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Abstract 

Fruits are composite materials often surrounded by a skin and sometimes 

containing rigid stones (pits). To understand the contribution of skin and 

stone to the overall texture of the fruit, model fruits were constructed 

from moulded gelatin spheres, with rigid inclusions and a skin layer. 

Cross polarised light revealed the stress distribution during puncture 

testing and the mechanical measures of firmness, Poisson’s ratio and 

breaking force were determined.  

Skin significantly raised the breaking force. Spherical stones raised the 

firmness – effectively reducing the deformable material in the sphere, 

resulting in inflated strains.  Disc shaped stones compared with spherical 

ones, with the narrow edge normal to the force acted like an internal 

blade and significantly lowered the breaking force. Neither skin nor stone 

had any significant impact on Poisson’s ratio. 

Three examples of real fruit (raspberries, grapes and cherries) were 

tested to contextualize the findings. 

 

Practical applications 

Consumers gently squeeze fruit to gauge ripeness. Unwittingly, what we 

perceive while squeezing fruit is not wholly dependent on the texture of 

the internal flesh. 

In this work we have attempted to model how the firmness and breaking 

force are influenced by the presence of a skin and stones of various size 

and shape. This has implications in both sensory and instrumental fruit 

testing.   
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Introduction 

Consumers selecting fruit commonly squeeze the produce gently to sense 

firmness, elasticity and relaxation.  Intuitively and through experience 

quality and ripeness are gauged.  This behaviour is not exclusive to 

humans, chimpanzees also press a digit into figs to gauge their ripeness 

(Dominy et al., 2016). However, what might be unique to humans is the 

creation of instruments to quantify the textural and quality attributes of 

the fruit.  Fresh horticultural produce are often tested prior to harvest in 

the field with a hand held puncture testers, the fruit are cradled in one 

hand and a spring mounted probe pressed into the surface until it 

penetrates the fruit by a fixed distance. Less mobile, but possibly more 

accurate are the laboratory texture analysers and universal testing 

machines (Rosenthal, 2015). When laboratory texture tests of fruit are 

undertaken, the fruit are invariably placed on a plane surface and pressed 

with a flat plunger.  The resisting stress/strain at failure are often taken 

as a guide to the overall quality of the item or batch.   

Harker, Redgwell, Hallett, Murray and Carter (1997) undertook a 

comprehensive review of the extensive literature dedicated to the texture 

of fruit. These authors identified a number of contributory factors thought 

to be responsible for the texture of fruits and their changes during 

ripening, for example turgor pressure, secondary thickened cell walls, cell 

shape, skin, seeds, vasculature, etc.  The presence of skin is widely 

known to influence results of texture tests, so much so that the procedure 

for hand held puncture testers often require the removal of the skin to 

focus on the underlying tissues (Bourne, 1980).   

Accepting the diversity of fruit structure, this study examines the relative 

contributions of skin and stones to the resisting forces measured during 

puncture testing of relatively soft fruit.  Not only is the presence or 

Page 3 of 21 Journal of Texture Studies

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

absence of stones considered, but also their size, shape and orientation 

within model fruits. 

Rosenthal (2016) used photoelasticity to examine the stress distribution 

on model fruit gelatin spheres during compression with a flat ended 

plunger. Gelatin spheres, being cast, allow inclusions of solid objects and 

subsequent stress analysis is possible during compression.  Furthermore, 

just as leather is derived from collagen through the tanning process, it is 

also possible to add a tanned layer to the outer surface of these gelatin 

spheres. Pankhurst (1959) described various tanning reagents to 

potentially tan gelatin, and the melting temperature of the resultant 

material.  While both formaldehyde and vegetable tannins would achieve 

a tanned skin, that skin could not be separated from the gelatin sphere by 

melting.  In contrast chrome tanned gelatin melts above 77⁰C allowing 

the gelatin core to be selectively melted at lower temperatures, 

moreover, chrome tanned gelatin takes on a dark blue hue enabling some 

visualization of the skin. 

Methods 

Preparation of the gels 

A six percent solution of 240 Bloom Pig Skin gelatin (MM Ingredients, 

Wimborne, UK) was prepared by heating a suspension on a magnetic 

stirrer until fully dissolved. A 50 mm internal diameter, two part silicone 

rubber ice cube mould (Dunelm Mill, Leicester, UK) was wiped with a 

paper towel which had been dipped in a light mineral oil (WD40, San 

Diego, USA) to act as a mould release agent.  The dissolved gelatin 

solution was then poured into the rubber mould. The solution was 

degassed by applying 400 mBar vacuum to the mould for one minute – 

the mould was then refilled and subjected to 100 mBar vacuum for 20 

seconds. Finally, the mould was topped up with further gelatin solution. 

Moulds were placed in a cold room at 4 °C overnight. To remove the 

gelatin sphere, the mould was immersed in iced water and the edge of 

the mould top was gently separated from its base. While keeping 
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immersed in ice water the two halves of the mould were opened to 

release the gelatin sphere. The mould filling hole left an irregularity on 

the surface of the sphere, though care was taken during subsequent 

testing to avoid contact between this irregularity and the contact 

surfaces. Once removed from their mould, gelatin spheres were retained 

in ice water until ready for use. 

