- 1
- 2 Elevation patterns of plant diversity and recent altitudinal range shifts in Sinai's
- 3 high mountain flora
- 4 Peter Coals <sup>1\*</sup>, Avi Shmida <sup>2</sup>, Amiel Vasl <sup>3</sup>, Nasr Mansour Duguny <sup>4</sup> & Francis
- 5 *Gilbert*<sup>1</sup>
- 6 1. School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- 7 2. Dept. of Ecology, Evolution & Behavior, Institute of Life Sciences, The Hebrew
  8 University of Jerusalem, Jerusalem, Israel.
- 9 3. Leon Blaustein Ecology Lab, University of Haifa, Haifa 31905, Israel.
- 10 4. Abu Seila, St Katherine, South Sinai, Egypt.
- 11

### 12 Email addresses of authors:

- 13 Peter Coals: <u>petercoals@hotmail.co.uk</u>
- 14 Avi Shmida: <u>shmida@math.huji.ac.il</u>
- 15 Amiel Vasl: <u>amielvasl@gmail.com</u>
- 16 Nasr Mansour: <u>nasrmansour@yahoo.com</u>
- 17 Francis Gilbert: <u>francis.gilbert@nottingham.ac.uk</u>
- 18

### **19** \* Corresponding author:

- 20 Peter Coals
- 21 email: <u>petercoals@hotmail.co.uk</u>
- 22 Tel. +44(0)7733125498
- 23
- 24 **Running title:** Range shifts in Sinai mountain flora
- 25

28

Keywords: altitude; climate change; endemic plants; plant diversity; range margins; relict
 plants; mountains; desert

- 29 Statement of authorship: FG & PC designed the study; AS, PC & NM collected field data;
- 30 AV translated records from Hebrew; PC & FG analysed data; PC & FG wrote the first draft of
- 31 the manuscript.

32

### 33 Abstract

Questions: Is there evidence of recent altitudinal range shifts in a hyper-arid Middle Easterndesert mountain flora?

36 How do the directions of shift for upper and lower altitudinal range limits of plants vary?

37 Location: Hyper-arid mountain desert, St Katherine Protectorate, South Sinai, Egypt.

Method: We tested for shifts in both upper and lower altitudinal range limits by comparing a 38 1970s dataset of recorded species' limits with recent surveys using altitudinal transects across 39 36 sites. Altitudinal limits between 63 paired upper-limit and 22 paired lower-limit values from 40 41 the 1970s and 2014 were compared using paired t-tests; binomial tests were used to indicate the dominant direction of change. The upper and lower limits of 22 species were considered 42 43 together to allow assessment of overall altitudinal range-size changes. In order to avoid the 44 potential effect of yearly environmental fluctuations on the distributions of annual species, 45 subsets of upper and lower limit shifts were taken for perennials, and trees and shrubs.

**Results:** Our results show significant overall upslope shifts in mean upper altitudinal limits and significant overall downslope shifts in mean lower altitudinal limits. A majority of assessed species expanded their altitudinal ranges, but the responses of individual species varied. Since perennial herbs/graminoids, and trees and shrubs, show strong patterns of change, we suggest there has been a long-term shift in altitudinal range in South Sinai's mountain flora. Greater research effort needs to be focussed upon the drivers of range-shift responses in arid regions.

52

- 54
- •
- 55
- 56

57

### 58 **Introduction**

Recent range shifts in both latitudinal and altitudinal distributions have been recorded 59 60 across animal and plant taxa in response to changes in climate, with ranges expanding at high 61 latitudes and altitudes, and contracting at lower latitudes and altitudes (e.g. Wilson et al. 2005; Chen et al. 2011). Lower latitudinal and altitudinal range limits, the rear or trailing edges of 62 distributions, have received little attention (Hampe & Petit 2005), despite these margins often 63 64 contributing to higher levels of regional genetic diversity (e.g. Hewitt 2004) and being important in the maintenance of biodiversity (Hampe & Petit 2005). Given the potential 65 66 conservation implications of the lower-margin shifts of plants, it is therefore surprising that empirical studies are so poorly represented in the literature (Lenoir & Svenning 2015). It is true 67 that lower limits are harder to assess, with a less clear-cut position influenced by a multitude 68 of factors rather than mainly climatic (e.g. biotic interactions, and propagules moving downhill 69 70 under gravity). Nevertheless, in arid regions, water availability is a crucial factor, which is expected to ameliorate towards higher elevations through convective cloud formation, and 71 72 hence lower limits may be more easily recognised.

73 Under conditions of global warming it seems logical that up-slope range shifts of plants 74 attributed to changing climatic factors would be the norm(Klanderud & Birks 2003; Walther 75 et al. 2005; Stöckl et al. 2011; Gottfried et al. 2012; Pauli et al. 2007, 2012; Jump et al. 2012; 76 Matteodo et al. 2013; Wipf et al. 2013). It is important to note that changes such as these are 77 not necessarily always consistent with temperature being the sole dominant factor inducing 78 change (Grytnes et al. 2014). However it seems probable that changes in both the thermal 79 regime and water availability will be the main drivers of altitudinal changes, with adverse changes in both (e.g. warmer and drier) causing the greatest pressure (McCain & Colwell 80 2011). 81

Globally, mountainous regions represent important hotspots of endemism (e.g. Körner 2003; Nagy & Grabherr 2009), but mountain species are especially vulnerable to extinction due to habitat loss induced by climate change, because shifting climatic zones will reduce suitable habitat area, leading to 'mountain-top extinctions' (Dirnböck et al. 2011). Plant species in arid regions may also be very susceptible to climate change, and the loss of arid-land endemics may occur in both lowland (Foden et al. 2007) and mountain (Van de Ven et al. 2007) environments under increased levels of global warming.

89 There are very few studies of recent altitudinal changes in plant distributions from 90 subtropical or arid regions (Jump et al. 2012; Lenoir & Svenning 2015). We study here the flora of the hyper-arid desert mountains of South Sinai, Egypt. Egypt and the wider Middle 91 92 East region has seen recent temperature increases (Domroes & El- Tantawi 2005; Zhang et al. 93 2005), with average warmest daily maximum temperatures increasing by  $>1^{\circ}$ C since the 1970s (Donat et al. 2014). Sinai's southern montane regions contain relatively high levels of 94 95 biodiversity (Zalat et al. 2009), and are home to 19 of Egypt's 33 endemic plant species (Rashad 96 et al. 2002). The area is recognised as one of the most important centres of plant diversity in 97 the Middle East (IUCN 1994). Greater botanical diversity has been suggested to occur at higher altitudes in Sinai due to a diversity of habitat types and favourable environmental factors, 98 especially the greater water availability, precipitation, and soil moisture retention, in high 99 100 altitude areas (Moustafa & Klopatek 1996; Moustafa & Zaghloul 1996).

Many species of plants in the high mountains of southern Sinai exhibit disjunct distributions of Holarctic species found more commonly further north, suggesting that these species are relics of a more humid, colder past (Shmida 1977). The isolation of plants which thrive in cooler damper climates in refugia on the highest of Sinai's mountains suggests their vulnerability to rising temperatures. Recent shifts in plant altitudinal distributions in the Middle

East are expected, but remain completely unstudied until now, and especially not with themultifaceted approach of looking at leading and trailing changes simultaneously.

108 Therefore, we focus here on the following hypotheses. First we ask whether there is 109 evidence of recent range shifts in the high mountain flora in South Sinai, predicting that these should be evident as largely up-slope movements. The null hypothesis is of course no change, 110 111 but alternatively the mean response may be zero because of idiosyncratic responses of the different species, which may not be responding to temperature but to other factors, especially 112 113 water balance (cf. Rapacciuolo et al. 2014). Second, we study the directions of shift for upper 114 and lower altitudinal range limits, and split the species into growth forms to help interpret the results. The prediction is that upper and lower limits should move in concert, and that all plants 115 116 should show the same patterns.

117

118

#### 119 Methods

We use the approach of comparing modern with historical data (Stöckl et al. 2011). Ideally the methodologies and locations should be identical, but in this case the earlier surveys were not quantitative and did not locate the transects with geographic coordinates. With this caveat, the unique existence of the earlier data for the Middle East makes the comparison worthwhile.

124 Study region

The St Katherine Protectorate covers much (4350 km<sup>2</sup>, almost half the area) of the southern peninsula of Sinai, encompassing the majority of a high-altitude massif and reaching down to sea level to form one of Egypt's largest protected areas (Grainger & Gilbert 2008). An igneous pre-Cambrian ring-dyke encircles 640 km<sup>2</sup> of the centre of the Protectorate. The ring-dyke contains Egypt's highest mountain, Mt St Katherine, at 2643 m. The mountainous terrain is inter-cut with dry steep-sided wadis (valleys). South Sinai receives higher than average rainfall (62 mm) (Zahran & Willis 2008) and generally cooler temperatures (summer mean 30°C) than
the rest of Egypt (Grainger & Gilbert 2008).

133

134 Historical data

To assess temporal changes in upper altitudinal range limits, we compared our field data with a 1970s dataset compiled by Arbel & Shmida (1979) in a semi-quantitative format. Data were collected during the years 1974-1976 and focused upon the mountainous area within the St Katherine ring-dyke (see Fig. 1 map-inset: shaded area).

139 Vegetation was sampled by recording species richness in quadrats of area 100 m<sup>2</sup>. Quadrats were placed along transects divided into altitudinal units of 200 m running up wadis 140 141 and mountain slopes. In addition, quadrats were placed wherever habitat type or plant 142 dominance changed noticeably. Each altitudinal unit was sampled several times in different 143 locations but the coordinates for each quadrat were not recorded. Additional incidental 144 vegetation observations were included from lower altitudes in the St Katherine Protectorate 145 falling outside the ring-dyke and its high mountains; these observations were incorporated into 146 the main dataset. Unfortunately the only remaining details of the original dataset available to 147 this study were records of minimum and maximum altitudes for plant species recorded at a resolution of 100 m altitude, together with a subjective assessment of relative abundance 148 149 (common, very frequent, frequent, rare, very rare, found once) and statements of their common 150 habitats (gorges, weathered slopes, gravel wadis, rock cracks, wet places, etc) (see Table S1).

151

152 New data

Quantitative data were collected during field surveys running from late October to midDecember 2014. Surveys were carried out in the high mountains within the igneous ring-dyke
area over an altitude range of 1324 m to 2629 m (see Fig. 1 for survey locations, Table S3 for

quadrat GPS locations, Table S4 for site photos and descriptions, and Table S5 for species lists and abundances by quadrat). We were not able to revisit exact sites surveyed in the 1970s as quadrat location had not been recorded; instead we surveyed extensively within the same mountainous region (Fig 1) including the same mountains and habitats as the older surveys. It is probable that new and old quadrats were close or very close to one another.

Vegetation was sampled along sloped transects running through wadis, mountain slopes, and gullies. The lengths of each transect were determined by the scale of the landscape, running from the lower to the upper altitudinal limits to encompass as great an altitudinal range as possible. As landform/habitat type is a major determinant of the diversity and community composition of the vegetation in Sinai (Moustafa & Klopatek 1996), the location of transects was chosen to cover all major habitat types.

Quadrats of area 100  $m^2$  were demarcated along transects approximately every 50 m 167 change in elevation where terrain permitted. In total 283 quadrats were placed in 36 sites 168 covering 28300 m<sup>2</sup>. Location and altitude above sea level were measured at the centre of the 169 170 quadrats using a Garmin etrex 30 hand-held GPS with the GPS+GLONASS (± 3 m) and barometric altimeter ( $\pm$  3 m) functions respectively. At each quadrat, we recorded: aspect of 171 172 slope to the nearest cardinal point; gradient to the nearest five degrees (360° scale); a brief site description; and a photograph. All vascular plant species in the quadrats were identified (using 173 174 Boulos 1995-2005) and individually counted (with individuals of multiple stemmed/clumping 175 plants defined as those with stems returning to a common root-stock): plant names follow 176 Boulos (1995-2005).

177 A total of 241 species were recorded from the 1970s: of these, notable absences 178 compared with the plants of 2014 were *Lavandula pubescens*, and *Gomphocarpus sinaicus*. 179 The identity of *Chiliadenus montanus* was uncertain from records and was therefore not 180 included in analyses to avoid inaccuracy due to ambiguity. *Fagonia arabica* and *F. bruguieri*  were not differentiated in the earlier dataset, and therefore for the purposes of comparison the records collected in 2014 were amalgamated for these species. In total, 81 species were available with upper altitudinal limits from both the 1970s and 2014. The significantly greater sampling effort required to establish accurately the lower altitudinal limits for the more widespread species was beyond the scope of this study which deals specifically with the highaltitude flora of South Sinai. However, the lower altitudinal limits of 25 species fell within the altitudinal range surveyed, thereby permitting their analysis.

Numerical abundance data were not available for species from the 1970s dataset. In the 2014 dataset, to allow reasonably accurate estimation of altitudinal limits, only species for which more than 10 individuals had been recorded during the entirety of the 2014 field surveys were selected (see Table S2). This selection allowed the upper limits of 63 and lower limits of 22 species to be identified. Subsets of upper- and lower-limit shifts were taken for perennials, and trees and shrubs to allow comparisons to be made that avoided the potential effect of yearly environmental (specifically rainfall) fluctuation on the distributions of annual species.

195

196 *Statistical methods* 

All statistical and graphical analyses were carried out using R (Version 3.1.2, R Foundation forStatistical Computing, Vienna, Austria).

199 (a) Patterns of diversity in the new data

To describe the 2014 dataset, weighted mean  $(\pm SE)$  elevations were calculated for all species recorded. For each quadrat, the three Hill's numbers (Chao et al. 2012) were calculated as measures of components of diversity representing effective species richness. The general equation is:

204 
$${}^{q}D = (\sum p_{i}{}^{q})^{(1/(1-q))}$$

where q = 0, 1, or 2. Ascending Hill's numbers (q values) give reducing weight to the lessabundant species, reflecting the relative ecological importance of more abundant species (Hill 1973). Thus <sup>0</sup>D measures species richness, <sup>1</sup>D represents the number of 'typical' common species, while <sup>2</sup>D represents the number of 'very abundant' species present in the community (Chao et al. 2012). Therefore considered together, Hill's numbers present a picture of community evenness.

To describe altitudinal patterns of diversity in the 2014 data, abundances were assigned to altitudinal bands of 50 m. Smoothing splines were fitted to the three Hill's numbers with altitude as the predictor, using the GAM (Generalized Additive Model) function of R-package *ggplot2* (Wickham 2009).

215

#### 216 (b) Range-shift comparison

217 To estimate shifts in altitudinal ranges, the altitudinal limits between 63 paired upper-limit and 218 22 paired lower-limit values from the 1970s and 2014 were compared using paired t-tests to 219 test the null hypothesis that the mean difference was zero. Sign tests (i.e. binomial tests on the 220 numbers of negative and positive changes) were used to indicate the dominant direction of change. 22 species had estimates of both upper and lower limits, and so were considered 221 222 together to allow assessment of overall altitudinal range-size changes. Species were categorised 223 as showing no change, expanded range, or contracted range (Table 1). Movement of less than 224 100 m for either limit was regarded as stationary in view of the measurement resolution of the 225 1970s data. A binomial test was used to identify whether expansion or contraction of ranges was the dominant pattern. 226

As an aid to interpretation, reasons for the changes were explored in a GLM by using the differences in altitudinal limits between 2014 and the 1970s as the response variable, and a variety of predictors: flowering season(s), basic growth-form (herb, shrub or tree), Raunkiær

life-form, and basic life-form (annual or perennial). The best fitting models and predictors wereselected by use of AICs.

