing splines were fitted to the three Hill’s numbers with 212 

altitude as the predictor, using the GAM (Generalized Additive Model) function of R-package 213 

ggplot2 (Wickham 2009).  214 

 215 

(b) Range-shift comparison 216 

To estimate shifts in altitudinal ranges, the altitudinal limits between 63 paired upper-limit and 217 

22 paired lower-limit values from the 1970s and 2014 were compared using paired t-tests to 218 

test the null hypothesis that the mean difference was zero. Sign tests (i.e. binomial tests on the 219 

numbers of negative and positive changes) were used to indicate the dominant direction of 220 

change. 22 species had estimates of both upper and lower limits, and so were considered 221 

together to allow assessment of overall altitudinal range-size changes. Species were categorised 222 

as showing no change, expanded range, or contracted range (Table 1). Movement of less than 223 

100 m for either limit was regarded as stationary in view of the measurement resolution of the 224 

1970s data. A binomial test was used to identify whether expansion or contraction of ranges 225 

was the dominant pattern. 226 

 As an aid to interpretation, reasons for the changes were explored in a GLM by using 227 

the differences in altitudinal limits between 2014 and the 1970s as the response variable, and a 228 

variety of predictors: flowering season(s), basic growth-form (herb, shrub or tree), Raunkiær 229 
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life-form, and basic life-form (annual or perennial). The best fitting models and predictors were 230 

selected by use of AICs.  231 

 232 

Results  233 

Patterns of diversity in the new data 234 

The overall patterns of diversity were indicated by the three Hill’s numbers, but each followed 235 

a distinct altitudinal pattern (see Fig. 2). The highest levels of species richness (0D) were found 236 

at higher altitudes, decreasing down a shallow concave curve with the lowest values at lower 237 

altitude (approx. 1400-1600 m). The number of ‘typical’ (common) species, 1D, was highest at 238 

lower-middle elevations (approx. 1700-1800 m), and declined with increasing altitude. In 239 

contrast, the number of abundant species, 2D, was lowest at lower-middle elevations, with 240 

highest values at the top of the altitude range. The summary data are in Tables S2 and S3. 241 

 242 

Range-shift comparisons 243 

Comparison of the upper altitudinal limits from the 1970s and 2014 for 63 plant species 244 

indicated a significant difference between mean past and present upper altitudinal limits, with 245 

the current limit (mean 2228.6 ± 294.5 m) greater than in the past (mean 2125.2 ± 350.2 m: 246 

paired t = 3.37, df = 61, p=0.0013). Although the mean upper altitude limit for all species was 247 

found to be significantly higher, there was no evidence of a preponderance of species increasing 248 

rather than decreasing their upper altitudinal limit (38 of 63 spp, binomial test p=0.065: see 249 

Fig. 3 for details). However, for species differing by more than 100 m, a significantly greater 250 

number of species moved upslope (26/40, binomial test p=0.04). This was also the case for 251 

species differing by more than 250 m (16/18, binomial test p<0.001).  252 

 The 22 species whose lower altitudinal limits were assessed showed a significantly 253 

downwardly shifted mean lower altitudinal limit (current mean 1568.0 ± 162.1 m, past mean 254 
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1668.2 ± 166.6 m; paired t = 3.02, df = 20, p=0.0064). In addition to this downward shift 255 

overall, a significantly greater number of species shifted their individual lower altitudinal limits 256 

downwards than did not (17/22, binomial test p=0.008) (see Fig. 4 for details). This finding 257 

also held true when only considering species for which movement was greater than 100 m 258 

(12/13, binomial test p=0.002). 259 

 In species with measurements for both upper and lower altitudinal limits, a significant 260 

majority expanded their altitudinal ranges between the 1970s and 2014 (15/22, binomial test 261 

p<0.001). Three species showed divergence of altitudinal limits (lower limit moved downslope, 262 

upper limit moved upslope) and one convergence (lower limit upslope, upper limit downslope) 263 

(see Table 1), whilst four showed parallel downslope movement of upper and lower limits. The 264 

upper and lower limits of each species thus appeared to move independently. Lower limits 265 

moved down in 12 species, up in one, and remained stationary for nine. Upper limits moved 266 

down in eight species, up in eight, and remained stationary for six species. Of the species which 267 

shifted their lower limits downslope, there was no preponderance which also showed parallel 268 

downslope movement of their upper limits (4/12, binomial test p=0.927).  269 

 Basic life form (annual or perennial) was the best predictor of the change in upper 270 

altitudinal limit (F1,61 = 6.9, p=0.01), with annuals on average moving up four times further 271 

than perennials (292 m vs. 72 m). There was only one annual and 21 perennials with measured 272 

changes in lower altitudinal limit, and the value for the former (downslope 75 m) was not 273 

different from the distribution of values for the perennials (which on average moved downslope 274 

101.4 ± 34.7 m: one-sample t = 0.76, df=19, n.s.).  Basic life form was the best additional 275 

predictor in a GLM predicting the 2014 upper limits from those of the 1970s, with a much 276 

steeper slope for perennials (0.70) than annuals (0.29) (F1,59 = 4.49, p=0.038). 277 

 Analysis of only the perennial species showed significantly higher mean upper 278 

altitudinal limits in 2014 (mean 2220.8 ± 307.3 m) than in the 1970s (mean 2148.9 ± 342.6 279 
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m: paired t = 2.45, df = 52, p=0.018). There was no evidence of a majority of perennial 280 

species increasing their upper limits (31/54, binomial test p=0.17), even amongst those which 281 

differed by more than 100 m (20/32, binomial test p=0.12). However, for species that differed 282 

by more than 250 m, a significantly greater number moved upslope (10/12, binomial test 283 

p=0.02).  284 

 The subset of only shrubs and trees also showed significantly higher mean upper 285 

limits (present mean 2219.1 ± 311.2 m, past mean 2139.5 ± 353.3 m: paired t = 2.30, df = 36, 286 

p=0.027). Again there was no preponderance of increased upper limits among all species 287 

(21/38, binomial test p=0.31) or those which differed by more than 100 m (15/22, binomial 288 

test p=0.07). Again, however, amongst species that differed by more than 250 m, there was a 289 

preponderance of upslope movement (7/8, binomial test p=0.04).   290 

 The mean lower altitudinal limits of perennials moved significantly downwards in 291 