Inclusion of stones (pits) 

The gelatin and mould were prepared as above, but when pouring the 

gelatin a two-step filling was undertaken.  Initially the lower half of the 

mould was partially filled, degassed (as above) and the gelatin allowed to 

set.  The inclusion was then placed centrally on the set gelatin and further 

molten gelatin poured in.  Again, the molten gelatin was degassed and 

the entire mould allowed to set at 4⁰C overnight. 

Several types of inclusions (spheres and discs) were added: 

• 16 and 24 mm diameter spherical glass marbles (van Goch glass, 

House of Marbles, Torquay, UK) 

• 42.7 mm diameter golf ball (Titleist, St Ives, UK) 

• 5 pence coins (UK currency), 18 mm diameter and 1.7 mm thick 

(Royal mint, UK) 

For clarity we use the shorthand +st and –st elsewhere in this paper for 

the presence or absence of 16 mm spherical stones. 

Creation of Skins 

Skins were prepared by soaking the gelatin sphere in 5% potassium 

chromic sulphate dodecahydrate – chrome alum (BDH, Poole, UK) for one 

hour. The sphere was then removed from the tanning solution, washed 

with water and left soaking in ice cold water until tested. 

For clarity we use the shorthand +sk and –sk elsewhere in this paper for 

the presence or absence of skin. 
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Compression testing 

A rectangular glass tank containing iced water was used to hold the 

spheres. In addition to temperature control, the tank prevented refraction 

of light passing through the sphere. Furthermore immersion in water 

provided buoyancy which supported the sphere from gravitational 

distortion, moreover it prevented the gelatin from drying out (Rosenthal, 

2016). A 1mm thick walled aluminum ring with an external diameter of 28 

mm and a height of 2.6 mm was positioned below the spheres to prevent 

them from rolling around in the tank. 

A TA.HD texture analyzer (Stable Microsystems, Godalming, UK) with a ½ 

inch (12.7 mm) diameter cylindrical probe was used.  The entire 

apparatus was covered with a photographic blackout curtain and the tank 

was illuminated with polarized light from a sodium lamp.  Stress lines 

were photographed using a Canon 600D (on a tripod) and fitted with a 

50 mm, f1.8 standard lens with a polarizing filter. The camera was set to 

a manual focus mode, aperture priority.  The film speed was ISO 1600 

and the aperture set to f22. Before the sphere was placed in the tank, the 

polarizing filters were aligned to create cross polarized illumination. 

Stepwise compression, at 1 mm s-1 was carried out. Each compression 

increased the force by 0.5 N after which there was a 30 second wait while 

a cross polarized image of the sphere was photographed. Then the next 

stress step was undertaken until the sphere failed. 

Firmness (modulus) was calculated by converting the texture analyser 

output to stress and strain, and then measuring the gradient of the line 

between 30% and 70% of the maximum stress. Thus we avoided initial 

contact issues and the point of rupture at the top end of the curve. 

Calculations of modulus were undertaken with the Stable Microsystems’ 

high stress modulus macro. Calculations were undertaken on spheres 

being strained to around 30%. 
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ImageJ 1.50i (National Institute of Health, USA) was used to measure gel 

dimensions from photoelasticity images and deformation during 

compression. Photographs of the 50 mm unstressed spheres were used to 

calibrate the software. The width of the sphere at its equator and the 

height from the base of the plunger to the base plate were measured 

during compression, enabling the calculation of Poisson’s ratio.   

 

Real fruit testing 

By way of application we have also tested a variety of real fruits: 

Cherries, Grapes, and Raspberries. As photoelasticity was not an option, 

we did not use the ice water bath. Unlike the 50 mm diameter gelatin 

sphere, the diameter of these fruit are substantially smaller, moreover in 

some cases they are not spherical.  Thus tests on these fruit were placed 

on a plane surface and the firmness and breaking force recorded while 

puncturing with a 2 mm diameter, flat ended probe at 20⁰C. No attempt 

to measure Poisson’s ratio was undertaken. 

Data analysis 

Data was manipulated and handled with Microsoft Excel. ANOVA and 

Tukey tests were undertaken with SPSS.  

Results  
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Figure 1 shows the various gelatin spheres illuminated with 

monochromatic, cross polarised light, while under compression at 4 N 

(31,572 Pa with the 12.7 mm diameter probe). The compressing plunger 

is visible at the top of each sphere as is the narrow ring at the base – 

intended to stop the spheres from rolling. Close inspection at the base of 

the spheres does show some slight stress irregularities due to contact of 

the ring with the spheres, however at 4N force, the sphere deforms to 

touch the ring and its influence does not penetrate deeply into the gelatin.  

{figure 1 around here} 

The isoclines are effectively contours of constant stress. Fringe values are 

specific to the material being tested, but as all of these spheres come 

from the same batch of 6% gelatin and it is assumed that the value is 

identical for all the spheres photographed and the larger the number of 

isoclines across each sphere depicts a greater stress gradient across the 

same distance. Predictably the stresses concentrate directly below the 

plunger and then dissipate radially to the base and sides of the gelatin 

spheres. 