232

### 233 **Results**

#### 234 Patterns of diversity in the new data

The overall patterns of diversity were indicated by the three Hill's numbers, but each followed a distinct altitudinal pattern (see Fig. 2). The highest levels of species richness (<sup>0</sup>D) were found at higher altitudes, decreasing down a shallow concave curve with the lowest values at lower altitude (approx. 1400-1600 m). The number of 'typical' (common) species, <sup>1</sup>D, was highest at lower-middle elevations (approx. 1700-1800 m), and declined with increasing altitude. In contrast, the number of abundant species, <sup>2</sup>D, was lowest at lower-middle elevations, with highest values at the top of the altitude range. The summary data are in Tables S2 and S3.

242

#### 243 Range-shift comparisons

Comparison of the upper altitudinal limits from the 1970s and 2014 for 63 plant species 244 245 indicated a significant difference between mean past and present upper altitudinal limits, with 246 the current limit (mean 2228.6  $\pm$  294.5 m) greater than in the past (mean 2125.2  $\pm$  350.2 m: 247 paired t = 3.37, df = 61, p=0.0013). Although the mean upper altitude limit for all species was found to be significantly higher, there was no evidence of a preponderance of species increasing 248 249 rather than decreasing their upper altitudinal limit (38 of 63 spp, binomial test p=0.065: see Fig. 3 for details). However, for species differing by more than 100 m, a significantly greater 250 251 number of species moved upslope (26/40, binomial test p=0.04). This was also the case for species differing by more than 250 m (16/18, binomial test p<0.001). 252

The 22 species whose lower altitudinal limits were assessed showed a significantly downwardly shifted mean lower altitudinal limit (current mean  $1568.0 \pm 162.1$  m, past mean 1668.2  $\pm$  166.6 m; paired t = 3.02, df = 20, p=0.0064). In addition to this downward shift overall, a significantly greater number of species shifted their individual lower altitudinal limits downwards than did not (17/22, binomial test p=0.008) (see Fig. 4 for details). This finding also held true when only considering species for which movement was greater than 100 m (12/13, binomial test p=0.002).

260 In species with measurements for both upper and lower altitudinal limits, a significant 261 majority expanded their altitudinal ranges between the 1970s and 2014 (15/22, binomial test 262 p<0.001). Three species showed divergence of altitudinal limits (lower limit moved downslope, 263 upper limit moved upslope) and one convergence (lower limit upslope, upper limit downslope) (see Table 1), whilst four showed parallel downslope movement of upper and lower limits. The 264 265 upper and lower limits of each species thus appeared to move independently. Lower limits 266 moved down in 12 species, up in one, and remained stationary for nine. Upper limits moved 267 down in eight species, up in eight, and remained stationary for six species. Of the species which 268 shifted their lower limits downslope, there was no preponderance which also showed parallel 269 downslope movement of their upper limits (4/12, binomial test p=0.927).

270 Basic life form (annual or perennial) was the best predictor of the change in upper altitudinal limit ( $F_{1.61} = 6.9$ , p=0.01), with annuals on average moving up four times further 271 than perennials (292 m vs. 72 m). There was only one annual and 21 perennials with measured 272 273 changes in lower altitudinal limit, and the value for the former (downslope 75 m) was not 274 different from the distribution of values for the perennials (which on average moved downslope 275  $101.4 \pm 34.7$  m: one-sample t = 0.76, df=19, n.s.). Basic life form was the best additional predictor in a GLM predicting the 2014 upper limits from those of the 1970s, with a much 276 277 steeper slope for perennials (0.70) than annuals (0.29) ( $F_{1.59} = 4.49$ , p=0.038).

Analysis of only the perennial species showed significantly higher mean upper altitudinal limits in 2014 (mean 2220.8  $\pm$  307.3 m) than in the 1970s (mean 2148.9  $\pm$  342.6 m: paired t = 2.45, df = 52, p=0.018). There was no evidence of a majority of perennial species increasing their upper limits (31/54, binomial test p=0.17), even amongst those which differed by more than 100 m (20/32, binomial test p=0.12). However, for species that differed by more than 250 m, a significantly greater number moved upslope (10/12, binomial test p=0.02).

The subset of only shrubs and trees also showed significantly higher mean upper limits (present mean 2219.1  $\pm$  311.2 m, past mean 2139.5  $\pm$  353.3 m: paired t = 2.30, df = 36, p=0.027). Again there was no preponderance of increased upper limits among all species (21/38, binomial test p=0.31) or those which differed by more than 100 m (15/22, binomial test p=0.07). Again, however, amongst species that differed by more than 250 m, there was a preponderance of upslope movement (7/8, binomial test p=0.04).

291 The mean lower altitudinal limits of perennials moved significantly downwards in

292 2014 compared to the 1970s (present mean  $1574.8 \pm 162.9$  m, past mean  $1676.2 \pm 166.3$  m:

paired t = 2.92, df = 19, p=0.009). As with all plant species, a significantly greater number of

species moved their lower limit downwards (16/21, binomial test p=0.01), even amongst

those that differed by more than 100 m (12/13, binomial test p=0.002). The mean lower limits

of shrubs and trees also shifted significantly downwards in the 2014 data (1585.7  $\pm$  145.7 m)

297 than in the 1970s (1725.0  $\pm$  171.8 m: paired t = 5.27, df = 12, p=0.0002). Again a

significantly greater number of species moved downslope (14/16, binomial test p=0.006) and

this was particularly the case for species that differed by more than 100 m (9/9, binomial test p=0.002).

301

### 302 **Discussion**

303 Patterns of diversity in the new data

304 The three Hill's number diversity indices provide a greater insight than a single measure (Chao 305 et al. 2012), with higher-order measures emphasising more dominant species. Each index exhibited a different pattern of diversity with altitude. Species richness (<sup>0</sup>D) was greatest at 306 307 high altitudes with low richness found at low to mid-altitudes. This pattern contrasts with more humid mountain systems where plant species richness typically peaks at low to mid-altitudes 308 309 (e.g. Vetaas & Grytnes 2002; Poulos et al. 2007). The refugial nature of South Sinai's high mountains may explain the discrepancy in the pattern of species richness. Favourable climatic 310 311 conditions, primarily increased availability and retention of moisture (Moustafa & Klopatek 312 1996; Moustafa & Zaghloul 1996), at higher altitude support a greater richness than the comparative extremes of temperature and water stress encountered at mid to low altitudes. 313 314 While the temperate flora has largely been lost from much of low-altitude Sinai, in the 315 mountain region of St Katherine remnant species remain only at higher altitudes, leading to a 316 pattern of increasing species richness with increasing altitude (Moustafa et al. 2001). The Hill's number <sup>1</sup>D (the number of typical common species) was highest at the lower altitudes sampled, 317 decreasing in higher areas, whilst <sup>2</sup>D (the number of very abundant species) increases with 318 altitude. These patterns suggest that higher-altitude communities are dominated to a greater 319 320 extent by a few abundant species. The joint interpretation of the patterns of all three diversity 321 indices is that species richness increases with altitude, most likely due to more favourable 322 climatic conditions of lower temperatures and greater moisture on mountain peaks and, 323 although richer, communities become more uneven at higher altitudes with a few species showing increasing levels of dominance. The endemic species recorded in this study peaked in 324 325 density at generally high altitudes, and around mountain peaks, as in other studies in arid 326 landscapes (e.g. Noroozi et al. 2011) and more widely (Vetaas & Grytnes 2002; Essl et al. 2009), although glaciation history is often also important in more northern studies. 327

#### 329 Range shifts since the 1970s

We have found clear evidence of temporal altitudinal range shifts in South Sinai's highmountain flora, although species showing shifts of less than 100 m may be artefacts of the differing methodologies of the 1970s and 2014 studies, using different resolutions and elevation intervals for vegetation recording. Species with larger range shifts, however, showed an obvious pattern of upslope movement of the upper limit, but also downslope movement of the lower limit.

336 There have certainly been globally reported trends towards upwards shifts in range 337 limits and changing community assemblages on mountain peaks, often attributed to climate change (McCain & Colwell 2011; Gottfried et al. 2012; Matteodo et al. 2013). Indeed climate 338 339 change is expected to be the main cause of range shifts, especially when considering both 340 core components temperature and precipitation. Nevertheless, wider consequences of climate 341 change, including changes in water balance (Crimmins et al. 2011), the area of bare soil 342 surface (Walther et al. 2002), and elevated atmospheric carbon dioxide levels (Wayne et al. 343 1998) can all influence range shifts in plants, albeit probably of lesser importance. In the case 344 of South Sinai, unfortunately we do not have reliable local long-term site specific climatic 345 and environmental information. Coupled with high levels of small-scale variability in microhabitat conditions (Moustafa & Klopatek 1995; Moustafa & Zaghloul 1996) means that 346 347 accurately determining causes for the observed range shifts is beyond the scope of this study. 348 No good data on long term precipitation in the South Sinai mountains exist. It is therefore difficult conclusively to attribute downward shifts of lower limits to increased precipitation. 349 350 Donat et al. (2014) suggest "a slight wetting trend" across the Arab region since the 1970s. 351 However this must be viewed in light of high site-specificity in precipitation and moisture availability in the South Sinai mountains, as noted by Moustafa & Zaghloul (1996). 352

During the period 1971-2000 Egypt as a whole showed overall mean annual temperature
increases of 0.62°C per decade (Domroes & El-Tantawi 2005), which greatly exceeds the
global trend of 0.17°C per decade (IPCC 2001). Measures of precipitation across the wider
Middle East and North Africa show increasing spatial and temporal variability (Zhang et al.
2005) but little evidence of significant changes in average values in Egypt (Donat et al.
2014).

359 Overgrazing by livestock has been suggested to be a determinant of vegetation 360 diversity and range, including in the South Sinai mountains (e.g. Moustafa 2001), but as with 361 grazing by indigenous peoples worldwide (Davis 2016), these are interpretations with little if any empirical evidence (see Gilbert 2013 for full discussion). Numbers of grazing livestock 362 363 and flock sizes have decreased substantially since the 1960s (Perevolotsky et al. 1989; Gilbert 364 2013), and hence it is possible that relaxed grazing pressure has permitted downslope 365 movement of plant range limits. However, the bulk of livestock flock-size decreases occurred 366 before the date of the 1974-1976 surveys (Perevolotsky et al. 1989), with average flock sizes 367 changing from 78 pre-1968 to ~13 in the 1970s, 10 in 1982, and 7-8 now (Gilbert 2013). 368 Rashad et al. (2002) found the majority of grazing to occur in an altitudinal band between 369 1500 and 1800 m. Only one species (Rubus sanctus) in our datset has its upper limit within 370 this grazing zone, and this was stationary between the 1970s and 2014. Thus we do not 371 believe that grazing has affected the upper altitudinal limits. Of the lower limits recorded in 372 our dataset from the 1970s, 17 of the 22 species fell within this altitudinal grazing zone, but only eight of these showed downslope movement between the 1970s and 2014 (see Table 1 373 374 for detail). Therefore, whilst changes in grazing intensity *may* have affected downslope range 375 shifts, we suggest that climatic change explains the observed upwards range shifts better. Here, in this arid mountain system, we have documented what we think is the first 376 377 record of significant downslope shifts of plant lower-altitudinal limits outside Europe. Despite

the less-than-ideal quality of the historical data, mean upper limits have increased whilst lower limits have decreased since the 1970s, leading to a divergent pattern of mean altitude limits. When considering the upper and lower altitudinal limits of individual species, we found heterogeneity in the joint responses with no clear predominant pattern. One must bear in mind that these species are a subset of the selected group of high-mountain species that may not be representative of all the species present in that environment.

384 We now know that there have been significant upwards shifts in the upper altitudinal 385 limits of South Sinai plant species since the 1970s. Our data are limited to those species with 386 lower limits within the sampled range, but a significantly large proportion show expansions of 387 the altitudinal ranges, suggesting that, at least for now, range contractions are not affecting the 388 majority of high-mountain species. However, the Sinai endemic Silene schimperiana has 389 contracted in altitudinal range. The risk imposed by contracting ranges and habitat loss would 390 therefore be best considered on a case-by-case basis with regard to Sinai's endemic and rare 391 species. No plant extinctions have been recorded for South Sinai, at least within the last 30 392 years, although some are very close to extinction (e.g. Primula boveana: Omar 2014; Jimenez 393 et al. 2014). However this does not mean that shifts in altitudinal limits are not a cause for 394 concern. Modelling of plant ranges under climate change has indicated lags in population 395 dynamics leading to extinction debts (Dullinger et al. 2012). The isolated, refugial nature of 396 South Sinai's plant communities leave them vulnerable to extinction from a number of 397 ecological factors not limited to climate warming. Whilst we cannot conclusively state that observed shifts in altitudinal limits constitute 'fingerprints' of climate warming, they do point 398 399 to ecological change posing potential ecological and conservation issues for the future.

In this study we have presented the first recorded instance of contemporary altitudinallimit shifts in Middle Eastern mountain flora. The fine-scale variability of environmental and
ecological factors within the South Sinai mountain ecosystem highlights the necessity of

403 ecological monitoring, and makes a case for increasing the comprehensiveness and quality of
404 the region's environmental monitoring programmes. Our GPS-marked survey quadrats
405 (supplementary information Table S2) will provide a baseline for future fine-scale monitoring.
406 We also stress how important it is to consider both upper and lower altitudinal limits to give an
407 accurate indication of overall altitudinal range changes. We need to focus on lower limits to
408 understand better the ecological drivers and dynamics underlying heterogeneous responses at
409 the range limits.

410

### 411 Acknowledgements

PC and FG thank the Egyptian Environmental Affairs Agency for permission to carry out the 2014 work, and are very grateful to Mr Mohamed Kotb and the rangers of the St Katherine Protected Area for their support for our work in this and other projects. We are hugely grateful to Ibrahim ElGamal whose botanical and terrain expertise significantly enhanced the quality of this work. We are grateful to the anonymous reviewers, who made extensive comments that have substantially improved the paper.

418

### 419 **References**

- 420 Arbel O. & Shmida A. 1979. *The vegetation of the high mountains of South Sinai*. Society for
  421 the Protection of Nature. Tel Aviv. 67 pp. [in Hebrew].
- Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. 2012. Impacts of
  climate change on the future of biodiversity. *Ecology Letters* 15(4): 365-377.
- 424 Boulos, L. 1999-2005. *The Flora of Egypt*. Vols 1-4. Al Hadara Publishing, Cairo, Egypt.
- 425 Chao, A., Chiu, C.H. & Hsieh, T.C. 2012. Proposing a resolution to debates on diversity
  426 partitioning. *Ecology* 93(9): 2037-2051.
- Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. 2011. Rapid range shifts of
  species associated with high levels of climate warming. *Science* 333: 1024-1026.
- 429 Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. & Mynsberge, A.R. 2011.
- 430 Changes in climatic water balance drive downhill shifts in plant species' optimum
  431 elevations. *Science* 331(6015): 324-327.
- 432 Davis, D.K. 2016. *The arid lands: history, power, knowledge*. MIT Press, USA.

- 433 Dirnböck, T., Essl, F. & Rabitsch, W. 2011. Disproportional risk for habitat loss of high434 altitude endemic species under climate change. *Global Change Biology* 17: 990-996.
- 435 Domroes, M. & El-Tantawi, A. 2005. Recent temporal and spatial temperature changes in
  436 Egypt. *International Journal of Climatology*, 25(1): 51-63.
- 437 Donat, M.G., Peterson, T.C., Brunet, M., *et al.* 2014. Changes in extreme temperature and
  438 precipitation in the Arab region: long-term trends and variability related to ENSO and
  439 NAO. *International Journal of Climatology*, 34(3), 581-592.
- Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A. *et al.*2012. Extinction debt of high-mountain plants under twenty-first-century climate
  change. *Nature Climate Change* 2(8): 619-622.
- Essl, F., Staudinger, M., Stöhr, O., Schratt-Ehrendorfer, L., Rabitsch, W. & Niklfeld, H. 2009.
  Distribution patterns, range size and niche breadth of Austrian endemic plants. *Biological Conservation* 142(11): 2547-2558.
- 446 FAO 2012. Food and Agriculture Organisation. World Development Indicators: average
- 447 *precipitation in depth (mm per year).* Available at:

448 http://data.worldbank.org/indicator/ AG.LND.PRCP.MM.

- Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P.,
  Revilla, N.S., Quisiyupanqui, M.N.R. & Saatchi, S., 2011. Upslope migration of
- 451 Andean trees. *Journal of Biogeography*, 38(4): 783-791.
- Foden, W., Midgley, G.F., Hughes, G., *et al.* 2007. A changing climate is eroding the
  geographical range of the Namib Desert tree *Aloe* through population declines and
  dispersal lags. *Diversity & Distributions* 13(5): 645-653.
- 455 Frei, E., Bodin, J., & Walther, G. R. 2010. Plant species' range shifts in mountainous areas 456 all uphill from here?. *Botanica Helvetica* 120(2): 117-128.
- Gilbert, H. 2013. 'Bedouin overgrazing' and conservation politics: Challenging ideas of
  pastoral destruction in South Sinai. *Biological Conservation*, 160, 59-69.
- Gottfried, M., Pauli, H., Futschik, A., *et al.* 2012. Continent-wide response of mountain
  vegetation to climate change. *Nature Climate Change*, 2, 111-115
- Grainger, J. & Gilbert, F. 2008. Around the sacred mountain: the St Katherine Protectorate in
  South Sinai, Egypt. In: *Values of Protected Landscapes and Seascapes: Protected Landscapes and Cultural and Spiritual Values* (ed. Mallarach, J.M.). IUCN, Gland,
  pp. 21-37.

- Grytnes, J-A., Kapfer, J., Jurasinski, G., *et al.* 2014. Identifying the driving factors behind
  observed elevational range shifts on European mountains. *Global Ecology* & *Biogeography* 23: 876-884.
- Hampe, A., & Petit, R.J. 2005. Conserving biodiversity under climate change: the rear edge
  matters. *Ecology Letters* 8(5): 461-467.
- Hewitt, G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*359: 183-195.
- 473 Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. *Ecology*,
  474 54(2): 427-432.
- 475 IUCN. 1994. *Centres for plant diversity: a guide and strategy for their conservation*. IUCN,
  476 Cambridge, UK.
- 477 IPCC. 2001. *Climate change 2001*. The Intergovernmental Panel on Climate Change 3rd
  478 assessment report, Geneva, Switzerland.
- Jimenez, A., Mansour, H., Keller, B. & Conti, E. 2014. Low genetic diversity and high levels
  of inbreeding in the Sinai primrose (*Primula boveana*), a species on the brink of
  extinction. *Plant Systematics & Evolution* 300: 1199-1208.
- Jump, A.S., Huang, T.J. & Chou, C.H. 2012. Rapid altitudinal migration of mountain plants in
  Taiwan and its implications for high altitude biodiversity. *Ecography* 35(3): 204-210.
- 484 Klanderud, K. & Birks, H.J.B. 2003. Recent increases in species richness and shifts in
  485 altitudinal distributions of Norwegian mountain plants. *Holocene* 13(1): 1-6.
- 486 Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with
  487 47 tables. Springer Science & Business Media.
- 488 Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., *et al.* 2012. Climate change and impacts in
  489 the Eastern Mediterranean and the Middle East. *Climatic Change* 114(3-4): 667-687.
- 490 Lenoir, J., Gégout, J.C., Marquet, P.A., De Ruffray, P. & Brisse, H. 2008. A significant upward
- 491 shift in plant species optimum elevation during the 20th century. *Science* 320: 1768492 1771.
- 493 Lenoir, J. & Svenning, J.-C. 2015. Climate-related range shifts a global multidimensional
  494 synthesis and new research directions. *Ecography* 38: 15-28.
- Matteodo, M., Wipf, S., Stöckli, V., Rixen, C. & Vittoz, P. 2013. Elevation gradient of
  successful plant triats for colonizing alpine summits under climate change. *Environmental Research Letters* 8(024043): 1-10.

- 498 McCain, C.M. & Colwell, R.K. 2011. Assessing the threat to montane biodiversity from 499 discordant shifts in temperature and precipitation in a changing climate. Ecology 500 Letters 14: 1236-45.
- 501 Morueta-Holme, N., Engemann, K., Sandoval-Acuña, P., Jonas, J.D., Segnitz, R.M. & 502 Svenning, J.C. 2015. Strong upslope shifts in Chimborazo's vegetation over two 503 centuries since Humboldt. Proceedings of the National Academy of Sciences USA 504 112(41): 12741-12745.
- Moustafa, A.R.A. (2001). Impact of grazing intensity and human disturbance on the population 505 506 dynamics of Alkanna orientalis growing in Saint Catherine, South Sinai, Egypt. 507 Pakistan Journal of Biological Science 4(8): 1020-1025.
- 508 Moustafa, A.R.A. & Klopatek, J.M. 1995. Vegetation and landforms of the Saint Catherine 509 area, southern Sinai, Egypt. Journal of Arid Environments 30(4): 385-395.
- 510 Moustafa, A.R.A. & Zaghloul, M.S. 1996. Environment and vegetation in the montane Saint 511 Catherine area, south Sinai, Egypt. Journal of Arid Environments 34(3): 331-349.
- 512 Moustafa, A.R.A., Zaghloul, M.S., El\_Wahab, R.H.A. & Shaker, M. 2001. Evaluation of plant 513 diversity and endemism in Saint Catherine Protectorate, South Sinai, Egypt. Egyptian 514 Journal of Botany 41: 121-139.
- 515 Nagy, L., & Grabherr, G. 2009. The biology of alpine habitats. Oxford University Press on 516 Demand.
- 517 Noroozi, J., Pauli, H., Grabherr, G., & Breckle, S. W. 2011. The subnival-nival vascular plant species of Iran: a unique high-mountain flora and its threat from climate warming. 518 519 Biodiversity & Conservation, 20(6): 1319-1338.
- 520 Omar, K. 2014. Assessing the conservation status of the Sinai Primrose (Primula boveana). 521 Middle-East Journal of Scientific Research 21(7): 1027-36.
- 522 Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual 523 Review of Ecology, Evolution & Systematics 37: 637-669.
- 524 Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, 525 G., Dick, J., Erschbamer, B., Calzado, R.F. & Ghosn, D. 2012. Recent plant
- 526 diversity changes on Europe's mountain summits. Science, 336: 353-355.
- 527 Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. 2007. Signals of range 528 expansions and contractions of vascular plants in the high Alps: observations (1994-529
- 2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change
- Biology 13: 147-156. 530

- Pereira, H.M., Leadley, P.W., Proença, V., *et al.* 2010. Scenarios for global biodiversity in the
  21st century. *Science* 330: 1496-1501.
- Perevolotsky, A., Perevolotsky, A. & Noy-Meir, I. 1989. Environmental adaptation and
  economic change in a pastoral mountain society: the case of the Jabaliyah Bedouin of
  the Mt. Sinai region. *Mountain Research & Development* 9(2): 153-164.
- Poulos, H.M., Taylor, A.H. & Beaty, R.M. 2007. Environmental controls on dominance and
  diversity of woody plant species in a Madrean, Sky Island ecosystem, Arizona, USA. *Plant Ecology* 193(1): 15-30.
- Rapacciuolo, G., Maher, S.P., Schneider, A.C., Hammond, T.T., Jabis, M.D., Walsh, R.E.,
  Iknayan, K.J., Walden, G.K., Oldfather, M.F., Ackerly, D.D. & Beissinger, S.R. 2014.
  Beyond a warming fingerprint: individualistic biogeographic responses to
  heterogeneous climate change in California. *Global Change Biology* 20: 2841-2855.
- Rashad, S., 'Abd el Basset, Y., Hemeed, M., Alqamy, H. & Wacher, T. 2002. *Grazing patterns in the high-altitude mountains around St Katherine town*. EEAA/St Katherine
  Protectorate, Cairo.
- 546 Shmida, A. 1977. Remarks on the palaeo-climates of Sinai based on the distribution patterns
  547 of relict plants: prehistoric investigation in Gebel Maghara, Northern Sinai. *Kedem*548 (6): 36-54.
- 549 Stöckl, V., Wipf, S., Nilsson, C. & Rixen, C. 2011. Using historical plant surveys to track
  550 biodiversity on mountain summits. *Plant Ecology & Diversity* 4(4): 415-425.
- Van de Ven, C.M., Weiss, S.B. & Ernst, W.G. 2007. Plant species distributions under present
   conditions and forecasted for warmer climates in an arid mountain range. *Earth Interactions* 11(9): 1-33.
- Vetaas, O. R. & Grytnes, J. A. 2002. Distribution of vascular plant species richness and
  endemic richness along the Himalayan elevation gradient in Nepal. *Global Ecology & Biogeography* 11(4): 291-301.
- Walther, G.R., Beißner, S. & Burga, C.A. 2005. Trends in the upward shift of alpine plants. *Journal of Vegetation Science* 16(5): 541-548.
- Walther, G.R., Post, E., Convey, P., *et al.* 2002. Ecological responses to recent climate change. *Nature* 416: 389-395.
- Wayne, P.M., Reekie, E.G. & Bazzaz, F.A. 1998. Elevated CO2 ameliorates birch response to
  high temperature and frost stress: implications for modeling climate-induced
  geographic range shifts. *Oecologia* 114(3): 335-342.
- 564 Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York, USA.

- Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V.J. 2005.
  Changes to the elevational limits and extent of species ranges associated with climate
  change. *Ecology Letters* 8(11): 1138-1146.
- Wipf, S., Stöckli, V., Herz, K. & Rixen, C. 2013. The oldest monitoring site of the Alps
  revisited: accelerated increase in plant species richness on Piz Linard summit since
  1835. *Plant Ecology & Diversity* 6(3-4): 447-455.
- 571 Zahran, M.A. & Willis, A.J. 2008. *The vegetation of Egypt.* (Vol. 2). London: Springer.
- Zalat, S., Gilbert, F., Fadel, H., *et al.* 2009. Biological explorations of Sinai: flora and fauna of
  Wadi Isla and Hebran, St Katherine Protectorate, Egypt. *Egyptian Journal of Natural History* 5(1): 6-15.
- Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., Kutaladze, N.,
  Rahimzadeh, F., Taghipour, A., Hantosh, T.H. & Albert, P., 2005. Trends in Middle
  East climate extreme indices from 1950 to 2003. *Journal of Geophysical Research: Atmospheres*, 110(D22104), 1-12.
- 579

| 581        | Figures & Tables                                                                                                   |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 582        | Table 1                                                                                                            |
| 202        | Table 1<br>Description of pattern of movement of upper and lower altitudinal limits for 22 individual plant        |
| 504<br>505 | species where both upper and lower limits could be measured. Limits are in metros above see                        |
| 202        | species where both upper and lower minits could be measured. Limits are in metres above sea                        |
| 500        | ievei.                                                                                                             |
| 587        |                                                                                                                    |
| 588        | F <sup>2</sup> 1                                                                                                   |
| 589        | Figure 1<br>Orthing of improvements data delimiting the high meanstein main mithin the St Kathering                |
| 590        | Durine of igneous ring-dyke definiting the high mountain region within the St Katherine                            |
| 591        | Protectorate. Positions of 2014 survey sites snown as white dots with 5 km scale bar.                              |
| 592        | Inset: St Katherine Protectorate outline in South Sinai; shaded area St Katherine ring-dyke and                    |
| 593        | region of 1970s transect surveys.                                                                                  |
| 594        |                                                                                                                    |
| 595        |                                                                                                                    |
| 596        | Figure 2                                                                                                           |
| 597        | Hill's numbers (see Chao et al. 2012) for diversity by altitude with fitted GAM model with                         |
| 598        | Normal errors and 95% confidence region. Ascending Hill's numbers give reducing weight to                          |
| 599        | less-abundant species: (a) mean <sup>6</sup> D (= species richness); (b) mean <sup>4</sup> D (number of 'typical') |
| 600        | common species); (c) mean <sup>2</sup> D (number of 'abundant' species).                                           |
| 601        |                                                                                                                    |
| 602        |                                                                                                                    |
| 603        | Figure 3                                                                                                           |
| 604        | Difference in upper altitude limit for each plant species between the 1970s and 2014.                              |
| 605        |                                                                                                                    |
| 606        |                                                                                                                    |
| 607        | Figure 4                                                                                                           |
| 608        | Difference in lower altitude limit for each plant species between the 1970s and 2014.                              |
| 609        |                                                                                                                    |
| 610        |                                                                                                                    |
| 611        | Supporting information                                                                                             |
| 612        |                                                                                                                    |
| 613        | Table S1                                                                                                           |
| 614        | Supporting information to the paper Coals et al. Elevation patterns of plant diversity and                         |
| 615        | recent altitudinal range shifts in Sinai's high mountain flora. <i>Journal of Vegetation Science</i> .             |
| 616        | Appendix Figure S2. Altitudinal distributions of each species from 2014 data.                                      |
| 617        |                                                                                                                    |
| 618        |                                                                                                                    |
| 619        | Table S2                                                                                                           |
| 620        | Supporting information to the paper Coals et al. Elevation patterns of plant diversity and recent                  |
| 621        | altitudinal range shifts in Sinai's high mountain flora. Journal of Vegetation Science. Appendix                   |
| 622        | Table S2 Summary data on the occupancy and abundance of each species from the 2014                                 |
| 623        | surveys. There were a total of 283 quadrats in 36 sites in the study.                                              |
| 624        |                                                                                                                    |
| 625        | Table S3                                                                                                           |

- 626 Supporting information to the paper Coals et al. Elevation patterns of plant diversity and recent
- altitudinal range shifts in Sinai's high mountain flora. *Journal of Vegetation Science*. Appendix
   Table S3. GPS locations (decimal degrees) of 100 m<sup>2</sup> quadrats (centre point ± 3 m) along with site
- information and Hill's number diversity indices for each quadrat sampled in 2014.
- 630

### 631 Table S4

- Supporting information to the paper Coals et al. Elevation patterns of plant diversity and recent
   altitudinal range shifts in Sinai's high mountain flora. *Journal of Vegetation Science*. Appendix
- Table S4. Site descriptions and photos for  $100 \text{ m}^2$  quadrats sampled in 2014.
- 635

## 636 Table S5

- 637 Supporting information to the paper Coals et al. Elevation patterns of plant diversity and recent
- 638 altitudinal range shifts in Sinai's high mountain flora. Journal of Vegetation Science. Appendix
- Table S5. Species abundance for quadrats surveyed in 2014.
- 640

## 641 Figure S1

- 642 Supporting information to the paper Coals et al. Elevation patterns of plant diversity and
- 643 recent altitudinal range shifts in Sinai's high mountain flora. *Journal of Vegetation Science*.
- 644 Appendix Figure S1. Abundance-weighted altitudinal distributions of each species from 2014
- 645 data. The weighting works by each individual plant observed in each quadrat contributing an
- 646 altitude to the calculation of the mean and se.
- 647
- 648

### 649 Figure S2

- 650 Supporting information to the paper Coals et al. Elevation patterns of plant diversity and recent
- 651 altitudinal range shifts in Sinai's high mountain flora. Journal of Vegetation Science. Appendix
- Figure S2. Altitudinal distributions of each species from 2014 data.