2014 compared to the 1970s (present mean 1574.8 ± 162.9 m, past mean 1676.2 ± 166.3 m: 292 

paired t = 2.92, df = 19, p=0.009). As with all plant species, a significantly greater number of 293 

species moved their lower limit downwards (16/21, binomial test p=0.01), even amongst 294 

those that differed by more than 100 m (12/13, binomial test p=0.002). The mean lower limits 295 

of shrubs and trees also shifted significantly downwards in the 2014 data (1585.7 ± 145.7 m) 296 

than in the 1970s (1725.0 ± 171.8 m: paired t = 5.27, df = 12, p=0.0002). Again a 297 

significantly greater number of species moved downslope (14/16, binomial test p=0.006) and 298 

this was particularly the case for species that differed by more than 100 m (9/9, binomial test 299 

p=0.002).     300 

  301 

Discussion 302 

Patterns of diversity in the new data 303 
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The three Hill’s number diversity indices provide a greater insight than a single measure (Chao 304 

et al. 2012), with higher-order measures emphasising more dominant species. Each index 305 

exhibited a different pattern of diversity with altitude. Species richness (0D) was greatest at 306 

high altitudes with low richness found at low to mid-altitudes. This pattern contrasts with  more 307 

humid mountain systems where plant species richness typically peaks at low to mid-altitudes 308 

(e.g. Vetaas & Grytnes 2002; Poulos et al. 2007). The refugial nature of South Sinai’s high 309 

mountains may explain the discrepancy in the pattern of species richness. Favourable climatic 310 

conditions, primarily increased availability and retention of moisture (Moustafa & Klopatek 311 

1996; Moustafa & Zaghloul 1996), at higher altitude support a greater richness than the 312 

comparative extremes of temperature and water stress encountered at mid to low altitudes. 313 

While the temperate flora has largely been lost from much of low-altitude Sinai, in the 314 

mountain region of St Katherine remnant species remain only at higher altitudes, leading to a 315 

pattern of increasing species richness with increasing altitude (Moustafa et al. 2001). The Hill’s 316 

number 1D (the number of typical common species) was highest at the lower altitudes sampled, 317 

decreasing in higher areas, whilst 2D (the number of very abundant species) increases with 318 

altitude. These patterns suggest that higher-altitude communities are dominated to a greater 319 

extent by a few abundant species. The joint interpretation of the patterns of all three diversity 320 

indices is that species richness increases with altitude, most likely due to more favourable 321 

climatic conditions of lower temperatures and greater moisture on mountain peaks and, 322 

although richer, communities become more uneven at higher altitudes with a few species 323 

showing increasing levels of dominance. The endemic species recorded in this study peaked in 324 

density at generally high altitudes, and around mountain peaks, as in other studies in arid 325 

landscapes (e.g. Noroozi et al. 2011) and more widely (Vetaas & Grytnes 2002; Essl et al. 326 

2009), although glaciation history is often also important in more northern studies.  327 

 328 
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Range shifts since the 1970s 329 

We have found clear evidence of temporal altitudinal range shifts in South Sinai's high-330 

mountain flora, although species showing shifts of less than 100 m may be artefacts of the 331 

differing methodologies of the 1970s and 2014 studies, using different resolutions and 332 

elevation intervals for vegetation recording. Species with larger range shifts, however, showed 333 

an obvious pattern of upslope movement of the upper limit, but also downslope movement of 334 

the lower limit.  335 

 There have certainly been globally reported trends towards upwards shifts in range 336 

limits and changing community assemblages on mountain peaks, often attributed to climate 337 

change (McCain & Colwell 2011; Gottfried et al. 2012; Matteodo et al. 2013). Indeed climate 338 

change is expected to be the main cause of range shifts, especially when considering both 339 

core components temperature and precipitation. Nevertheless, wider consequences of climate 340 

change, including changes in water balance (Crimmins et al. 2011), the area of bare soil 341 

surface (Walther et al. 2002), and elevated atmospheric carbon dioxide levels (Wayne et al. 342 

1998) can all influence range shifts in plants, albeit probably of lesser importance. In the case 343 

of South Sinai, unfortunately we do not have reliable local long-term site specific climatic 344 

and environmental information. Coupled with high levels of small-scale variability in 345 

microhabitat conditions (Moustafa & Klopatek 1995; Moustafa & Zaghloul 1996) means that 346 

accurately determining causes for the observed range shifts is beyond the scope of this study. 347 

No good data on long term precipitation in the South Sinai mountains exist. It is therefore 348 

difficult conclusively to attribute downward shifts of lower limits to increased precipitation. 349 

Donat et al. (2014) suggest “a slight wetting trend” across the Arab region since the 1970s. 350 

However this must be viewed in light of high site-specificity in precipitation and moisture 351 

availability in the South Sinai mountains, as noted by Moustafa & Zaghloul (1996).   352 
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During the period 1971-2000 Egypt as a whole showed overall mean annual temperature 353 

increases of 0.62oC per decade (Domroes & El-Tantawi 2005), which greatly exceeds the 354 

global trend of 0.17oC per decade (IPCC 2001). Measures of precipitation across the wider 355 

Middle East and North Africa show increasing spatial and temporal variability (Zhang et al. 356 

2005) but little evidence of significant changes in average values in Egypt (Donat et al. 357 

2014).  358 

Overgrazing by livestock has been suggested to be a determinant of vegetation 359 

diversity and range, including in the South Sinai mountains (e.g. Moustafa 2001), but as with 360 

grazing by indigenous peoples worldwide (Davis 2016), these are interpretations with little if 361 

any empirical evidence (see Gilbert 2013 for full discussion). Numbers of grazing livestock 362 

and flock sizes have decreased substantially since the 1960s (Perevolotsky et al. 1989; Gilbert 363 

2013), and hence it is possible that relaxed grazing pressure has permitted downslope 364 

movement of plant range limits. However, the bulk of livestock flock-size decreases occurred 365 

before the date of the 1974-1976 surveys (Perevolotsky et al. 1989), with average flock sizes 366 

changing from 78 pre-1968 to ~13 in the 1970s, 10 in 1982, and 7-8 now (Gilbert 2013). 367 

Rashad et al. (2002) found the majority of grazing to occur in an altitudinal band between 368 

1500 and 1800 m. Only one species (Rubus sanctus) in our datset has its upper limit within 369 

this grazing zone, and this was stationary between the 1970s and 2014. Thus we do not 370 

believe that grazing has affected the upper altitudinal limits. Of the lower limits recorded in 371 

our dataset from the 1970s, 17 of the 22 species fell within this altitudinal grazing zone, but 372 

only eight of these showed downslope movement between the 1970s and 2014 (see Table 1 373 

for detail). Therefore, whilst changes in grazing intensity may have affected downslope range 374 

shifts, we suggest that climatic change explains the observed upwards range shifts better.         375 