### Table 1

Description of pattern of movement of upper and lower altitudinal limits for 22 individual plant species where both upper and lower limits could be measured. Limits are in metres above sea level.

|                           | Upper          | Upper         | Lower          | Lower         | Limit movement | t patterns  |                      |
|---------------------------|----------------|---------------|----------------|---------------|----------------|-------------|----------------------|
| Species                   | limit<br>1970s | limit<br>2014 | limit<br>1970s | limit<br>2014 | Lower limit    | Upper limit | Range size<br>change |
| Alkanna orientalis        | 2500           | 2575          | 1500           | 1375          | down           | stationary  | expanded             |
| Astragalus echinus        | 2600           | 2425          | 2000           | 1825          | down           | down        | no change            |
| Calipeltis cucullaris     | 2100           | 2425          | 1500           | 1425          | stationary     | up          | expanded             |
| Colchicum guessfeldtianum | 2500           | 2325          | 1500           | 1925          | Up             | down        | contracted           |
| Cotoneaster orbicularis   | 2200           | 2425          | 1800           | 1725          | stationary     | up          | expanded             |
| Crataegus x sinaica       | 2300           | 2375          | 1600           | 1625          | stationary     | stationary  | no change            |
| Globularia arabica        | 2100           | 2275          | 1700           | 1425          | down           | up          | expanded             |
| Nepeta septemcrenata      | 2640           | 2325          | 1700           | 1725          | stationary     | down        | contracted           |
| Origanum syriacum         | 2000           | 1975          | 1600           | 1425          | down           | stationary  | expanded             |
| Phlomis aurea             | 2200           | 2425          | 1550           | 1375          | down           | up          | expanded             |
| Polygala sinaica          | 2640           | 2625          | 1900           | 1675          | down           | stationary  | expanded             |
| Pterocephalus sanctus     | 2640           | 2575          | 1600           | 1625          | stationary     | stationary  | no change            |
| Pulicaria undulata        | 1900           | 2175          | 1400           | 1375          | stationary     | up          | expanded             |
| Rubus sanctus             | 1800           | 1725          | 1800           | 1625          | down           | stationary  | expanded             |
| Salvia multicaulis        | 2100           | 1975          | 1900           | 1725          | down           | down        | expanded             |
| Scariola orientalis       | 2500           | 2325          | 1800           | 1525          | down           | down        | expanded             |
| Silene leucophylla        | 2300           | 2625          | 1750           | 1425          | down           | up          | expanded             |
| Silene schimperiana       | 2300           | 2175          | 1500           | 1521          | stationary     | down        | contracted           |
| Stipa parviflora          | 2500           | 2325          | 1600           | 1525          | stationary     | down        | contracted           |
| Thymus decussatus         | 2400           | 2275          | 1900           | 1725          | down           | down        | expanded             |
| Verbascum decaisneanum    | 2300           | 2525          | 1600           | 1525          | stationary     | up          | expanded             |
| Verbascum sinaiticum      | 2400           | 2575          | 1500           | 1375          | down           | up          | expanded             |

### Figure 1

Outline of igneous ring-dyke delimiting the high mountain region within the St Katherine Protectorate. Positions of 2014 survey sites shown as white dots with 5 km scale bar. Inset: St Katherine Protectorate outline in South Sinai; shaded area St Katherine ring-dyke and region of 1970s transect surveys.



## Figure 2

Hill's numbers (see Chao et al. 2012) for diversity by altitude with fitted GAM model with Normal errors and 95% confidence region. Ascending Hill's numbers give reducing weight to less-abundant species: (a) mean  $^{0}D$  (= species richness); (b) mean  $^{1}D$  (number of 'typical' common species); (c) mean  $^{2}D$  (number of 'abundant' species).









#### Upper limit change 2014-1970s (m)

#### Figure 4



Difference in lower altitude limit for each plant species between the 1970s and 2014. Lower limit change 2014-1970s (m)

# **Supplementary Information**

# Figure S1



### Figure S2



## Table S2

| Species                      | Presence<br>(number of<br>quadrats) | Total<br>abundance<br>(individuals) |
|------------------------------|-------------------------------------|-------------------------------------|
| Fagonia mollis               | 90                                  | 2943                                |
| Seraphidium herba-alba       | 194                                 | 2766                                |
| Tanacetum sinaicum           | 181                                 | 1953                                |
| Diplotaxis harra             | 139                                 | 1678                                |
| Zilla spinosa                | 145                                 | 977                                 |
| Teucrium polium              | 145                                 | 955                                 |
| Fagonia arabica              | 60                                  | 937                                 |
| Matthiola longipetala        | 109                                 | 830                                 |
| Echinops glaberrimus         | 119                                 | 771                                 |
| Stachys aegyptiaca           | 119                                 | 757                                 |
| Chiliadenus montanus         | 137                                 | 726                                 |
| Achillea fragrantissima      | 67                                  | 637                                 |
| Phlomis aurea                | 127                                 | 529                                 |
| Alkanna orientalis           | 108                                 | 521                                 |
| Verbascum sinaiticum         | 39                                  | 461                                 |
| Echinops spinosus            | 104                                 | 435                                 |
| Plantago sinaica             | 72                                  | 367                                 |
| Gymnocarpus decandrum        | 57                                  | 366                                 |
| Origanum syriacum            | 70                                  | 357                                 |
| Lappula sinaica              | 30                                  | 307                                 |
| Pulicaria undulata           | 20                                  | 301                                 |
| Mentha longifolia            | 27                                  | 267                                 |
| Ballota undulata             | 91                                  | 253                                 |
| Scariola orientalis          | 33                                  | 252                                 |
| Deverra tortuosa             | 92                                  | 234                                 |
| Galium setaceum              | 74                                  | 220                                 |
| Centaurea scoparia           | 50                                  | 213                                 |
| Anarrhinum pubescens         | 62                                  | 175                                 |
| Euphorbia sanctae-catharinae | 9                                   | 166                                 |
| Polygala sinaica             | 44                                  | 163                                 |
| Verbascum decaisneanum       | 51                                  | 143                                 |
| Agathophora alopecuroides    | 6                                   | 129                                 |
| Globularia arabica           | 36                                  | 126                                 |
| Juncus rigidus               | 18                                  | 119                                 |
| Pterocephalus sanctus        | 40                                  | 111                                 |
| Callipeltis cucullaris       | 31                                  | 100                                 |
| Farsetia aegyptia            | 40                                  | 89                                  |
| Reaumuria hirtella           | 14                                  | 81                                  |
| Caylusea hexagyna            | 26                                  | 80                                  |
| Nepeta septemcrenata         | 26                                  | 71                                  |
| Stipa parviflora             | 21                                  | 70                                  |

| Carduus pycnocephalus     | 21 | 66 |
|---------------------------|----|----|
| Artemisia judaica         | 8  | 63 |
| Centaurea eryngioides     | 19 | 63 |
| Pulicaria arabica         | 12 | 62 |
| Thymus decussatus         | 11 | 57 |
| Pulicaria incisa          | 9  | 56 |
| Silene schimperiana       | 25 | 53 |
| Ephedra alata             | 30 | 51 |
| Helianthemum kahiricum    | 10 | 51 |
| Crataegus x sinaica       | 28 | 50 |
| Cotoneaster orbicularis   | 17 | 47 |
| Launaea spinosa           | 18 | 43 |
| Ficus palmata             | 20 | 36 |
| Iphiona mucronata         | 17 | 34 |
| Primula boveana           | 1  | 32 |
| Salvia multicaulis        | 5  | 32 |
| Silene linearis           | 20 | 32 |
| Silene leucophylla        | 6  | 30 |
| Ballota saxatilis         | 11 | 29 |
| Deverra triradiata        | 20 | 29 |
| Gomphocarpus sinaicus     | 20 | 29 |
| Reseda muricata           | 9  | 29 |
| Reseda pruinosa           | 8  | 27 |
| Fagonia bruguieri         | 3  | 24 |
| Lavandula pubescens       | 6  | 24 |
| Astragalus echinus        | 11 | 22 |
| Iphiona scabra            | 13 | 21 |
| Hyoscyamus muticus        | 6  | 20 |
| Peganum harmala           | 8  | 20 |
| Centaurea solstitialis    | 2  | 19 |
| Phagnalon nitidum         | 9  | 19 |
| Capparis spinosa          | 8  | 17 |
| Anabasis articulata       | 4  | 16 |
| Rubus sanctus             | 2  | 16 |
| Diplotaxis acris          | 8  | 13 |
| Foeniculum vulgare        | 5  | 12 |
| Colchicum guessfeldtianum | 5  | 11 |
| Lycium shawii             | 2  | 11 |
| Adiantum capillus-veneris | 6  | 10 |
| Heliotropium arbainense   | 6  | 10 |
| Hypericum sinaicum        | 4  | 10 |
| Ochradenus baccatus       | 7  | 10 |
| Retama raetam             | 8  | 10 |
| Rhamnus dispermus         | 8  | 10 |
| Equisetum ramosissimum    | 2  | 9  |
| Pistacia khinjuk          | 6  | 8  |
| ····· ···· ··· ···        | ~  | 2  |

| Astragalus spinosus     | 5 | 6 |
|-------------------------|---|---|
| Ballota kaiseri         | 3 | 6 |
| Colutea istria          | 5 | 6 |
| Rosa arabica            | 3 | 6 |
| Centaurea ammocyanus    | 1 | 5 |
| Heliotropium digynum    | 5 | 5 |
| Lotononis dichotoma     | 2 | 5 |
| Citrullus colocynthis   | 4 | 4 |
| Blepharis ciliaris      | 1 | 3 |
| Cleome arabica          | 2 | 3 |
| Salix mucronata         | 3 | 3 |
| Bufonia multiceps       | 1 | 2 |
| Cleome droserifolia     | 2 | 2 |
| Conyza bovei            | 2 | 2 |
| Helianthemum ellipticum | 2 | 2 |
| Solanum sinaicum        | 2 | 2 |
| Alhagi graecorum        | 1 | 1 |
| Astragalus caprinus     | 1 | 1 |
| Lepidium draba          | 1 | 1 |
| Monsonia nivea          | 1 | 1 |
| Phagnalon barbeyanum    | 1 | 1 |
| Phoenix dactylifera     | 1 | 1 |
| Populus nigra           | 1 | 1 |
| Pulicaria inuloides     | 1 | 1 |
| Tamarix aphylla         | 1 | 1 |

### Table S3

-

|    |         | Elevation<br>(m above   |        | Gradient         | Hill's number diversity index |              |             |               |                |
|----|---------|-------------------------|--------|------------------|-------------------------------|--------------|-------------|---------------|----------------|
|    | Quadrat | (in above<br>sea level) | Aspect | (fiearest<br>5°) | 0D                            | 1D           | 2D          | Latitude (DD) | Longitude (DD) |
| 1  | AP01    | 1898                    | SE     | 5                | 17                            | 8.276886339  | 0.183739705 | 28.5447833    | 33.9212500     |
| 2  | AP02    | 1951                    | SE     | 10               | 18                            | 4.455565566  | 0.342351717 | 28.5480000    | 33.9182333     |
| 3  | AP03    | 1993                    | SE     | 10               | 8                             | 12.729872204 | 0.107438017 | 28.5510833    | 33.9170000     |
| 4  | AP04    | 2051                    | S      | 10               | 20                            | 6.362835676  | 0.210007305 | 28.5535667    | 33.9152167     |
| 5  | AP05    | 2117                    | S      | 25               | 11                            | 4.775667817  | 0.264860323 | 28.5550333    | 33.9150167     |
| 6  | AP06    | 2169                    | SW     | 15               | 6                             | 5.100217354  | 0.256296296 | 28.5565667    | 33.9164167     |
| 7  | AP07    | 2209                    | W      | 40               | 20                            | 5.993925881  | 0.224445646 | 28.5572500    | 33.9171000     |
| 8  | AP08    | 2255                    | SW     | 35               | 8                             | 5.319148793  | 0.220324865 | 28.5580500    | 33.9187333     |
| 9  | AP09    | 2282                    | NE     | 25               | 20                            | 4.600885544  | 0.239612188 | 28.5589833    | 33.9187500     |
| 10 | AP10    | 2305                    | NW     | 10               | 13                            | 3.549357156  | 0.303402647 | 28.5604500    | 33.9173667     |
| 11 | AP11    | 2296                    | SW     | 25               | 17                            | 5.180051270  | 0.215419501 | 28.5591500    | 33.9177500     |
| 12 | AP12    | 2328                    | SW     | 0                | 23                            | 3.864313298  | 0.367346939 | 28.5555000    | 33.9209500     |
| 13 | AP13    | 2228                    | S      | 10               | 6                             | 6.922381747  | 0.180695847 | 28.5534000    | 33.9231000     |
| 14 | BC01    | 1773                    | Ν      | 5                | 11                            | 7.056663610  | 0.266302787 | 28.5457000    | 33.9334167     |
| 15 | BC02    | 1826                    | NE     | 25               | 9                             | 12.848107080 | 0.100936524 | 28.5455333    | 33.9320667     |
| 16 | BC03    | 1931                    | SW     | 5                | 15                            | 6.853384027  | 0.210154541 | 28.5448167    | 33.9298000     |
| 17 | BC04    | 1880                    | NE     | 25               | 11                            | 6.765023325  | 0.25047259  | 28.5452500    | 33.9312167     |
| 18 | FAH01   | 1755                    | W      | 10               | 13                            | 1.822161436  | 0.628683408 | 28.6364333    | 33.9181000     |
| 19 | FAH02   | 1789                    | S      | 5                | 11                            | 7.400633968  | 0.163295657 | 28.6323333    | 33.9174333     |
| 20 | FUS01   | 1867                    | NW     | 10               | 11                            | 10.068516231 | 0.128515486 | 28.5693000    | 33.8800333     |
| 21 | GAZ01   | 1783                    | Ν      | 10               | 15                            | 4.358064359  | 0.348927336 | 28.5640500    | 33.8754833     |
| 22 | GAZ02   | 1760                    | Ν      | 40               | 9                             | 4.147843289  | 0.37716263  | 28.5643667    | 33.8756167     |
| 23 | GAZ03   | 1731                    | NW     | 25               | 13                            | 4.820125265  | 0.366151101 | 28.5650833    | 33.8757667     |
| 24 | GAZ04   | 1703                    | W      | 25               | 10                            | 10.354978743 | 0.113034072 | 28.5656667    | 33.8758833     |
| 25 | GAZ05   | 1676                    | W      | 25               | 14                            | 8.624473332  | 0.173203228 | 28.5660833    | 33.8755000     |
| 26 | GAZ06   | 1652                    | W      | 20               | 7                             | 8.382184096  | 0.154778393 | 28.5661667    | 33.8751000     |
| 27 | GAZ07   | 1633                    | W      | 25               | 15                            | 8.928165435  | 0.126369613 | 28.5663500    | 33.8746667     |
| 28 | GAZ08   | 1620                    | SW     | 5                | 6                             | 14.071099758 | 0.091050989 | 28.5667333    | 33.8746667     |
| 29 | GAZ09   | 1618                    | W      | 0                | 18                            | 4.614706611  | 0.262222222 | 28.5663333    | 33.8746000     |
| 30 | HHL01   | 1755                    | S      | 10               | 14                            | 5.161474634  | 0.23739645  | 28.6261000    | 33.9196000     |
| 31 | JAL01   | 1594                    | Ν      | 5                | 8                             | 2.625109050  | 0.472623967 | 28.4124333    | 33.8551500     |
| 32 | JAL02   | 1569                    | Ν      | 35               | 14                            | 4.279674007  | 0.380859375 | 28.4128000    | 33.8553833     |
| 33 | JAL03   | 1544                    | Ν      | 15               | 22                            | 5.149496180  | 0.237024221 | 28.4134667    | 33.8557333     |
| 34 | JAL04   | 1521                    | Ν      | 5                | 11                            | 5.751040151  | 0.210463734 | 28.4140167    | 33.8560333     |
| 35 | JAL05   | 1497                    | Ν      | 5                | 10                            | 3.974862032  | 0.316326531 | 28.4150167    | 33.8557667     |
| 36 | JAL06   | 1480                    | W      | 5                | 13                            | 6.457058359  | 0.204444444 | 28.4159500    | 33.8552500     |
| 37 | JB01    | 1856                    | Е      | 5                | 12                            | 6.014585347  | 0.20661157  | 28.5287167    | 33.8839500     |
| 38 | JB02    | 1963                    | NW     | 5                | 30                            | 3.219481402  | 0.40433925  | 28.5351000    | 33.8622500     |
| 39 | JB03    | 1981                    | NE     | 5                | 17                            | 3.651078640  | 0.37352071  | 28.5346167    | 33.8597000     |
| 40 | JB04    | 2098                    | NW     | 5                | 7                             | 6.864232066  | 0.177469136 | 28.5346333    | 33.8544833     |
| 41 | JB05    | 2056                    | Е      | 25               | 13                            | 7.089149015  | 0.208569628 | 28.5347000    | 33.8551333     |

| 42 | JB06  | 2022 | Е  | 25 | 11 | 7.987816513  | 0.207305782 | 28.5348667 | 33.8558000 |
|----|-------|------|----|----|----|--------------|-------------|------------|------------|
| 43 | JB07  | 2000 | NE | 10 | 13 | 6.669820221  | 0.207596254 | 28.5350333 | 33.8563833 |
| 44 | JB08  | 1992 | NW | 5  | 15 | 5.568833860  | 0.301050598 | 28.5353333 | 33.8672000 |
| 45 | JB09  | 1980 | NW | 15 | 15 | 4.961891966  | 0.294589858 | 28.5358167 | 33.8763833 |
| 46 | JB10  | 1943 | Ν  | 20 | 10 | 10.580910642 | 0.139674761 | 28.5377667 | 33.8778333 |
| 47 | JB11  | 1870 | Ν  | 5  | 7  | 10.863718305 | 0.115       | 28.5394000 | 33.8788333 |
| 48 | JB12  | 1798 | NE | 15 | 13 | 13.989417065 | 0.094482237 | 28.5409000 | 33.8795000 |
| 49 | JDR01 | 1595 | W  | 10 | 16 | 5.711203839  | 0.27456382  | 28.5548833 | 33.9794833 |
| 50 | JDR02 | 1647 | NW | 20 | 17 | 4.455659734  | 0.25        | 28.5555500 | 33.9804000 |
| 51 | JDR03 | 1700 | W  | 15 | 6  | 14.048959039 | 0.088643645 | 28.5555000 | 33.9815833 |
| 52 | JDR04 | 1746 | NW | 10 | 3  | 6.127589359  | 0.185595568 | 28.5545333 | 33.9825667 |
| 53 | JDR05 | 1762 | W  | 5  | 9  | 5.551994498  | 0.293514828 | 28.5551833 | 33.9836000 |
| 54 | JDR06 | 1904 | S  | 5  | 24 | 6.224367226  | 0.209342561 | 28.5586667 | 33.9835333 |
| 55 | JDR07 | 1852 | S  | 20 | 18 | 6.833374829  | 0.200617284 | 28.5571000 | 33.9836500 |
| 56 | JDR08 | 1801 | S  | 10 | 11 | 8.781124772  | 0.154368493 | 28.5561667 | 33.9833833 |
| 57 | JHA01 | 1324 | NW | 5  | 11 | 2.924929108  | 0.495867769 | 28.6209833 | 33.9093333 |
| 58 | JHA02 | 1340 | SW | 15 | 16 | 3.416293383  | 0.447809627 | 28.6216667 | 33.9097167 |
| 59 | JHA03 | 1402 | W  | 10 | 11 | 9.450662911  | 0.117346939 | 28.6231333 | 33.9112167 |
| 60 | JHA04 | 1449 | SW | 10 | 10 | 9.004546757  | 0.130177515 | 28.6239500 | 33.9117333 |
| 61 | JHA05 | 1500 | S  | 15 | 16 | 6.265274407  | 0.224732461 | 28.6247167 | 33.9120500 |
| 62 | JHA06 | 1550 | S  | 10 | 15 | 13.123801022 | 0.103305785 | 28.6257667 | 33.9118667 |
| 63 | JHA07 | 1604 | SW | 0  | 9  | 9.747187539  | 0.162629758 | 28.6266667 | 33.9121667 |
| 64 | JHA08 | 1649 | SW | 5  | 7  | 9.650258715  | 0.129757785 | 28.6272500 | 33.9127500 |
| 65 | JHA09 | 1689 | NW | 10 | 7  | 9.941375297  | 0.125868056 | 28.6273333 | 33.9137167 |
| 66 | JHA10 | 1710 | S  | 5  | 12 | 9.836764227  | 0.157017909 | 28.6304500 | 33.9147000 |
| 67 | JK01  | 1791 | Ν  | 15 | 13 | 2.109056370  | 0.599609375 | 28.5327667 | 33.9660833 |
| 68 | JK02  | 1816 | Ν  | 20 | 15 | 6.769217557  | 0.200951249 | 28.5318500 | 33.9653000 |
| 69 | JK03  | 1853 | Ν  | 10 | 8  | 11.785537012 | 0.114257813 | 28.5297167 | 33.9638000 |
| 70 | JK04  | 1924 | NE | 30 | 15 | 6.290185201  | 0.214915596 | 28.5284667 | 33.9627500 |
| 71 | JK05  | 2008 | Е  | 35 | 8  | 4.117429200  | 0.372767857 | 28.5260333 | 33.9623833 |
| 72 | JK06  | 2069 | SE | 15 | 8  | 7.639556102  | 0.164352131 | 28.5244500 | 33.9603667 |
| 73 | JK07  | 2067 | Ν  | 5  | 2  | 7.774078838  | 0.18766901  | 28.5229167 | 33.9602667 |
| 74 | JK08  | 2288 | NW | 20 | 23 | 3.212213639  | 0.432942708 | 28.5213167 | 33.9558167 |
| 75 | JK09  | 2336 | W  | 15 | 12 | 6.374258180  | 0.228099174 | 28.5176667 | 33.9554333 |
| 76 | JK10  | 2368 | Е  | 15 | 14 | 7.284091195  | 0.216792181 | 28.5114333 | 33.9630667 |
| 77 | JK11  | 2315 | Е  | 10 | 14 | 3.556787336  | 0.391242435 | 28.5110167 | 33.9653167 |
| 78 | JK12  | 2263 | SE | 25 | 13 | 5.739525321  | 0.231866825 | 28.5112167 | 33.9674667 |
| 79 | JK13  | 2629 | Е  | 5  | 23 | 4.139487244  | 0.338842975 | 28.5125500 | 33.9539000 |
| 80 | JK14  | 2583 | Е  | 20 | 13 | 2.454140787  | 0.455970452 | 28.5121333 | 33.9545833 |
| 81 | JK15  | 2512 | Е  | 25 | 19 | 2.618137363  | 0.526367188 | 28.5108000 | 33.9584500 |
| 82 | JK16  | 2462 | Е  | 25 | 13 | 3.973202083  | 0.275495547 | 28.5101833 | 33.9596333 |
| 83 | JK17  | 2404 | Е  | 15 | 23 | 4.858931394  | 0.2421875   | 28.5108833 | 33.9613500 |
| 84 | JK18  | 2462 | Е  | 20 | 11 | 2.888341165  | 0.471886714 | 28.5069500 | 33.9571500 |
| 85 | JK19  | 2385 | NE | 10 | 8  | 4.497226112  | 0.265432099 | 28.5110833 | 33.9623333 |
| 86 | JK20  | 2257 | NE | 35 | 10 | 2.911299308  | 0.470204082 | 28.5213333 | 33.9571500 |
| 87 | JK21  | 2208 | NE | 30 | 20 | 3.555222559  | 0.417888757 | 28.5219500 | 33.9577000 |

| 88  | JK22   | 2156 | NE | 35 | 22 | 3.758306151  | 0.324150597 | 28.5233167 | 33.9585333 |
|-----|--------|------|----|----|----|--------------|-------------|------------|------------|
| 89  | JK23   | 2124 | SE | 20 | 6  | 7.108166386  | 0.18494898  | 28.5238667 | 33.9589167 |
| 90  | JK24   | 2052 | Е  | 25 | 14 | 4.527606171  | 0.281965848 | 28.5249167 | 33.9612167 |
| 91  | JK25   | 1998 | NE | 30 | 19 | 3.285351440  | 0.484764543 | 28.5268000 | 33.9624500 |
| 92  | JM01   | 2007 | NE | 5  | 13 | 5.635406567  | 0.257487217 | 28.5448333 | 33.9751167 |
| 93  | JM02   | 1984 | Е  | 5  | 10 | 6.797283149  | 0.218934911 | 28.5455167 | 33.9758000 |
| 94  | JM03   | 1962 | NE | 35 | 8  | 3.485685549  | 0.475529584 | 28.5461500 | 33.9762667 |
| 95  | JM04   | 1955 | NE | 30 | 16 | 5.115472599  | 0.25        | 28.5463333 | 33.9763000 |
| 96  | JM05   | 1923 | NE | 15 | 15 | 4.557099647  | 0.386258455 | 28.5463000 | 33.9769000 |
| 97  | JM06   | 1907 | NE | 30 | 16 | 8.048360735  | 0.135       | 28.5467000 | 33.9772000 |
| 98  | JM07   | 1896 | Ν  | 5  | 11 | 9.616002619  | 0.131113424 | 28.5469833 | 33.9772667 |
| 99  | JM08   | 1871 | Ν  | 15 | 20 | 6.407700219  | 0.183364839 | 28.5479833 | 33.9774333 |
| 100 | JM09   | 1849 | Ν  | 10 | 6  | 6.738781224  | 0.1936      | 28.5487500 | 33.9772833 |
| 101 | JM10   | 1823 | Ν  | 15 | 4  | 6.829510706  | 0.17578125  | 28.5491833 | 33.9772167 |
| 102 | JM11   | 1799 | Ν  | 10 | 16 | 5.910927457  | 0.229166667 | 28.5498000 | 33.9770167 |
| 103 | JM12   | 1774 | Ν  | 15 | 11 | 6.938642678  | 0.160493827 | 28.5502833 | 33.9768667 |
| 104 | JM13   | 1753 | Ν  | 10 | 4  | 4.598826845  | 0.323675871 | 28.5503667 | 33.9770167 |
| 105 | JM14   | 1724 | Ν  | 15 | 11 | 5.591783761  | 0.232142857 | 28.5508667 | 33.9769500 |
| 106 | JM15   | 1702 | Ν  | 5  | 17 | 11.251507824 | 0.117283951 | 28.5513000 | 33.9768333 |
| 107 | JM16   | 1674 | Ν  | 20 | 6  | 5.139412479  | 0.248699272 | 28.5520667 | 33.9765667 |
| 108 | JM17   | 1654 | Ν  | 25 | 14 | 5.306341291  | 0.26625     | 28.5524500 | 33.9762000 |
| 109 | JM18   | 1624 | Ν  | 20 | 15 | 6.604129943  | 0.243764172 | 28.5529833 | 33.9760500 |
| 110 | JM19   | 1605 | NE | 10 | 16 | 6.696333460  | 0.256804734 | 28.5533833 | 33.9759500 |
| 111 | JMA01  | 2025 | SW | 5  | 17 | 3.290796164  | 0.379108839 | 28.5184500 | 33.8191667 |
| 112 | JMA02  | 1925 | Е  | 10 | 14 | 2.637477816  | 0.4984      | 28.5218500 | 33.8231000 |
| 113 | JMA03  | 1825 | SW | 35 | 3  | 4.086469860  | 0.319615912 | 28.5219500 | 33.8248667 |
| 114 | JMA04  | 1725 | SE | 35 | 9  | 5.760243565  | 0.193877551 | 28.5206667 | 33.8276000 |
| 115 | JMA05  | 1619 | NE | 40 | 14 | 5.612155029  | 0.209876543 | 28.5195000 | 33.8312333 |
| 116 | JMA06  | 1524 | NE | 20 | 8  | 7.604828622  | 0.166015625 | 28.5189833 | 33.8364833 |
| 117 | JMA07  | 1424 | NE | 15 | 21 | 3.198153155  | 0.440329218 | 28.5214833 | 33.8368500 |
| 118 | SGRS01 | 1739 | SE | 5  | 13 | 13.924583918 | 0.095802469 | 28.6177333 | 33.9213833 |
| 119 | SGRS02 | 1686 | SE | 5  | 7  | 9.445633781  | 0.153539172 | 28.6158333 | 33.9224167 |
| 120 | SGRS03 | 1642 | Ν  | 5  | 19 | 12.703171975 | 0.094227336 | 28.6140000 | 33.9234667 |
| 121 | US01   | 2580 | NE | 5  | 12 | 1.182870543  | 0.9232      | 28.3617500 | 33.9171833 |
| 122 | US02   | 2566 | Е  | 25 | 11 | 3.139821206  | 0.470507545 | 28.3615333 | 33.9173333 |
| 123 | US03   | 2509 | NE | 25 | 13 | 1.680201839  | 0.715419501 | 28.3610167 | 33.9180000 |
| 124 | US04   | 2449 | NE | 30 | 12 | 1.206969808  | 0.911303407 | 28.3609667 | 33.9189833 |
| 125 | US05   | 2405 | NE | 15 | 12 | 2.295966888  | 0.598097503 | 28.3614333 | 33.9193667 |
| 126 | US06   | 2337 | Е  | 10 | 14 | 1.859801362  | 0.723865878 | 28.3623000 | 33.9199333 |
| 127 | US07   | 2304 | NE | 15 | 8  | 3.283998677  | 0.426035503 | 28.3627333 | 33.9203333 |
| 128 | US08   | 2252 | Ν  | 20 | 5  | 1.773062949  | 0.735294118 | 28.3633333 | 33.9209333 |
| 129 | US09   | 2199 | NE | 20 | 17 | 4.057488356  | 0.384688091 | 28.3644500 | 33.9207833 |
| 130 | US10   | 2148 | NE | 25 | 18 | 2.181483295  | 0.662290629 | 28.3653500 | 33.9215500 |
| 131 | US11   | 2111 | NE | 15 | 14 | 7.844588219  | 0.161652893 | 28.3654667 | 33.9225167 |
| 132 | US12   | 2049 | NW | 15 | 7  | 4.854844706  | 0.317174515 | 28.3675333 | 33.9236667 |
| 133 | WA01   | 1589 | NE | 20 | 16 | 3.232395322  | 0.4086      | 28.5503000 | 33.9501000 |