 Here, in this arid mountain system, we have documented what we think is the first 376 

record of significant downslope shifts of plant lower-altitudinal limits outside Europe. Despite 377 
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the less-than-ideal quality of the historical data, mean upper limits have increased whilst lower 378 

limits have decreased since the 1970s, leading to a divergent pattern of mean altitude limits. 379 

When considering the upper and lower altitudinal limits of individual species, we found 380 

heterogeneity in the joint responses with no clear predominant pattern. One must bear in mind 381 

that these species are a subset of the selected group of high-mountain species that may not be 382 

representative of all the species present in that environment.                    383 

 We now know that there have been significant upwards shifts in the upper altitudinal 384 

limits of South Sinai plant species since the 1970s. Our data are limited to those species with 385 

lower limits within the sampled range, but a significantly large proportion show expansions of 386 

the altitudinal ranges, suggesting that, at least for now, range contractions are not affecting the 387 

majority of high-mountain species. However, the Sinai endemic Silene schimperiana has 388 

contracted in altitudinal range. The risk imposed by contracting ranges and habitat loss would 389 

therefore be best considered on a case-by-case basis with regard to Sinai’s endemic and rare 390 

species. No plant extinctions have been recorded for South Sinai, at least within the last 30 391 

years, although some are very close to extinction (e.g. Primula boveana: Omar 2014; Jimenez 392 

et al. 2014). However this does not mean that shifts in altitudinal limits are not a cause for 393 

concern. Modelling of plant ranges under climate change has indicated lags in population 394 

dynamics leading to extinction debts (Dullinger et al. 2012). The isolated, refugial nature of 395 

South Sinai’s plant communities leave them vulnerable to extinction from a number of 396 

ecological factors not limited to climate warming. Whilst we cannot conclusively state that 397 

observed shifts in altitudinal limits constitute ‘fingerprints’ of climate warming, they do point 398 

to ecological change posing potential ecological and conservation issues for the future. 399 

 In this study we have presented the first recorded instance of contemporary altitudinal-400 

limit shifts in Middle Eastern mountain flora. The fine-scale variability of environmental and 401 

ecological factors within the South Sinai mountain ecosystem highlights the necessity of 402 
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ecological monitoring, and makes a case for increasing the comprehensiveness and quality of 403 

the region’s environmental monitoring programmes. Our GPS-marked survey quadrats 404 

(supplementary information Table S2) will provide a baseline for future fine-scale monitoring. 405 

We also stress how important it is to consider both upper and lower altitudinal limits to give an 406 

accurate indication of overall altitudinal range changes. We need to focus on lower limits to 407 

understand better the ecological drivers and dynamics underlying heterogeneous responses at 408 

the range limits.     409 
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Outline of igneous ring-dyke delimiting the high mountain region within the St Katherine 590 
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Figure 2 596 
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Normal errors and 95% confidence region. Ascending Hill’s numbers give reducing weight to 598 

less-abundant species: (a) mean 0D (= species richness); (b) mean 1D (number of ‘typical’ 599 
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Table 1 

Description of pattern of movement of upper and lower altitudinal limits for 22 individual plant species where both upper and lower limits could 

be measured. Limits are in metres above sea level.   

 

 
 

Species 

Upper 

limit 

1970s 

Upper 

limit 

2014 

Lower 

limit 

1970s 

Lower 

limit 

2014 

Limit movement patterns 
Range size 

change Lower limit Upper limit 

Alkanna orientalis 2500 2575 1500 1375 down stationary expanded 

Astragalus echinus 2600 2425 2000 1825 down down no change 

Calipeltis cucullaris 2100 2425 1500 1425 stationary up expanded 

Colchicum guessfeldtianum 2500 2325 1500 1925 Up down contracted 

Cotoneaster orbicularis 2200 2425 1800 1725 stationary up expanded 

Crataegus x sinaica 2300 2375 1600 1625 stationary stationary no change 

Globularia arabica 2100 2275 1700 1425 down up expanded 

Nepeta septemcrenata 2640 2325 1700 1725 stationary down contracted 

Origanum syriacum 2000 1975 1600 1425 down stationary expanded 

Phlomis aurea 2200 2425 1550 1375 down up expanded 

Polygala sinaica 2640 2625 1900 1675 down stationary expanded 

Pterocephalus sanctus 2640 2575 1600 1625 stationary stationary no change 

Pulicaria undulata 1900 2175 1400 1375 stationary up expanded 

Rubus sanctus 1800 1725 1800 1625 down stationary expanded 

Salvia multicaulis 2100 1975 1900 1725 down down expanded 

Scariola orientalis 2500 2325 1800 1525 down down expanded 

Silene leucophylla 2300 2625 1750 1425 down up expanded 

Silene schimperiana 2300 2175 1500 1521 stationary down contracted 

Stipa parviflora 2500 2325 1600 1525 stationary down contracted 

Thymus decussatus 2400 2275 1900 1725 down down expanded 

Verbascum decaisneanum 2300 2525 1600 1525 stationary up expanded 

Verbascum sinaiticum 2400 2575 1500 1375 down up expanded 
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Figure 1  
Outline of igneous ring-dyke delimiting the high mountain region within the St Katherine 

Protectorate. Positions of 2014 survey sites shown as white dots with 5 km scale bar.  

Inset: St Katherine Protectorate outline in South Sinai; shaded area St Katherine ring-dyke and 

region of 1970s transect surveys.  
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Figure 2 

Hill’s numbers (see Chao et al. 2012) for diversity by altitude with fitted GAM model with 

Normal errors and 95% confidence region. Ascending Hill’s numbers give reducing weight to 

less-abundant species: (a) mean 0D (= species richness); (b) mean 1D (number of ‘typical’ 

common species); (c) mean 2D (number of ‘abundant’ species). 
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Figure 3 

Difference in upper altitude limit for each plant species between the 1970s and 2014. 
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Figure 4 

Difference in lower altitude limit for each plant species between the 1970s and 2014.  
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Supplementary Information 

 

Figure S1 
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Figure S2 
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Table S2 

 
 

Species  

Presence  

(number of  

quadrats) 

 Total  

abundance  

(individuals) 