| 135         WA03         I704         N         30         14         1.1.0294765         0.1434375         28.5466833         33.952153           137         WA04         I634         N         5         14         8.0406225         0.209420154         28.547500         33.952450           137         WA05         I733         SW         40         17         10.9981841         0.17672324         28.541833         33.957800           138         WA100         I729         N         20         4         7.87481968         0.19765234         28.5418633         33.990303           141         WA103         1853         N         30         22         3.92759227         0.414836911         28.5418633         33.990303           143         WA100         1956         N         5         18         8.687395617         0.19395362         28.5420167         33.94830           144         WA100         1667         NE         15         18         1.219180015         0.15215107         28.541633         33.94850           144         WA101         167         N         5         18         1.219180015         0.15315107         28.541667         33.938750                                                                                                                                                                                | 134 | WA02  | 1632 | SW | 10 | 13 | 3.921979462  | 0.346342651 | 28.5502167 | 33.9512000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|----|----|----|--------------|-------------|------------|------------|
| 154         WA04         1634         N         5         14         80.2490255         0.09401545         28.5478500         33.92540           173         WA05         1734         NN         25         7         8.029984819         0.119872         28.544383         33.95780           189         WAH01         1792         N         10         18         6.01041903         0.19872         28.544667         33.95030           141         WAH03         1833         N         30         22         3.92759227         0.41483041         28.543683         3.395683           143         WAH04         1901         N         25         17         7.10911874         0.19935803         28.5420167         3.394950           144         WAH05         1904         N         20         15         4.86879502         0.19935572         28.540167         3.394873           144         WAH07         1067         NE         15         18         1.219180015         0.13221501         28.541750         3.394820           144         WAR01         1476         N         5         17         7.3616713         0.13231501         28.571083         3.392620           151<                                                                                                                                                                              | 135 | WA03  | 1704 | Ν  | 30 | 14 | 11.102946765 | 0.1434375   | 28.5466833 | 33.9511333 |
| 157         WA05         1703         SW         40         17         10.989182916         0.119872         28.544383         33.957800           128         WA06         174         N         25         7         8.029984818         0.119762254         28.5428167         33.956283           139         WA101         1729         N         20         4         7.57483168         0.1938         28.5457500         33.950833           140         WA100         1750         N         10         12         3.927592272         0.41436911         28.542033         3.395083           144         WA105         1956         N         5         18         8.657395617         0.1935523         28.5420167         3.394830           144         WA106         2094         N         20         15         1.41892150         0.40272193         28.541706         3.394850           144         WA101         1687         NE         15         18         1.51982150         0.40279139         28.541706         3.3948260           148         WA101         1687         N         20         15         1.5384150         28.575833         3.392660           154         WAR01                                                                                                                                                                              | 136 | WA04  | 1634 | Ν  | 5  | 14 | 8.024092252  | 0.209420154 | 28.5478500 | 33.9524500 |
| 138         WA06         1734         N         25         7         8.029984818         0.176762354         2.8.5428167         3.3.956283           139         WAH01         1729         N         20         4         7.874831968         0.1938         28.547500         3.3.950303           141         WAH02         1729         N         10         18         6.201041903         0.24915576         28.544667         3.3.909503           141         WAH03         1853         N         20         2         3.9759527         24.148051         28.5420167         3.3.949553           143         WAH05         2064         N         20         9         7.16911874         0.10935363         28.5420167         3.3.948733           144         WAH07         2066         NE         30         15         1.8         1.51010915         0.25146107         28.5475667         3.3.94733           147         WA102         1687         N         20         13         5.63223222         2.8448976         2.8.5475667         3.3.98266           154         WAR01         1677         N         30         20         1.3         5.428167         0.3.98266           1                                                                                                                                                                              | 137 | WA05  | 1703 | SW | 40 | 17 | 10.989182916 | 0.119872    | 28.5443833 | 33.9578000 |
| 19.9WAH011729N2047.8748319680.193828.54750033.95033140WAH021792N10186.2010419030.241557728.54666733.95030141WAH031853N30223.92759270.414360128.54686333.95083142WAH041905N5188.687396710.130053242.8542013733.949183143WAH051956N5188.687396710.130053242.8542106133.948183144WAH072006NE30154.1589231540.4027219328.541760733.948783145WAH071767NR5135.63223220.235460728.57766733.932500148WAR011767N5135.63223220.2844897028.577183333.982060154WAR041627N3057.4716671030.175240528.57210733.982500155WAR051677N307.4716571030.1251460528.57210733.982500154WAR071781SE15145.62222070.527392228.57110333.98260155WAR051671N561.14020950.115311928.5716333.98260156WAR041721N10145.62222070.527392228.5711033.98266157WAR041627N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138 | WA06  | 1734 | Ν  | 25 | 7  | 8.029984818  | 0.176762354 | 28.5428167 | 33.9562833 |
| 140         WAH02         1792         N         10         18         6.201041903         0.24915576         28.544667         33.90300           141         WAH03         1853         N         30         22         32.7592272         0.414836911         28.542633         33.904983           143         WAH04         1901         N         25         17         7.169118748         0.19953532         28.5420167         33.944503           143         WAH05         2094         N         20         9         7.30490623         0.01735372         28.541000         33.948503           144         WAH05         2064         NE         30         15         4.158923154         0.402729139         28.541760         33.948503           144         WAH02         1782         NW         35         21         7.36187796         0.02554047         28.547163         33.982560           144         WAR01         1573         N         20         20         13         9.428775119         0.134696955         28.571603         33.982560           150         WAR01         1627         N         30         13         5.42623267         0.3796452         28.571200         33.982560<                                                                                                                                                             | 139 | WAH01 | 1729 | Ν  | 20 | 4  | 7.874831968  | 0.1938      | 28.5457500 | 33.9505333 |
| 141         WAH03         1833         N         30         22         3,927592272         0.414836911         28,5436833         33,90583           142         WAH04         1901         N         25         17         7.169118748         0.199538639         28,5428333         33,949503           143         WAH06         2004         N         20         9         7.30490623         0.19953527         28,540100         33,948733           144         WAH07         2004         NE         30         15         4.158923154         0.402729139         28,5417500         33,948733           146         WAH01         1687         NE         15         18         5.63322322         0.284489706         28,571833         33,982606           148         WAR01         1476         N         20         20         16.11178576         0.0752         28,571833         33,982606           151         WAR04         1627         N         20         20         16.11178576         0.0752         28,5713033         33,98266           151         WAR04         1627         N         30         10         5,4225267         0.37964357         28,572100         33,98266                                                                                                                                                                              | 140 | WAH02 | 1792 | Ν  | 10 | 18 | 6.201041903  | 0.249155767 | 28.5446667 | 33.9503000 |
| 142         WAH04         1901         N         25         17         7.169118748         0.199538639         28.5428333         33.94950           143         WAH05         1956         N         5         18         8.687395617         0.139053254         28.5421067         33.948703           144         WAH07         2006         NE         30         15         4.15892154         0.402729139         28.5417500         33.948703           144         WAH01         1667         NE         15         1.2191800915         0.132315017         28.5417500         33.948783           147         WAJ01         1667         N         5         13         5.63322322         0.284489766         28.5771833         33.982600           150         WAR01         1476         N         5         13         9.428775119         0.1456695         28.5720833         33.982600           151         WAR04         1677         N         35         11         6.08077006         0.21426693         28.572167         33.98260           152         WAR05         1677         N         35         14         5.63232807         0.252739226         28.571300         33.98450 <td< td=""><td>141</td><td>WAH03</td><td>1853</td><td>Ν</td><td>30</td><td>22</td><td>3.927592272</td><td>0.414836911</td><td>28.5436833</td><td>33.9505833</td></td<>        | 141 | WAH03 | 1853 | Ν  | 30 | 22 | 3.927592272  | 0.414836911 | 28.5436833 | 33.9505833 |
| 143         WAH05         1956         N         5         18         8.687395617         0.139053254         28.5420167         33.949183           144         WAH06         2094         N         20         9         7.304906223         0.19735372         28.541000         33.94850           145         WAH07         2066         NE         30         15         4.158923154         0.402729139         28.5417500         33.948733           146         WA101         1687         NE         15         18         12.191800915         0.203546407         28.5475667         33.937850           144         WA102         1726         N         5         13         5.5323222         0.28449796         28.5771833         33.98200           150         WAR01         1476         N         20         13         9.428775119         0.13696955         28.57200         33.98200           151         WAR04         1627         N         30         5         7.47167030         0.175384615         28.572167         33.98200           153         WAR05         1761         N         5         6.6         1.140900952         0.115119         28.507333         3.98266                                                                                                                                                                             | 142 | WAH04 | 1901 | Ν  | 25 | 17 | 7.169118748  | 0.199538639 | 28.5428333 | 33.9495500 |
| 144         WAH06         2094         N         20         9         7.304906223         0.197355372         28.541000         33.948500           145         WAH07         2006         NE         30         15         4.158923154         0.402729139         28.5417500         33.948703           146         WAJ01         1687         NE         15         18         12.191800915         0.132315017         28.5475667         33.938783           147         WAJ02         1782         NW         35         21         7.36183796         0.20354607         28.577633         33.982600           148         WAR01         1767         N         20         16.111785766         0.0752         28.571633         33.982600           151         WAR03         1573         N         20         13         9.428775119         0.134696955         28.57167         33.982600           153         WAR04         1627         N         30         10         3.74625576         0.37964357         28.57167         33.982660           154         WAR07         1781         SE         15         14         5.63232807         0.252739226         28.571333         3.398450           1                                                                                                                                                                     | 143 | WAH05 | 1956 | Ν  | 5  | 18 | 8.687395617  | 0.139053254 | 28.5420167 | 33.9491833 |
| 145       WAH07       2006       NE       30       15       4.158923154       0.402729139       28.5417500       33.948733         146       WAJ01       1687       NE       15       18       12.191800915       0.132315017       28.5491667       33.938783         147       WAD02       1782       NW       35       21       7.386183796       0.203546407       28.5475667       33.938200         148       WAR01       1476       N       5       13       5.63322322       0.28448976       28.5771833       33.982666         150       WAR03       1573       N       20       13       9.428775119       0.13466955       28.5721000       33.982666         151       WAR04       1627       N       30       5       7.471667103       0.17348415       28.573133       3.398266         152       WAR05       1677       N       35       14       6.08807006       0.231426693       28.577167       3.398266         153       WAR06       1721       N       30       10       3.7452576       0.3796437       28.571000       3.398366         154       WAR01       1781       SE       15       14       5.36232807                                                                                                                                                                                                                                                    | 144 | WAH06 | 2094 | Ν  | 20 | 9  | 7.304906223  | 0.197355372 | 28.5401000 | 33.9485000 |
| 146         WAJ01         1687         NE         15         18         12.191800915         0.132315017         28.5491667         33.938783           147         WAJ02         1782         NW         35         21         7.386183796         0.203546407         28.5475667         33.93750           148         WAR01         1476         N         5         13         5.633223222         0.284489796         28.5771833         33.98260           150         WAR03         1573         N         20         16.111785766         0.0752         28.572100         33.98260           151         WAR04         1677         N         30         10         3.7421657103         0.175384615         28.572160         33.982800           153         WAR06         1721         N         30         10         3.74625576         0.37964357         28.572160         33.982800           154         WAR07         1781         SE         15         14         5.36232200         0.25279226         28.5717167         33.982800           155         WAR08         1761         N         5         6         11.14092052         0.111531191         28.509333         33.98366           1                                                                                                                                                                     | 145 | WAH07 | 2006 | NE | 30 | 15 | 4.158923154  | 0.402729139 | 28.5417500 | 33.9487333 |
| 147         WAJ02         1782         NW         35         21         7.386183796         0.203546407         28.5475667         33.93750           148         WAR01         1476         N         5         13         5.633223222         0.284489796         28.5771833         33.982900           149         WAR02         1526         N         20         16.111785766         0.0752         28.5750833         33.98260           150         WAR03         1573         N         20         7.471667103         0.175384615         28.572100         33.982800           152         WAR05         1671         N         35         11         6.3807006         0.231426693         28.572100         33.982800           153         WAR06         1721         N         30         10         3.74622576         0.37964357         28.571000         33.982800           154         WAR07         1781         N         5         14         5.36232807         0.2527926         28.571300         33.98366           155         WAR08         1761         N         5         12.122806836         0.12638556         28.569333         33.98450           157         WAR1         1804 </td <td>146</td> <td>WAJ01</td> <td>1687</td> <td>NE</td> <td>15</td> <td>18</td> <td>12.191800915</td> <td>0.132315017</td> <td>28.5491667</td> <td>33.9387833</td> | 146 | WAJ01 | 1687 | NE | 15 | 18 | 12.191800915 | 0.132315017 | 28.5491667 | 33.9387833 |
| 148         WAR01         1476         N         5         13         5.633223222         0.28448976         2.8.571833         33.98200           149         WAR02         1526         N         20         16.11178576         0.0752         28.5750833         33.98266           150         WAR03         1573         N         20         13         9.428775119         0.134696955         28.5742000         33.98266           151         WAR04         1627         N         30         5         7.471667103         0.175384615         28.572167         33.98266           152         WAR05         1677         N         35         11         6.08807706         0.231426693         28.572167         33.98266           153         WAR06         1721         N         30         10         3.746225876         0.37964357         28.571000         33.98366           156         WAR07         1781         SE         15         14         5.362322807         0.2573926         28.571300         33.98366           156         WAR0         1761         N         20         12         12.12280683         0.1063851         28.569333         3.983166           157                                                                                                                                                                                | 147 | WAJ02 | 1782 | NW | 35 | 21 | 7.386183796  | 0.203546407 | 28.5475667 | 33.9375500 |
| 149         WAR02         1526         N         20         20         16.11785766         0.0752         28.5750833         33.982666           150         WAR03         1573         N         20         13         9.428775119         0.134696955         28.5742000         33.982660           151         WAR04         1627         N         30         5         7.471667103         0.175384615         28.573333         33.982660           152         WAR05         1677         N         35         11         6.088077006         0.23142693         28.572167         33.98266           153         WAR06         1721         N         30         10         3.746225576         0.37964357         28.571000         33.98366           154         WAR07         1781         SE         15         14         5.36322807         0.2573926         28.579303         33.98366           156         WAR09         1797         N         20         12         12.12280683         0.102638556         28.569333         3.983450           157         WAR13         1834         N         20         6         9.120347455         0.1596234         28.560833         3.983636                                                                                                                                                                                | 148 | WAR01 | 1476 | Ν  | 5  | 13 | 5.633223222  | 0.284489796 | 28.5771833 | 33.9829000 |
| 150         WAR03         1573         N         20         13         9.428775119         0.134696955         28.5742000         33.982700           151         WAR04         1627         N         30         5         7.471667103         0.175384615         28.5733333         33.982600           152         WAR05         1677         N         35         11         6.088077006         0.231426693         28.5727167         33.98260           153         WAR06         1721         N         30         10         3.746225576         0.37964357         28.571000         33.98260           154         WAR07         1781         SE         15         14         5.362322807         0.252739226         28.571300         33.98366           155         WAR08         1761         N         5         6         11.140920952         0.111531191         28.570900         33.98366           157         WAR10         1804         N         10         8         9.002771765         0.165019835         28.569383         3.983663           158         WAR11         1850         N         10         15         7.437873530         0.16805411         28.5679833         3.3984563                                                                                                                                                                     | 149 | WAR02 | 1526 | Ν  | 20 | 20 | 16.111785766 | 0.0752      | 28.5750833 | 33.9826667 |
| 151         WAR04         1627         N         30         5         7.471667103         0.175384615         28.5733333         33.982650           152         WAR05         1677         N         35         11         6.088077006         0.231426693         28.5721167         33.982800           153         WAR06         1721         N         30         10         3.746225576         0.37964357         28.5711000         33.982800           154         WAR07         1781         SE         15         14         5.362322807         0.252739226         28.5713000         33.98366           155         WAR08         1761         N         5         6         11.140920952         0.111531191         28.5709000         33.98366           156         WAR09         1795         N         20         12         12.12806836         0.10263855         28.569333         33.98363           157         WAR10         1804         N         10         15         7.43787355         0.16605411         28.569833         33.98363           159         WAR12         1871         N         5         9         3.8356652         0.374710744         28.5669833         3.398363                                                                                                                                                                        | 150 | WAR03 | 1573 | Ν  | 20 | 13 | 9.428775119  | 0.134696955 | 28.5742000 | 33.9827000 |
| 152         WAR05         1677         N         35         11         6.08807706         0.231426693         28.5721167         33.982800           153         WAR06         1721         N         30         10         3.746225576         0.37964357         28.5721100         33.98266           154         WAR07         1781         SE         15         14         5.362322807         0.252739226         28.571300         33.98366           155         WAR08         1761         N         5         6         11.140920952         0.111531191         28.570900         33.98366           156         WAR09         1795         N         20         12         12.122806836         0.10263855         28.5693833         3.398366           157         WAR10         1804         N         10         15         7.437873350         0.16805411         28.5693833         3.3983663           159         WAR12         1871         N         5         9         3.835363552         0.374710744         28.5698333         3.3983663           160         WAR14         1893         N         20         6         9.120347455         0.151962304         28.560003         3.3983663                                                                                                                                                                     | 151 | WAR04 | 1627 | Ν  | 30 | 5  | 7.471667103  | 0.175384615 | 28.5733333 | 33.9826500 |
| 153         WAR06         1721         N         30         10         3.746225576         0.37964357         28.5721000         3.398266           154         WAR07         1781         SE         15         14         5.362322807         0.252739226         28.5713000         3.398366           155         WAR08         1761         N         5         6         11.140920952         0.111531191         28.5709000         3.398366           156         WAR09         1795         N         20         12         12.122806836         0.102638556         28.5697333         3.3983450           157         WAR10         1804         N         10         15         7.437873350         0.16805411         28.5693833         3.3983663           159         WAR12         1871         N         5         9         3.835363652         0.374710744         28.569833         3.3983663           160         WAR14         1893         N         20         6         9.120347455         0.151962304         28.560003         3.3983663           161         WAR14         1893         N         25         14         10.86430118         0.12929363         28.560033         3.3983663                                                                                                                                                                   | 152 | WAR05 | 1677 | Ν  | 35 | 11 | 6.088077006  | 0.231426693 | 28.5727167 | 33.9828000 |
| 154         WAR07         1781         SE         15         14         5.362322807         0.252739226         28.571300         33.983133           155         WAR08         1761         N         5         6         11.140920952         0.111531191         28.5709000         33.98366           156         WAR09         1795         N         20         12         12.122806836         0.10268556         28.5697333         33.983660           157         WAR10         1804         N         10         8         9.002771765         0.16561985         28.569833         33.983630           159         WAR11         1850         N         10         15         7.43787350         0.16805411         28.5679833         33.983630           160         WAR13         1938         N         20         6         9.120347455         0.151962304         28.560000         33.983600           161         WAR14         1893         N         25         14         10.846300118         0.12925933         28.560833         33.98360           162         WAT01         1777         NW         10         19         16.312125209         0.069243761         28.578330         33.889600 <td>153</td> <td>WAR06</td> <td>1721</td> <td>Ν</td> <td>30</td> <td>10</td> <td>3.746225576</td> <td>0.37964357</td> <td>28.5721000</td> <td>33.9829667</td>    | 153 | WAR06 | 1721 | Ν  | 30 | 10 | 3.746225576  | 0.37964357  | 28.5721000 | 33.9829667 |
| 155       WAR08       1761       N       5       6       11.14092052       0.111531191       28.5709000       33.98366         156       WAR09       1795       N       20       12       12.122806836       0.10263855       28.5697333       33.983460         157       WAR10       1804       N       10       8       9.00271765       0.165619835       28.5693833       33.983460         158       WAR11       1850       N       10       15       7.437873350       0.16805411       28.5679833       33.983460         159       WAR12       1871       N       5       9       3.83536352       0.374710744       28.5669833       33.983460         160       WAR13       1938       N       20       6       9.120347455       0.151962304       28.560000       33.983660         161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5606833       33.983660         163       WAT02       1764       N       5       5       10.500936888       0.12475582       28.575933       33.89166         164       WAT03       1789       W       10       12       10.117803512                                                                                                                                                                                                                                                    | 154 | WAR07 | 1781 | SE | 15 | 14 | 5.362322807  | 0.252739226 | 28.5713000 | 33.9831333 |
| 156         WAR09         1795         N         20         12         12.122806836         0.102638556         28.5697333         33.983450           157         WAR10         1804         N         10         8         9.002771765         0.165619835         28.5693833         33.983450           158         WAR11         1850         N         10         15         7.43787350         0.16805411         28.5679833         33.983450           159         WAR12         1871         N         5         9         3.835363652         0.374710744         28.5669833         33.983460           160         WAR14         1893         N         20         6         9.120347455         0.151962304         28.5660833         33.983666           162         WAR14         1893         N         25         14         10.846300118         0.129529363         28.5660833         33.983666           162         WAT01         1737         NW         10         19         16.312125209         0.069243761         28.5827833         33.886900           163         WAT02         1764         N         5         10         5.638814736         0.313432836         28.5753333         33.891166                                                                                                                                                           | 155 | WAR08 | 1761 | Ν  | 5  | 6  | 11.140920952 | 0.111531191 | 28.5709000 | 33.9833667 |
| 157       WAR10       1804       N       10       8       9.002771765       0.165619835       28.5693833       33.98316         158       WAR11       1850       N       10       15       7.437873350       0.16805411       28.5679833       33.983450         159       WAR12       1871       N       5       9       3.835363652       0.374710744       28.5669833       33.983460         160       WAR13       1938       N       20       6       9.120347455       0.151962304       28.5660833       33.983460         161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5660833       33.983366         162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.587833       33.886900         163       WAT02       1764       N       5       10.50093688       0.124705882       28.581200       33.88783         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.575333       33.89116         165       WAT04       1801       NW       5       7.997850222       0.149101837 <t< td=""><td>156</td><td>WAR09</td><td>1795</td><td>Ν</td><td>20</td><td>12</td><td>12.122806836</td><td>0.102638556</td><td>28.5697333</td><td>33.9834500</td></t<>                                                                           | 156 | WAR09 | 1795 | Ν  | 20 | 12 | 12.122806836 | 0.102638556 | 28.5697333 | 33.9834500 |
| 158       WAR11       1850       N       10       15       7.437873350       0.16805411       28.5679833       33.983450         159       WAR12       1871       N       5       9       3.835363652       0.374710744       28.5669833       33.983460         160       WAR13       1938       N       20       6       9.120347455       0.151962304       28.5660833       33.983460         161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5660833       33.983460         162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.5827833       33.886900         163       WAT02       1764       N       5       5       10.50093688       0.124705882       28.5719333       33.8894366         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.5759333       33.89166         166       WAT04       1801       NW       5       10       5.63814736       0.313432836       28.5759333       33.900133         167       WAT06       1996       N       0       14       8.055573001<                                                                                                                                                                                                                                            | 157 | WAR10 | 1804 | Ν  | 10 | 8  | 9.002771765  | 0.165619835 | 28.5693833 | 33.9831167 |
| 159       WAR12       1871       N       5       9       3.835363652       0.374710744       28.5669833       33.983633         160       WAR13       1938       N       20       6       9.120347455       0.151962304       28.5660833       33.983666         161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5660833       33.983666         162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.5827833       33.886600         163       WAT02       1764       N       5       10.500936888       0.124705882       28.578303       33.887833         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.578303       33.899833         165       WAT04       1801       NW       5       10       5.638814736       0.313432836       28.5759333       33.89166         166       WAT05       1825       SW       10       5       7.997850222       0.149101837       28.560867       33.900133         167       WAT06       1996       N       0       14       8.055573001       0.1                                                                                                                                                                                                                                            | 158 | WAR11 | 1850 | Ν  | 10 | 15 | 7.437873350  | 0.16805411  | 28.5679833 | 33.9834500 |
| 160       WAR13       1938       N       20       6       9.120347455       0.151962304       28.5650000       33.983400         161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5660833       33.983460         162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.5827833       33.886900         163       WAT02       1764       N       5       5       10.500936888       0.124705822       28.578500       33.887833         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.578503       33.89116         165       WAT04       1801       NW       5       10       5.638814736       0.313432836       28.5759333       33.89116         166       WAT05       1825       SW       10       14       8.055573001       0.134986226       28.560667       33.90033         168       WAT07       1974       NE       10       7.796129288       0.22972973       28.5615833       33.900766         170       WAT08       1951       N       10       7.877810406       0.158464035                                                                                                                                                                                                                                            | 159 | WAR12 | 1871 | Ν  | 5  | 9  | 3.835363652  | 0.374710744 | 28.5669833 | 33.9836333 |
| 161       WAR14       1893       N       25       14       10.846300118       0.129529363       28.5660833       33.983366         162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.5827833       33.886900         163       WAT02       1764       N       5       5       10.500936888       0.124705882       28.5812000       33.887583         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.5788500       33.889983         165       WAT04       1801       NW       5       10       5.638814736       0.313432836       28.5759333       33.8914366         166       WAT05       1825       SW       10       5       7.997850222       0.149101837       28.5736333       33.900333         166       WAT06       1996       N       0       14       8.05557301       0.134986226       28.560667       33.900333         168       WAT07       1974       NE       10       10       7.796129288       0.22972973       28.5615833       33.900766         170       WAT08       1951       NE       5       9.383467289 <t< td=""><td>160</td><td>WAR13</td><td>1938</td><td>Ν</td><td>20</td><td>6</td><td>9.120347455</td><td>0.151962304</td><td>28.5650000</td><td>33.9834000</td></t<>                                                                             | 160 | WAR13 | 1938 | Ν  | 20 | 6  | 9.120347455  | 0.151962304 | 28.5650000 | 33.9834000 |
| 162       WAT01       1737       NW       10       19       16.312125209       0.069243761       28.5827833       33.886900         163       WAT02       1764       N       5       5       10.500936888       0.124705882       28.5812000       33.887583         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.578500       33.889983         165       WAT04       1801       NW       5       10       5.638814736       0.313432836       28.5759333       33.891116         166       WAT05       1825       SW       10       5       7.997850222       0.149101837       28.5766333       33.900133         167       WAT06       1996       N       0       14       8.055573001       0.134986226       28.560667       33.90033         168       WAT07       1974       NE       10       7.796129288       0.22972973       28.566833       33.900766         170       WAT08       1951       NE       5       15       9.383467289       0.133674215       28.5619167       33.900283         171       WAT09       1921       N       10       18       5.59055195       0.2                                                                                                                                                                                                                                            | 161 | WAR14 | 1893 | Ν  | 25 | 14 | 10.846300118 | 0.129529363 | 28.5660833 | 33.9833667 |
| 163       WAT02       1764       N       5       10.500936888       0.124705882       28.5812000       33.887583         164       WAT03       1789       W       10       12       10.117803512       0.1178125       28.578500       33.889983         165       WAT04       1801       NW       5       10       5.638814736       0.313432836       28.5759333       33.891166         166       WAT05       1825       SW       10       5       7.997850222       0.149101837       28.5736333       33.89033         167       WAT06       1996       N       0       14       8.055573001       0.134986226       28.560667       33.90033         168       WAT07       1974       NE       10       10       7.796129288       0.22972973       28.5615833       33.900166         170       WAT08       1951       NE       5       15       9.383467289       0.133674215       28.5615833       33.900233         170       WAT09       1921       N       10       18       5.590505195       0.28625       28.5629167       33.900630         171       WAT10       1898       N       15       8       7.877810406       0.158464                                                                                                                                                                                                                                            | 162 | WAT01 | 1737 | NW | 10 | 19 | 16.312125209 | 0.069243761 | 28.5827833 | 33.8869000 |
| 164WAT031789W101210.1178035120.117812528.578850033.889983165WAT041801NW5105.6388147360.31343283628.575933333.891116166WAT051825SW1057.9978502220.14910183728.573633333.894366167WAT061996N0148.0555730010.13498622628.560066733.900033168WAT071974NE10107.7961292880.2297297328.560683333.900133169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.590501950.2862528.563916733.900833171WAT101898N1587.8778104060.15846403528.563916733.900650173WAT111870NW0107.1108313020.18042366728.56916733.900650173WAT121850N15115.9514475180.21265348628.578866733.924516174WB011452N15128.6046237870.1319444428.57750033.923633175WB021502N15128.6046237870.1319444428.576900033.922683175WB031549NE101214.2509601160.09344962628.576900033.922683 </td <td>163</td> <td>WAT02</td> <td>1764</td> <td>Ν</td> <td>5</td> <td>5</td> <td>10.500936888</td> <td>0.124705882</td> <td>28.5812000</td> <td>33.8875833</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 163 | WAT02 | 1764 | Ν  | 5  | 5  | 10.500936888 | 0.124705882 | 28.5812000 | 33.8875833 |
| 165WAT041801NW5105.6388147360.31343283628.575933333.891116166WAT051825SW1057.9978502220.14910183728.573633333.894366167WAT061996N0148.0555730010.13498622628.560066733.900033168WAT071974NE10107.7961292880.2297297328.560683333.900133169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.5905051950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.569316733.90050173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922683176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 164 | WAT03 | 1789 | W  | 10 | 12 | 10.117803512 | 0.1178125   | 28.5788500 | 33.8899833 |
| 166WAT051825SW1057.9978502220.14910183728.573633333.894366167WAT061996N0148.0555730010.13498622628.560066733.900033168WAT071974NE10107.7961292880.2297297328.560683333.900133169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.590501950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.563916733.902683172WAT111870NW0107.1108313020.18042366728.569350033.898683173WAT121850N10810.5297049640.11008264528.569350033.8924516173WAT121850N15115.9541475180.21265348628.578866733.924516174WB011452N15128.6046237870.1319444428.577750033.923633175WB021502N151214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165 | WAT04 | 1801 | NW | 5  | 10 | 5.638814736  | 0.313432836 | 28.5759333 | 33.8911167 |
| 167WAT061996N0148.0555730010.13498622628.560066733.900033168WAT071974NE10107.7961292880.2297297328.560683333.900133169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.5905051950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.563916733.902083172WAT111870NW0107.1108313020.18042366728.56916733.900650173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 166 | WAT05 | 1825 | SW | 10 | 5  | 7.997850222  | 0.149101837 | 28.5736333 | 33.8943667 |
| 168WAT071974NE10107.7961292880.2297297328.560683333.900133169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.5905051950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.563916733.902083172WAT111870NW0107.1108313020.18042366728.566916733.900660173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.1319444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 167 | WAT06 | 1996 | Ν  | 0  | 14 | 8.055573001  | 0.134986226 | 28.5600667 | 33.9000333 |
| 169WAT081951NE5159.3834672890.13367421528.561583333.900766170WAT091921N10185.5905051950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.563916733.902083172WAT111870NW0107.1108313020.18042366728.56916733.900600173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 168 | WAT07 | 1974 | NE | 10 | 10 | 7.796129288  | 0.22972973  | 28.5606833 | 33.9001333 |
| 170WAT091921N10185.5905051950.2862528.562633333.902233171WAT101898N1587.8778104060.15846403528.563916733.902083172WAT111870NW0107.1108313020.18042366728.566916733.900650173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 169 | WAT08 | 1951 | NE | 5  | 15 | 9.383467289  | 0.133674215 | 28.5615833 | 33.9007667 |
| 171WAT101898N1587.8778104060.15846403528.563916733.902083172WAT111870NW0107.1108313020.18042366728.566916733.900650173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170 | WAT09 | 1921 | Ν  | 10 | 18 | 5.590505195  | 0.28625     | 28.5626333 | 33.9022333 |
| 172WAT111870NW0107.1108313020.18042366728.566916733.900650173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.922633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 171 | WAT10 | 1898 | Ν  | 15 | 8  | 7.877810406  | 0.158464035 | 28.5639167 | 33.9020833 |
| 173WAT121850N10810.5297049640.11008264528.569350033.898683174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.923633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 172 | WAT11 | 1870 | NW | 0  | 10 | 7.110831302  | 0.180423667 | 28.5669167 | 33.9006500 |
| 174WB011452N15115.9541475180.21265348628.578866733.924516175WB021502N15128.6046237870.13194444428.577750033.923633176WB031549NE101214.2509601160.09344962628.576900033.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173 | WAT12 | 1850 | Ν  | 10 | 8  | 10.529704964 | 0.110082645 | 28.5693500 | 33.8986833 |
| 175       WB02       1502       N       15       12       8.604623787       0.131944444       28.5777500       33.923633         176       WB03       1549       NE       10       12       14.250960116       0.093449626       28.5769000       33.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 174 | WB01  | 1452 | Ν  | 15 | 11 | 5.954147518  | 0.212653486 | 28.5788667 | 33.9245167 |
| 176 WB03 1549 NE 10 12 14.250960116 0.093449626 28.5769000 33.922683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 175 | WB02  | 1502 | Ν  | 15 | 12 | 8.604623787  | 0.131944444 | 28.5777500 | 33.9236333 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 176 | WB03  | 1549 | NE | 10 | 12 | 14.250960116 | 0.093449626 | 28.5769000 | 33.9226833 |
| 177 WB04 1604 NE 20 6 12.262803336 0.089382716 28.5764333 33.921750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177 | WB04  | 1604 | NE | 20 | 6  | 12.262803336 | 0.089382716 | 28.5764333 | 33.9217500 |
| 178 WB05 1652 NE 20 6 11.685650185 0.14852054 28.5762333 33.921216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178 | WB05  | 1652 | NE | 20 | 6  | 11.685650185 | 0.14852054  | 28.5762333 | 33.9212167 |
| 179 WB06 1679 NW 20 7 15.816711568 0.082138641 28.5758167 33.920833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179 | WB06  | 1679 | NW | 20 | 7  | 15.816711568 | 0.082138641 | 28.5758167 | 33.9208333 |