Fagonia mollis 90 2943 

Seraphidium herba-alba 194 2766 

Tanacetum sinaicum 181 1953 

Diplotaxis harra 139 1678 

Zilla spinosa 145 977 

Teucrium polium 145 955 

Fagonia arabica 60 937 

Matthiola longipetala 109 830 

Echinops glaberrimus 119 771 

Stachys aegyptiaca 119 757 

Chiliadenus montanus 137 726 

Achillea fragrantissima 67 637 

Phlomis aurea 127 529 

Alkanna orientalis 108 521 

Verbascum sinaiticum 39 461 

Echinops spinosus 104 435 

Plantago sinaica 72 367 

Gymnocarpus decandrum 57 366 

Origanum syriacum 70 357 

Lappula sinaica 30 307 

Pulicaria undulata 20 301 

Mentha longifolia 27 267 

Ballota undulata 91 253 

Scariola orientalis 33 252 

Deverra tortuosa 92 234 

Galium setaceum 74 220 

Centaurea scoparia 50 213 

Anarrhinum pubescens 62 175 

Euphorbia sanctae-catharinae 9 166 

Polygala sinaica 44 163 

Verbascum decaisneanum 51 143 

Agathophora alopecuroides 6 129 

Globularia arabica 36 126 

Juncus rigidus 18 119 

Pterocephalus sanctus 40 111 

Callipeltis cucullaris 31 100 

Farsetia aegyptia 40 89 

Reaumuria hirtella 14 81 

Caylusea hexagyna 26 80 

Nepeta septemcrenata 26 71 

Stipa parviflora 21 70 
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Carduus pycnocephalus 21 66 

Artemisia judaica 8 63 

Centaurea eryngioides 19 63 

Pulicaria arabica 12 62 

Thymus decussatus 11 57 

Pulicaria incisa 9 56 

Silene schimperiana 25 53 

Ephedra alata 30 51 

Helianthemum kahiricum 10 51 

Crataegus x sinaica 28 50 

Cotoneaster orbicularis 17 47 

Launaea spinosa 18 43 

Ficus palmata 20 36 

Iphiona mucronata 17 34 

Primula boveana 1 32 

Salvia multicaulis 5 32 

Silene linearis 20 32 

Silene leucophylla 6 30 

Ballota saxatilis 11 29 

Deverra triradiata 20 29 

Gomphocarpus sinaicus 20 29 

Reseda muricata 9 29 

Reseda pruinosa 8 27 

Fagonia bruguieri 3 24 

Lavandula pubescens 6 24 

Astragalus echinus 11 22 

Iphiona scabra 13 21 

Hyoscyamus muticus 6 20 

Peganum harmala 8 20 

Centaurea solstitialis 2 19 

Phagnalon nitidum 9 19 

Capparis spinosa 8 17 

Anabasis articulata 4 16 

Rubus sanctus 2 16 

Diplotaxis acris 8 13 

Foeniculum vulgare 5 12 

Colchicum guessfeldtianum  5 11 

Lycium shawii 2 11 

Adiantum capillus-veneris 6 10 

Heliotropium arbainense 6 10 

Hypericum sinaicum 4 10 

Ochradenus baccatus 7 10 

Retama raetam 8 10 

Rhamnus dispermus 8 10 

Equisetum ramosissimum 2 9 

Pistacia khinjuk 6 8 
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Astragalus spinosus 5 6 

Ballota kaiseri 3 6 

Colutea istria 5 6 

Rosa arabica 3 6 

Centaurea ammocyanus 1 5 

Heliotropium digynum 5 5 

Lotononis dichotoma 2 5 

Citrullus colocynthis 4 4 

Blepharis ciliaris 1 3 

Cleome arabica 2 3 

Salix mucronata 3 3 

Bufonia multiceps 1 2 

Cleome droserifolia 2 2 

Conyza bovei 2 2 

Helianthemum ellipticum 2 2 

Solanum sinaicum 2 2 

Alhagi graecorum 1 1 

Astragalus caprinus 1 1 

Lepidium draba 1 1 

Monsonia nivea 1 1 

Phagnalon barbeyanum 1 1 

Phoenix dactylifera 1 1 

Populus nigra 1 1 

Pulicaria inuloides 1 1 

Tamarix aphylla 1 1 
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Table S3     

 

 

Quadrat 

Elevation 

(m above 

sea level) Aspect 

Gradient 

(nearest 

5o) 