| 180 | WF01         | 1751 | NE | 25 | 16 | 6.055643585  | 0.244760899 | 28.5516500 | 33.9576000 |
|-----|--------------|------|----|----|----|--------------|-------------|------------|------------|
| 181 | WF02         | 1750 | W  | 10 | 15 | 6.747559589  | 0.202371252 | 28.5519167 | 33.9583167 |
| 182 | WF03         | 1823 | SW | 40 | 12 | 2.573079233  | 0.529369883 | 28.5483167 | 33.9613333 |
| 183 | WF04         | 1801 | NE | 30 | 6  | 8.496554652  | 0.149689523 | 28.5479167 | 33.9607333 |
| 184 | WF05         | 1836 | Ν  | 35 | 9  | 10.102815878 | 0.126704785 | 38.5451167 | 33.9626500 |
| 185 | WF06         | 1870 | SW | 30 | 11 | 9.937875681  | 0.130430604 | 28.5467833 | 33.9643833 |
| 186 | WF07         | 1931 | S  | 40 | 18 | 3.701760308  | 0.394048776 | 28.5476333 | 33.9644667 |
| 187 | WF08         | 2007 | S  | 45 | 10 | 9.685842451  | 0.123981033 | 28.5488000 | 33.9646167 |
| 188 | WG01         | 1914 | NW | 5  | 12 | 4.195849081  | 0.292165511 | 28.5383000 | 33.9206167 |
| 189 | WG02         | 1912 | NW | 5  | 7  | 8.879955221  | 0.176767677 | 28.5374333 | 33.9190500 |
| 190 | WG03         | 1907 | W  | 10 | 14 | 6.180754087  | 0.225618451 | 28.5369500 | 33.9177000 |
| 191 | WG04         | 1891 | NW | 5  | 10 | 9.877623239  | 0.140310204 | 28.5356000 | 33.9143167 |
| 192 | WG05         | 1889 | SW | 5  | 9  | 9.246870243  | 0.160950912 | 28.5351333 | 33.9133833 |
| 193 | WG06         | 1888 | Ν  | 10 | 5  | 8.653556032  | 0.149653434 | 28.5346333 | 33.9124833 |
| 194 | WG07         | 1887 | SE | 15 | 12 | 6.881538708  | 0.198333333 | 28.5343833 | 33.9113167 |
| 195 | WG08         | 1875 | W  | 5  | 14 | 5.816177212  | 0.214285714 | 28.5332333 | 33.9083500 |
| 196 | WG09         | 1876 | SE | 15 | 2  | 7.262543835  | 0.184285714 | 28.5322833 | 33.9052167 |
| 197 | WG10         | 2011 | SW | 20 | 10 | 5.344409808  | 0.293207908 | 28.5371500 | 33.8983500 |
| 198 | WG11         | 1965 | S  | 20 | 9  | 7.671860555  | 0.146449704 | 28.5358833 | 33.8988833 |
| 199 | WG12         | 1910 | SW | 10 | 19 | 11.250003570 | 0.121957815 | 28.5346000 | 33.8990833 |
| 200 | WG13         | 1885 | SE | 5  | 9  | 11.848855916 | 0.09815586  | 28.5331667 | 33.8996833 |
| 201 | WG14         | 1792 | NE | 5  | 5  | 7.038790151  | 0.193201526 | 28.5360667 | 33.8858000 |
| 202 | WG15         | 1768 | NE | 5  | 6  | 12.205056450 | 0.107354184 | 28.5474833 | 33.8786333 |
| 203 | WG16         | 1717 | NW | 0  | 12 | 9.341550033  | 0.141111111 | 28.5436667 | 33.8753000 |
| 204 | WJ01         | 1646 | SE | 10 | 18 | 2.412012300  | 0.661599619 | 28.5832167 | 33.9457167 |
| 205 | WJ02         | 1710 | SE | 30 | 14 | 6.467887368  | 0.264060357 | 28.5845667 | 33.9452833 |
| 206 | WJ03         | 1766 | SE | 40 | 8  | 9.522124811  | 0.147727273 | 28.5853500 | 33.9447833 |
| 207 | <b>WJ</b> 04 | 1822 | NE | 25 | 15 | 5.005337212  | 0.287407407 | 28.5858500 | 33.9440667 |
| 208 | WJ05         | 1878 | SE | 5  | 14 | 5.932466299  | 0.229275061 | 28.5867833 | 33.9431000 |
| 209 | WJ06         | 1929 | NE | 20 | 12 | 3.580854321  | 0.385354377 | 28.5872000 | 33.9417333 |
| 210 | WJA01        | 1792 | Ν  | 5  | 18 | 5.079225877  | 0.273662551 | 28.5337333 | 33.9649500 |
| 211 | WJA02        | 1810 | NE | 10 | 11 | 11.685068171 | 0.105916728 | 28.5325000 | 33.9641500 |
| 212 | WJA03        | 1852 | NE | 10 | 10 | 17.708575024 | 0.07231405  | 28.5316833 | 33.9627833 |
| 213 | WJA04        | 1901 | S  | 20 | 12 | 8.987254776  | 0.154840563 | 28.5316333 | 33.9617500 |
| 214 | WJA05        | 1954 | Е  | 15 | 10 | 14.409980678 | 0.085648148 | 28.5323000 | 33.9614333 |
| 215 | WJA06        | 2007 | NE | 25 | 19 | 9.807889383  | 0.125       | 28.5310667 | 33.9596000 |
| 216 | WJA07        | 2060 | Ν  | 30 | 10 | 5.097383596  | 0.290816327 | 28.5305333 | 33.9593000 |
| 217 | WJA08        | 2094 | Е  | 5  | 17 | 7.640075026  | 0.183391003 | 28.5308000 | 33.9573000 |
| 218 | WJA09        | 2156 | SE | 5  | 12 | 7.869019257  | 0.142733564 | 28.5330500 | 33.9557167 |
| 219 | WJA10        | 2199 | NE | 10 | 4  | 9.510517013  | 0.135147929 | 28.5335167 | 33.9543000 |
| 220 | WJA11        | 2251 | NE | 0  | 13 | 4.324772196  | 0.345       | 28.5341667 | 33.9532333 |
| 221 | WJA12        | 2290 | NE | 5  | 20 | 4.489406338  | 0.339359504 | 28.5343500 | 33.9524167 |
| 222 | WJA13        | 2287 | NE | 5  | 13 | 3.692375380  | 0.327032136 | 28.5347000 | 33.9525167 |
| 223 | WJA14        | 2312 | Е  | 5  | 20 | 1.783049832  | 0.69550173  | 28.5345000 | 33.9515333 |
| 224 | WJA15        | 2188 | SE | 0  | 20 | 3.582729340  | 0.303312835 | 28.5344000 | 33.9544833 |
| 225 | WL01         | 1490 | SE | 5  | 7  | 10.981542241 | 0.142115088 | 28.5766333 | 33.9736667 |