Hill's number diversity index 

Latitude (DD) Longitude (DD) 0D 1D 2D 

1 AP01 1898 SE 5 17 8.276886339 0.183739705 28.5447833 33.9212500 

2 AP02 1951 SE 10 18 4.455565566 0.342351717 28.5480000 33.9182333 

3 AP03 1993 SE 10 8 12.729872204 0.107438017 28.5510833 33.9170000 

4 AP04 2051 S 10 20 6.362835676 0.210007305 28.5535667 33.9152167 

5 AP05 2117 S 25 11 4.775667817 0.264860323 28.5550333 33.9150167 

6 AP06 2169 SW 15 6 5.100217354 0.256296296 28.5565667 33.9164167 

7 AP07 2209 W 40 20 5.993925881 0.224445646 28.5572500 33.9171000 

8 AP08 2255 SW 35 8 5.319148793 0.220324865 28.5580500 33.9187333 

9 AP09 2282 NE 25 20 4.600885544 0.239612188 28.5589833 33.9187500 

10 AP10 2305 NW 10 13 3.549357156 0.303402647 28.5604500 33.9173667 

11 AP11 2296 SW 25 17 5.180051270 0.215419501 28.5591500 33.9177500 

12 AP12 2328 SW 0 23 3.864313298 0.367346939 28.5555000 33.9209500 

13 AP13 2228 S 10 6 6.922381747 0.180695847 28.5534000 33.9231000 

14 BC01 1773 N 5 11 7.056663610 0.266302787 28.5457000 33.9334167 

15 BC02 1826 NE 25 9 12.848107080 0.100936524 28.5455333 33.9320667 

16 BC03 1931 SW 5 15 6.853384027 0.210154541 28.5448167 33.9298000 

17 BC04 1880 NE 25 11 6.765023325 0.25047259 28.5452500 33.9312167 

18 FAH01 1755 W 10 13 1.822161436 0.628683408 28.6364333 33.9181000 

19 FAH02 1789 S 5 11 7.400633968 0.163295657 28.6323333 33.9174333 

20 FUS01 1867 NW 10 11 10.068516231 0.128515486 28.5693000 33.8800333 

21 GAZ01 1783 N 10 15 4.358064359 0.348927336 28.5640500 33.8754833 

22 GAZ02 1760 N 40 9 4.147843289 0.37716263 28.5643667 33.8756167 

23 GAZ03 1731 NW 25 13 4.820125265 0.366151101 28.5650833 33.8757667 

24 GAZ04 1703 W 25 10 10.354978743 0.113034072 28.5656667 33.8758833 

25 GAZ05 1676 W 25 14 8.624473332 0.173203228 28.5660833 33.8755000 

26 GAZ06 1652 W 20 7 8.382184096 0.154778393 28.5661667 33.8751000 

27 GAZ07 1633 W 25 15 8.928165435 0.126369613 28.5663500 33.8746667 

28 GAZ08 1620 SW 5 6 14.071099758 0.091050989 28.5667333 33.8746667 

29 GAZ09 1618 W 0 18 4.614706611 0.262222222 28.5663333 33.8746000 

30 HHL01 1755 S 10 14 5.161474634 0.23739645 28.6261000 33.9196000 

31 JAL01 1594 N 5 8 2.625109050 0.472623967 28.4124333 33.8551500 

32 JAL02 1569 N 35 14 4.279674007 0.380859375 28.4128000 33.8553833 

33 JAL03 1544 N 15 22 5.149496180 0.237024221 28.4134667 33.8557333 

34 JAL04 1521 N 5 11 5.751040151 0.210463734 28.4140167 33.8560333 

35 JAL05 1497 N 5 10 3.974862032 0.316326531 28.4150167 33.8557667 

36 JAL06 1480 W 5 13 6.457058359 0.204444444 28.4159500 33.8552500 

37 JB01 1856 E 5 12 6.014585347 0.20661157 28.5287167 33.8839500 

38 JB02 1963 NW 5 30 3.219481402 0.40433925 28.5351000 33.8622500 

39 JB03 1981 NE 5 17 3.651078640 0.37352071 28.5346167 33.8597000 

40 JB04 2098 NW 5 7 6.864232066 0.177469136 28.5346333 33.8544833 

41 JB05 2056 E 25 13 7.089149015 0.208569628 28.5347000 33.8551333 
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42 JB06 2022 E 25 11 7.987816513 0.207305782 28.5348667 33.8558000 

43 JB07 2000 NE 10 13 6.669820221 0.207596254 28.5350333 33.8563833 

44 JB08 1992 NW 5 15 5.568833860 0.301050598 28.5353333 33.8672000 

45 JB09 1980 NW 15 15 4.961891966 0.294589858 28.5358167 33.8763833 

46 JB10 1943 N 20 10 10.580910642 0.139674761 28.5377667 33.8778333 

47 JB11 1870 N 5 7 10.863718305 0.115 28.5394000 33.8788333 

48 JB12 1798 NE 15 13 13.989417065 0.094482237 28.5409000 33.8795000 

49 JDR01 1595 W 10 16 5.711203839 0.27456382 28.5548833 33.9794833 

50 JDR02 1647 NW 20 17 4.455659734 0.25 28.5555500 33.9804000 

51 JDR03 1700 W 15 6 14.048959039 0.088643645 28.5555000 33.9815833 

52 JDR04 1746 NW 10 3 6.127589359 0.185595568 28.5545333 33.9825667 

53 JDR05 1762 W 5 9 5.551994498 0.293514828 28.5551833 33.9836000 

54 JDR06 1904 S 5 24 6.224367226 0.209342561 28.5586667 33.9835333 

55 JDR07 1852 S 20 18 6.833374829 0.200617284 28.5571000 33.9836500 

56 JDR08 1801 S 10 11 8.781124772 0.154368493 28.5561667 33.9833833 

57 JHA01 1324 NW 5 11 2.924929108 0.495867769 28.6209833 33.9093333 

58 JHA02 1340 SW 15 16 3.416293383 0.447809627 28.6216667 33.9097167 

59 JHA03 1402 W 10 11 9.450662911 0.117346939 28.6231333 33.9112167 

60 JHA04 1449 SW 10 10 9.004546757 0.130177515 28.6239500 33.9117333 

61 JHA05 1500 S 15 16 6.265274407 0.224732461 28.6247167 33.9120500 

62 JHA06 1550 S 10 15 13.123801022 0.103305785 28.6257667 33.9118667 

63 JHA07 1604 SW 0 9 9.747187539 0.162629758 28.6266667 33.9121667 

64 JHA08 1649 SW 5 7 9.650258715 0.129757785 28.6272500 33.9127500 

65 JHA09 1689 NW 10 7 9.941375297 0.125868056 28.6273333 33.9137167 

66 JHA10 1710 S 5 12 9.836764227 0.157017909 28.6304500 33.9147000 

67 JK01 1791 N 15 13 2.109056370 0.599609375 28.5327667 33.9660833 

68 JK02 1816 N 20 15 6.769217557 0.200951249 28.5318500 33.9653000 

69 JK03 1853 N 10 8 11.785537012 0.114257813 28.5297167 33.9638000 

70 JK04 1924 NE 30 15 6.290185201 0.214915596 28.5284667 33.9627500 

71 JK05 2008 E 35 8 4.117429200 0.372767857 28.5260333 33.9623833 

72 JK06 2069 SE 15 8 7.639556102 0.164352131 28.5244500 33.9603667 

73 JK07 2067 N 5 2 7.774078838 0.18766901 28.5229167 33.9602667 

74 JK08 2288 NW 20 23 3.212213639 0.432942708 28.5213167 33.9558167 

75 JK09 2336 W 15 12 6.374258180 0.228099174 28.5176667 33.9554333 

76 JK10 2368 E 15 14 7.284091195 0.216792181 28.5114333 33.9630667 

77 JK11 2315 E 10 14 3.556787336 0.391242435 28.5110167 33.9653167 

78 JK12 2263 SE 25 13 5.739525321 0.231866825 28.5112167 33.9674667 

79 JK13 2629 E 5 23 4.139487244 0.338842975 28.5125500 33.9539000 

80 JK14 2583 E 20 13 2.454140787 0.455970452 28.5121333 33.9545833 

81 JK15 2512 E 25 19 2.618137363 0.526367188 28.5108000 33.9584500 

82 JK16 2462 E 25 13 3.973202083 0.275495547 28.5101833 33.9596333 

83 JK17 2404 E 15 23 4.858931394 0.2421875 28.5108833 33.9613500 

84 JK18 2462 E 20 11 2.888341165 0.471886714 28.5069500 33.9571500 

85 JK19 2385 NE 10 8 4.497226112 0.265432099 28.5110833 33.9623333 

86 JK20 2257 NE 35 10 2.911299308 0.470204082 28.5213333 33.9571500 

87 JK21 2208 NE 30 20 3.555222559 0.417888757 28.5219500 33.9577000 
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88 JK22 2156 NE 35 22 3.758306151 0.324150597 28.5233167 33.9585333 

89 JK23 2124 SE 20 6 7.108166386 0.18494898 28.5238667 33.9589167 

90 JK24 2052 E 25 14 4.527606171 0.281965848 28.5249167 33.9612167 

91 JK25 1998 NE 30 19 3.285351440 0.484764543 28.5268000 33.9624500 

92 JM01 2007 NE 5 13 5.635406567 0.257487217 28.5448333 33.9751167 

93 JM02 1984 E 5 10 6.797283149 0.218934911 28.5455167 33.9758000 

94 JM03 1962 NE 35 8 3.485685549 0.475529584 28.5461500 33.9762667 

95 JM04 1955 NE 30 16 5.115472599 0.25 28.5463333 33.9763000 

96 JM05 1923 NE 15 15 4.557099647 0.386258455 28.5463000 33.9769000 

97 JM06 1907 NE 30 16 8.048360735 0.135 28.5467000 33.9772000 

98 JM07 1896 N 5 11 9.616002619 0.131113424 28.5469833 33.9772667 

99 JM08 1871 N 15 20 6.407700219 0.183364839 28.5479833 33.9774333 

100 JM09 1849 N 10 6 6.738781224 0.1936 28.5487500 33.9772833 

101 JM10 1823 N 15 4 6.829510706 0.17578125 28.5491833 33.9772167 

102 JM11 1799 N 10 16 5.910927457 0.229166667 28.5498000 33.9770167 

103 JM12 1774 N 15 11 6.938642678 0.160493827 28.5502833 33.9768667 

104 JM13 1753 N 10 4 4.598826845 0.323675871 28.5503667 33.9770167 

105 JM14 1724 N 15 11 5.591783761 0.232142857 28.5508667 33.9769500 

106 JM15 1702 N 5 17 11.251507824 0.117283951 28.5513000 33.9768333 

107 JM16 1674 N 20 6 5.139412479 0.248699272 28.5520667 33.9765667 

108 JM17 1654 N 25 14 5.306341291 0.26625 28.5524500 33.9762000 

109 JM18 1624 N 20 15 6.604129943 0.243764172 28.5529833 33.9760500 

110 JM19 1605 NE 10 16 6.696333460 0.256804734 28.5533833 33.9759500 

111 JMA01 2025 SW 5 17 3.290796164 0.379108839 28.5184500 33.8191667 

112 JMA02 1925 E 10 14 2.637477816 0.4984 28.5218500 33.8231000 

113 JMA03 1825 SW 35 3 4.086469860 0.319615912 28.5219500 33.8248667 

114 JMA04 1725 SE 35 9 5.760243565 0.193877551 28.5206667 33.8276000 

115 JMA05 1619 NE 40 14 5.612155029 0.209876543 28.5195000 33.8312333 

116 JMA06 1524 NE 20 8 7.604828622 0.166015625 28.5189833 33.8364833 

117 JMA07 1424 NE 15 21 3.198153155 0.440329218 28.5214833 33.8368500 

118 SGRS01 1739 SE 5 13 13.924583918 0.095802469 28.6177333 33.9213833 

119 SGRS02 1686 SE 5 7 9.445633781 0.153539172 28.6158333 33.9224167 

120 SGRS03 1642 N 5 19 12.703171975 0.094227336 28.6140000 33.9234667 

121 US01 2580 NE 5 12 1.182870543 0.9232 28.3617500 33.9171833 

122 US02 2566 E 25 11 3.139821206 0.470507545 28.3615333 33.9173333 

123 US03 2509 NE 25 13 1.680201839 0.715419501 28.3610167 33.9180000 

124 US04 2449 NE 30 12 1.206969808 0.911303407 28.3609667 33.9189833 

125 US05 2405 NE 15 12 2.295966888 0.598097503 28.3614333 33.9193667 

126 US06 2337 E 10 14 1.859801362 0.723865878 28.3623000 33.9199333 

127 US07 2304 NE 15 8 3.283998677 0.426035503 28.3627333 33.9203333 

128 US08 2252 N 20 5 1.773062949 0.735294118 28.3633333 33.9209333 

129 US09 2199 NE 20 17 4.057488356 0.384688091 28.3644500 33.9207833 

130 US10 2148 NE 25 18 2.181483295 0.662290629 28.3653500 33.9215500 

131 US11 2111 NE 15 14 7.844588219 0.161652893 28.3654667 33.9225167 

132 US12 2049 NW 15 7 4.854844706 0.317174515 28.3675333 33.9236667 

133 WA01 1589 NE 20 16 3.232395322 0.4086 28.5503000 33.9501000 
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134 WA02 1632 SW 10 13 3.921979462 0.346342651 28.5502167 33.9512000 