| 226 | WL02   | 1541 | SE | 15 | 5  | 6.771214482  | 0.191485969 | 28.5787000 | 33.9716333 |
|-----|--------|------|----|----|----|--------------|-------------|------------|------------|
| 227 | WL03   | 1590 | SE | 15 | 11 | 15.847571912 | 0.0819161   | 28.5797333 | 33.9706333 |
| 228 | WL04   | 1640 | SE | 20 | 9  | 13.664292435 | 0.115646259 | 28.5805833 | 33.9698833 |
| 229 | WL05   | 1693 | SW | 15 | 9  | 9.556318536  | 0.162644628 | 28.5820333 | 33.9702833 |
| 230 | WL06   | 1749 | SE | 10 | 16 | 4.324926757  | 0.366804141 | 28.5828667 | 33.9695833 |
| 231 | WL07   | 1829 | Ν  | 10 | 8  | 4.846199789  | 0.307218935 | 28.5847333 | 33.9699500 |
| 232 | WL08   | 1859 | W  | 20 | 8  | 8.475029492  | 0.162238996 | 28.5848500 | 33.9704667 |
| 233 | WMS01  | 1648 | NW | 20 | 10 | 6.826910689  | 0.236131657 | 28.5490333 | 33.9410333 |
| 234 | WMS02  | 1713 | Ν  | 5  | 13 | 11.880561164 | 0.102880658 | 28.5463667 | 33.9400167 |
| 235 | WMS03  | 1754 | NW | 5  | 8  | 15.727444662 | 0.0853125   | 28.5445500 | 33.9400500 |
| 236 | WMS04  | 1816 | W  | 30 | 13 | 9.861461969  | 0.120772246 | 28.5435167 | 33.9408333 |
| 237 | WMS05  | 1912 | W  | 30 | 12 | 5.329006922  | 0.225847593 | 28.5415500 | 33.9417167 |
| 238 | WS01   | 1522 | NW | 25 | 17 | 12.318286720 | 0.098689792 | 28.5598500 | 33.9573667 |
| 239 | WS02   | 1569 | NW | 25 | 21 | 3.193428132  | 0.450612731 | 28.5591500 | 33.9574667 |
| 240 | WS03   | 1618 | NW | 30 | 9  | 4.379130451  | 0.271224643 | 28.5575667 | 33.9577167 |
| 241 | WS04   | 1646 | NW | 35 | 10 | 11.607547527 | 0.109026063 | 28.5580833 | 33.9588333 |
| 242 | WS05   | 1546 | SE | 20 | 14 | 3.510011735  | 0.370844074 | 28.5598833 | 33.9559500 |
| 243 | WS06   | 1573 | Е  | 25 | 15 | 7.139434172  | 0.174702278 | 28.5581833 | 33.9553500 |
| 244 | WS07   | 1629 | Ν  | 25 | 9  | 9.218326161  | 0.157123736 | 28.5563500 | 33.9554500 |
| 245 | WS08   | 1700 | Ν  | 40 | 6  | 6.849377289  | 0.19459285  | 28.5551833 | 33.9555833 |
| 246 | WSG01  | 1369 | NW | 30 | 9  | 6.688585857  | 0.228373702 | 28.5903167 | 33.9134667 |
| 247 | WSG02  | 1436 | SE | 5  | 9  | 10.430281342 | 0.115420129 | 28.5893833 | 33.9114667 |
| 248 | WSG03  | 1481 | NE | 5  | 8  | 12.385712618 | 0.101105592 | 28.5882167 | 33.9095833 |
| 249 | WSG04  | 1539 | NE | 5  | 6  | 9.167128240  | 0.154147383 | 28.5867167 | 33.9075500 |
| 250 | WSG05  | 1612 | NE | 20 | 4  | 16.674020984 | 0.088960302 | 28.5851667 | 33.9051167 |
| 251 | WSG06  | 1679 | NE | 5  | 13 | 11.730822701 | 0.103537981 | 28.5839667 | 33.9026667 |
| 252 | WSGR01 | 1825 | Ν  | 5  | 6  | 13.236936949 | 0.107744304 | 28.5744500 | 33.8975000 |
| 253 | WSGR02 | 1776 | Ν  | 10 | 7  | 10.012945871 | 0.169876543 | 28.5767000 | 33.8996500 |
| 254 | WSGR03 | 1725 | NW | 5  | 6  | 9.519204795  | 0.152199762 | 28.5821000 | 33.9012167 |
| 255 | WSH01  | 1525 | NE | 5  | 13 | 2.603865656  | 0.567593292 | 28.5625667 | 33.9651333 |
| 256 | WSH02  | 1531 | Ν  | 10 | 8  | 15.125281669 | 0.086894133 | 28.5620667 | 33.9507667 |
| 257 | WSH03  | 1565 | Е  | 25 | 10 | 7.206660808  | 0.231649324 | 28.5608167 | 33.9656667 |
| 258 | WSH04  | 1649 | Ν  | 40 | 10 | 9.910363956  | 0.135371901 | 28.5585833 | 33.9656667 |
| 259 | WSH05  | 1686 | NE | 25 | 12 | 12.195763229 | 0.117101322 | 28.5582833 | 33.9649667 |
| 260 | WSH06  | 1747 | Ν  | 35 | 9  | 7.431920152  | 0.171600666 | 28.5572667 | 33.9656833 |
| 261 | WSH07  | 1838 | Ν  | 40 | 19 | 4.994300261  | 0.278806584 | 28.5561167 | 33.9656333 |
| 262 | WSH08  | 1905 | NE | 40 | 10 | 5.927843623  | 0.214625446 | 28.5553667 | 33.9663333 |
| 263 | WSH09  | 1987 | Ν  | 30 | 11 | 6.770962645  | 0.199372057 | 28.5547333 | 33.9663833 |
| 264 | WT01   | 1421 | NE | 30 | 12 | 3.886348037  | 0.30825831  | 28.5831667 | 33.9224833 |
| 265 | WT02   | 1477 | NE | 20 | 18 | 2.739831165  | 0.522928994 | 28.5816500 | 33.9207500 |
| 266 | WT03   | 1530 | Е  | 10 | 12 | 9.657941631  | 0.196361059 | 28.5802167 | 33.9199000 |
| 267 | WT04   | 1624 | NE | 35 | 14 | 5.110547604  | 0.3155116   | 28.5789333 | 33.9187833 |
| 268 | WT05   | 1596 | Е  | 15 | 20 | 6.196609235  | 0.257610515 | 28.5795500 | 33.9185500 |
| 269 | WT06   | 1674 | Ν  | 30 | 15 | 12.986866443 | 0.093834505 | 28.5784667 | 33.9174000 |
| 270 | WT07   | 1732 | NE | 20 | 18 | 12.342102612 | 0.106305267 | 28.5777000 | 33.9333167 |
| 271 | WT08   | 1832 | NE | 20 | 11 | 8.944431660  | 0.140758203 | 28.5764167 | 33.9320333 |
|     |        |      |    |    |    |              |             |            |            |

| 272 | WT101 | 1585 | NE | 10 | 8  | 4.915314629  | 0.316144786 | 28.5656833 | 33.9309500 |
|-----|-------|------|----|----|----|--------------|-------------|------------|------------|
| 273 | WT102 | 1641 | NW | 15 | 23 | 5.204469215  | 0.298155128 | 28.5646500 | 33.9292167 |
| 274 | WT103 | 1706 | Ν  | 20 | 9  | 8.321153091  | 0.153687371 | 28.5634667 | 33.9283667 |
| 275 | WT104 | 1771 | Ν  | 40 | 6  | 8.322876191  | 0.149368559 | 28.5625833 | 33.9280333 |
| 276 | WT105 | 1832 | Ν  | 15 | 8  | 11.908791223 | 0.110893556 | 28.5621167 | 33.9269833 |
| 277 | WT106 | 1893 | SE | 20 | 3  | 12.685687001 | 0.098072562 | 28.5609833 | 33.9266833 |
| 278 | WTF01 | 1377 | Ν  | 25 | 10 | 11.116419013 | 0.118227732 | 28.5979667 | 33.9144167 |
| 279 | WTF02 | 1418 | Е  | 20 | 16 | 6.932389446  | 0.22175981  | 28.5967000 | 33.9105333 |
| 280 | WTF03 | 1470 | Е  | 20 | 8  | 8.957490523  | 0.15451895  | 28.5967000 | 33.9088167 |
| 281 | WTF04 | 1572 | NE | 35 | 14 | 2.943697947  | 0.4190625   | 28.5963167 | 33.9068333 |
| 282 | WTF05 | 1621 | Е  | 35 | 16 | 6.896264163  | 0.223494089 | 28.5966167 | 33.9053333 |
| 283 | WTF06 | 1654 | NE | 15 | 19 | 7.200292335  | 0.199432892 | 28.5966500 | 33.9046500 |
|     |       |      |    |    |    |              |             |            |            |