135 WA03 1704 N 30 14 11.102946765 0.1434375 28.5466833 33.9511333 

136 WA04 1634 N 5 14 8.024092252 0.209420154 28.5478500 33.9524500 

137 WA05 1703 SW 40 17 10.989182916 0.119872 28.5443833 33.9578000 

138 WA06 1734 N 25 7 8.029984818 0.176762354 28.5428167 33.9562833 

139 WAH01 1729 N 20 4 7.874831968 0.1938 28.5457500 33.9505333 

140 WAH02 1792 N 10 18 6.201041903 0.249155767 28.5446667 33.9503000 

141 WAH03 1853 N 30 22 3.927592272 0.414836911 28.5436833 33.9505833 

142 WAH04 1901 N 25 17 7.169118748 0.199538639 28.5428333 33.9495500 

143 WAH05 1956 N 5 18 8.687395617 0.139053254 28.5420167 33.9491833 

144 WAH06 2094 N 20 9 7.304906223 0.197355372 28.5401000 33.9485000 

145 WAH07 2006 NE 30 15 4.158923154 0.402729139 28.5417500 33.9487333 

146 WAJ01 1687 NE 15 18 12.191800915 0.132315017 28.5491667 33.9387833 

147 WAJ02 1782 NW 35 21 7.386183796 0.203546407 28.5475667 33.9375500 

148 WAR01 1476 N 5 13 5.633223222 0.284489796 28.5771833 33.9829000 

149 WAR02 1526 N 20 20 16.111785766 0.0752 28.5750833 33.9826667 

150 WAR03 1573 N 20 13 9.428775119 0.134696955 28.5742000 33.9827000 

151 WAR04 1627 N 30 5 7.471667103 0.175384615 28.5733333 33.9826500 

152 WAR05 1677 N 35 11 6.088077006 0.231426693 28.5727167 33.9828000 

153 WAR06 1721 N 30 10 3.746225576 0.37964357 28.5721000 33.9829667 

154 WAR07 1781 SE 15 14 5.362322807 0.252739226 28.5713000 33.9831333 

155 WAR08 1761 N 5 6 11.140920952 0.111531191 28.5709000 33.9833667 

156 WAR09 1795 N 20 12 12.122806836 0.102638556 28.5697333 33.9834500 

157 WAR10 1804 N 10 8 9.002771765 0.165619835 28.5693833 33.9831167 

158 WAR11 1850 N 10 15 7.437873350 0.16805411 28.5679833 33.9834500 

159 WAR12 1871 N 5 9 3.835363652 0.374710744 28.5669833 33.9836333 

160 WAR13 1938 N 20 6 9.120347455 0.151962304 28.5650000 33.9834000 

161 WAR14 1893 N 25 14 10.846300118 0.129529363 28.5660833 33.9833667 

162 WAT01 1737 NW 10 19 16.312125209 0.069243761 28.5827833 33.8869000 

163 WAT02 1764 N 5 5 10.500936888 0.124705882 28.5812000 33.8875833 

164 WAT03 1789 W 10 12 10.117803512 0.1178125 28.5788500 33.8899833 

165 WAT04 1801 NW 5 10 5.638814736 0.313432836 28.5759333 33.8911167 

166 WAT05 1825 SW 10 5 7.997850222 0.149101837 28.5736333 33.8943667 

167 WAT06 1996 N 0 14 8.055573001 0.134986226 28.5600667 33.9000333 

168 WAT07 1974 NE 10 10 7.796129288 0.22972973 28.5606833 33.9001333 

169 WAT08 1951 NE 5 15 9.383467289 0.133674215 28.5615833 33.9007667 

170 WAT09 1921 N 10 18 5.590505195 0.28625 28.5626333 33.9022333 

171 WAT10 1898 N 15 8 7.877810406 0.158464035 28.5639167 33.9020833 

172 WAT11 1870 NW 0 10 7.110831302 0.180423667 28.5669167 33.9006500 

173 WAT12 1850 N 10 8 10.529704964 0.110082645 28.5693500 33.8986833 

174 WB01 1452 N 15 11 5.954147518 0.212653486 28.5788667 33.9245167 

175 WB02 1502 N 15 12 8.604623787 0.131944444 28.5777500 33.9236333 

176 WB03 1549 NE 10 12 14.250960116 0.093449626 28.5769000 33.9226833 

177 WB04 1604 NE 20 6 12.262803336 0.089382716 28.5764333 33.9217500 

178 WB05 1652 NE 20 6 11.685650185 0.14852054 28.5762333 33.9212167 

179 WB06 1679 NW 20 7 15.816711568 0.082138641 28.5758167 33.9208333 
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180 WF01 1751 NE 25 16 6.055643585 0.244760899 28.5516500 33.9576000 

181 WF02 1750 W 10 15 6.747559589 0.202371252 28.5519167 33.9583167 

182 WF03 1823 SW 40 12 2.573079233 0.529369883 28.5483167 33.9613333 

183 WF04 1801 NE 30 6 8.496554652 0.149689523 28.5479167 33.9607333 

184 WF05 1836 N 35 9 10.102815878 0.126704785 38.5451167 33.9626500 

185 WF06 1870 SW 30 11 9.937875681 0.130430604 28.5467833 33.9643833 

186 WF07 1931 S 40 18 3.701760308 0.394048776 28.5476333 33.9644667 

187 WF08 2007 S 45 10 9.685842451 0.123981033 28.5488000 33.9646167 

188 WG01 1914 NW 5 12 4.195849081 0.292165511 28.5383000 33.9206167 

189 WG02 1912 NW 5 7 8.879955221 0.176767677 28.5374333 33.9190500 

190 WG03 1907 W 10 14 6.180754087 0.225618451 28.5369500 33.9177000 

191 WG04 1891 NW 5 10 9.877623239 0.140310204 28.5356000 33.9143167 

192 WG05 1889 SW 5 9 9.246870243 0.160950912 28.5351333 33.9133833 

193 WG06 1888 N 10 5 8.653556032 0.149653434 28.5346333 33.9124833 

194 WG07 1887 SE 15 12 6.881538708 0.198333333 28.5343833 33.9113167 

195 WG08 1875 W 5 14 5.816177212 0.214285714 28.5332333 33.9083500 

196 WG09 1876 SE 15 2 7.262543835 0.184285714 28.5322833 33.9052167 

197 WG10 2011 SW 20 10 5.344409808 0.293207908 28.5371500 33.8983500 

198 WG11 1965 S 20 9 7.671860555 0.146449704 28.5358833 33.8988833 

199 WG12 1910 SW 10 19 11.250003570 0.121957815 28.5346000 33.8990833 

200 WG13 1885 SE 5 9 11.848855916 0.09815586 28.5331667 33.8996833 

201 WG14 1792 NE 5 5 7.038790151 0.193201526 28.5360667 33.8858000 

202 WG15 1768 NE 5 6 12.205056450 0.107354184 28.5474833 33.8786333 

203 WG16 1717 NW 0 12 9.341550033 0.141111111 28.5436667 33.8753000 

204 WJ01 1646 SE 10 18 2.412012300 0.661599619 28.5832167 33.9457167 

205 WJ02 1710 SE 30 14 6.467887368 0.264060357 28.5845667 33.9452833 

206 WJ03 1766 SE 40 8 9.522124811 0.147727273 28.5853500 33.9447833 

207 WJ04 1822 NE 25 15 5.005337212 0.287407407 28.5858500 33.9440667 

208 WJ05 1878 SE 5 14 5.932466299 0.229275061 28.5867833 33.9431000 

209 WJ06 1929 NE 20 12 3.580854321 0.385354377 28.5872000 33.9417333 

210 WJA01 1792 N 5 18 5.079225877 0.273662551 28.5337333 33.9649500 

211 WJA02 1810 NE 10 11 11.685068171 0.105916728 28.5325000 33.9641500 

212 WJA03 1852 NE 10 10 17.708575024 0.07231405 28.5316833 33.9627833 

213 WJA04 1901 S 20 12 8.987254776 0.154840563 28.5316333 33.9617500 

214 WJA05 1954 E 15 10 14.409980678 0.085648148 28.5323000 33.9614333 

215 WJA06 2007 NE 25 19 9.807889383 0.125 28.5310667 33.9596000 

216 WJA07 2060 N 30 10 5.097383596 0.290816327 28.5305333 33.9593000 

217 WJA08 2094 E 5 17 7.640075026 0.183391003 28.5308000 33.9573000 

218 WJA09 2156 SE 5 12 7.869019257 0.142733564 28.5330500 33.9557167 

219 WJA10 2199 NE 10 4 9.510517013 0.135147929 28.5335167 33.9543000 

220 WJA11 2251 NE  0 13 4.324772196 0.345 28.5341667 33.9532333 

221 WJA12 2290 NE 5 20 4.489406338 0.339359504 28.5343500 33.9524167 

222 WJA13 2287 NE 5 13 3.692375380 0.327032136 28.5347000 33.9525167 

223 WJA14 2312 E 5 20 1.783049832 0.69550173 28.5345000 33.9515333 

224 WJA15 2188 SE 0 20 3.582729340 0.303312835 28.5344000 33.9544833 

225 WL01 1490 SE 5 7 10.981542241 0.142115088 28.5766333 33.9736667 
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226 WL02 1541 SE 15 5 6.771214482 0.191485969 28.5787000 33.9716333 

227 WL03 1590 SE 15 11 15.847571912 0.0819161 28.5797333 33.9706333 

228 WL04 1640 SE 20 9 13.664292435 0.115646259 28.5805833 33.9698833 

229 WL05 1693 SW 15 9 9.556318536 0.162644628 28.5820333 33.9702833 

230 WL06 1749 SE 10 16 4.324926757 0.366804141 28.5828667 33.9695833 

231 WL07 1829 N 10 8 4.846199789 0.307218935 28.5847333 33.9699500 

232 WL08 1859 W 20 8 8.475029492 0.162238996 28.5848500 33.9704667 

233 WMS01 1648 NW 20 10 6.826910689 0.236131657 28.5490333 33.9410333 

234 WMS02 1713 N 5 13 11.880561164 0.102880658 28.5463667 33.9400167 

235 WMS03 1754 NW 5 8 15.727444662 0.0853125 28.5445500 33.9400500 

236 WMS04 1816 W 30 13 9.861461969 0.120772246 28.5435167 33.9408333 

237 WMS05 1912 W 30 12 5.329006922 0.225847593 28.5415500 33.9417167 

238 WS01 1522 NW 25 17 12.318286720 0.098689792 28.5598500 33.9573667 

239 WS02 1569 NW 25 21 3.193428132 0.450612731 28.5591500 33.9574667 

240 WS03 1618 NW 30 9 4.379130451 0.271224643 28.5575667 33.9577167 

241 WS04 1646 NW 35 10 11.607547527 0.109026063 28.5580833 33.9588333 

242 WS05 1546 SE 20 14 3.510011735 0.370844074 28.5598833 33.9559500 

243 WS06 1573 E 25 15 7.139434172 0.174702278 28.5581833 33.9553500 

244 WS07 1629 N 25 9 9.218326161 0.157123736 28.5563500 33.9554500 

245 WS08 1700 N 40 6 6.849377289 0.19459285 28.5551833 33.9555833 

246 WSG01 1369 NW 30 9 6.688585857 0.228373702 28.5903167 33.9134667 

247 WSG02 1436 SE 5 9 10.430281342 0.115420129 28.5893833 33.9114667 

248 WSG03 1481 NE 5 8 12.385712618 0.101105592 28.5882167 33.9095833 

249 WSG04 1539 NE 5 6 9.167128240 0.154147383 28.5867167 33.9075500 

250 WSG05 1612 NE 20 4 16.674020984 0.088960302 28.5851667 33.9051167 

251 WSG06 1679 NE 5 13 11.730822701 0.103537981 28.5839667 33.9026667 

252 WSGR01 1825 N 5 6 13.236936949 0.107744304 28.5744500 33.8975000 

253 WSGR02 1776 N 10 7 10.012945871 0.169876543 28.5767000 33.8996500 

254 WSGR03 1725 NW 5 6 9.519204795 0.152199762 28.5821000 33.9012167 

255 WSH01 1525 NE 5 13 2.603865656 0.567593292 28.5625667 33.9651333 

256 WSH02 1531 N 10 8 15.125281669 0.086894133 28.5620667 33.9507667 

257 WSH03 1565 E 25 10 7.206660808 0.231649324 28.5608167 33.9656667 

258 WSH04 1649 N 40 10 9.910363956 0.135371901 28.5585833 33.9656667 

259 WSH05 1686 NE 25 12 12.195763229 0.117101322 28.5582833 33.9649667 

260 WSH06 1747 N 35 9 7.431920152 0.171600666 28.5572667 33.9656833 

261 WSH07 1838 N 40 19 4.994300261 0.278806584 28.5561167 33.9656333 

262 WSH08 1905 NE 40 10 5.927843623 0.214625446 28.5553667 33.9663333 

263 WSH09 1987 N 30 11 6.770962645 0.199372057 28.5547333 33.9663833 

264 WT01 1421 NE 30 12 3.886348037 0.30825831 28.5831667 33.9224833 

265 WT02 1477 NE 20 18 2.739831165 0.522928994 28.5816500 33.9207500 

266 WT03 1530 E 10 12 9.657941631 0.196361059 28.5802167 33.9199000 

267 WT04 1624 NE 35 14 5.110547604 0.3155116 28.5789333 33.9187833 

268 WT05 1596 E 15 20 6.196609235 0.257610515 28.5795500 33.9185500 

269 WT06 1674 N 30 15 12.986866443 0.093834505 28.5784667 33.9174000 

270 WT07 1732 NE 20 18 12.342102612 0.106305267 28.5777000 33.9333167 

271 WT08 1832 NE 20 11 8.944431660 0.140758203 28.5764167 33.9320333 
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272 WT101 1585 NE 10 8 4.915314629 0.316144786 28.5656833 33.9309500 

273 WT102 1641 NW 15 23 5.204469215 0.298155128 28.5646500 33.9292167 

274 WT103 1706 N 20 9 8.321153091 0.153687371 28.5634667 33.9283667 

275 WT104 1771 N 40 6 8.322876191 0.149368559 28.5625833 33.9280333 

276 WT105 1832 N 15 8 11.908791223 0.110893556 28.5621167 33.9269833 

277 WT106 1893 SE 20 3 12.685687001 0.098072562 28.5609833 33.9266833 

278 WTF01 1377 N 25 10 11.116419013 0.118227732 28.5979667 33.9144167 

279 WTF02 1418 E 20 16 6.932389446 0.22175981 28.5967000 33.9105333 

280 WTF03 1470 E 20 8 8.957490523 0.15451895 28.5967000 33.9088167 

281 WTF04 1572 NE 35 14 2.943697947 0.4190625 28.5963167 33.9068333 

282 WTF05 1621 E 35 16 6.896264163 0.223494089 28.5966167 33.9053333 

283 WTF06 1654 NE 15 19 7.200292335 0.199432892 28.5966500 33.9046500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