Some of the spheres have marks – slight indented lines where the 

pouring hole or the two halves of the mould contacted during forming.  

We avoided contact of these locations during tests. 

Figure 2 shows the stress distribution of differently sized spherical stones 

as well as disc-stones examined in three different orientations. In all 

cases the gelatin sphere was under compression at 4 N force. 

{figure 2 around here} 

Table 1 shows the average Poisson’s ratios, firmness and breaking force 

for each of the sphere type. On occasions the plunger did not contact the 

sphere centrally, causing it to become skewed and distorted – in such 

cases, measurements of Poisson’s ratio were not included in the data, 

though we still included the breaking force values. The Tukey post-hoc 

test was carried out after ANOVA and the superscript letters show 
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similarity (p>0.05), thus spheres that do not share a superscript are 

significantly different. 

{Table 1 around here} 

Not included in table 1 due to lack of replication are the spheres 

containing 24 and a 42.7 mm spherical stones. These were sole 

determination for which the firmness was 215 and 476 kPa (respectively) 

while the breaking force was 47 kPa for both spheres. 

Table 2 shows average firmness and breaking forces of real fruit, 

purchased in local shops and of a quality and texture deemed suitable for 

eating.  While the model gelatin spheres of any particular type are fairly 

consistent one to the next, the real fruit shows considerable variation 

within the sample and consequently larger numbers of each were 

measured – the number of each being displayed. It should be noted that 

the firmer nature of the fruit required a smaller probe to be used to 

contact the fruit, compared to the gelatin spheres.   

{Table 2 around here} 

 

Discussion 

Gelatin has been used extensively for photoelastic stress analysis, it is 

easily moulded and its optical sensitivity is greater than that of most 

other photoelastic materials (Kuske and Robertson, 1974).  However, its 

low modulus can cause it to sag and exhibit stresses under its own weight 

and it can dry out.  By immersing the gelatin spheres in an ice bath, we 

were able to support the spheres by hydrostatic pressure (preventing 

sagging), keep the surface wet (preventing drying out) and allows the 

light passing through the sphere not to be diffracted as it passed through 

the curved surface. 

The photoelastic images of the spheres (Figure 1) show differences in the 

number and pattern of the isoclines in each sphere. As mentioned earlier, 
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the images were at 4 N applied stress because we had comparable 

images for even the weakest spheres. Furthermore, it caused relatively 

little deformation of the sphere against the anti-roll ring.   

The Poisson’s ratio data (Table 1) was generally measured at 5 N, except 

for the disc-stones spheres which failed at those stresses and for which 

Poisson’s ratio was determined at 4 N. One way (single factor) analysis of 

variance shows no significant difference (p>0.05) between the Poisson 

ratio of any of the gelatin spheres regardless of their construction.  

Firmness is a measure of deformations to a given force. In physics this is 

referred to as a modulus and we have used the slope of the 

force:deformation curve from the texture analyser to quantify it. However 

moduli normally relate to homogeneous and isotropic materials whereas 

most of our model fruit (and real fruit) contain skin and/or stones.  

Moreover if we go to the market and gently squeeze an avocado to gauge 

its ripeness, we are squeezing the whole item and not just the flesh. 

Consequently, and so as not to offend purists, we refer to this property as 

firmness elsewhere in this paper. 

 

Skin (+sk-st) vs unmodified sphere (-sk-st) 

The unmodified sphere has more isoclines then the sphere with a skin – 

suggesting that the stress gradient is greater – presumably the skin is 

holding the samples back and preventing energy dissipation. Despite this, 

there is no significant difference between the Poisson’s ratios, suggesting 

that during compression barrelling is of a similar magnitude regardless of 

skin. 

While the presence of a skin does increase the firmness of the gelatin 

spheres by 20 kPa, this is not statistically significant and from an 

instrumental testing point of view, there is no difference between the 

firmness of the fruit with and without skin.  Of course, we have no data 

from this study as to whether this would likely be perceived by human 
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subjects, however Rohm and Raaber (1992) found Weber’s ratio (the just 

noticeable difference as a proportion of the original stimulus) for firmness 

of margarine to be 0.196 which is slightly greater than 20 ÷ 118, and in 

the absence of other data on Weber’s ratio for firmness, we might 

conclude that it is below the just noticeable difference of these model 

fruit, with and without a skin. Furthermore, working with gelatin, Munoz, 

Pangborn and Noble (1986) found a good correlation between puncture 

tests and sensory perception, however the sensory acuity became less 

sensitive as the modulus was reduced, this reinforces our speculation that 

such instrumental differences are unlikely to be perceptible. Essentially, 

the material making up the bulk of the spheres is identical in both cases 

and behaves in the same way regardless of any skin. The skin does 

however increase the force required to rupture the sphere. The increase 

from 50 to 67 kPa is highly significant).  As one may expect a skin which 

is firmer than the containing material is likely to require a greater force to 

penetrate/break it, than when absent. 

 

16 mm spherical stones (-sk+st)  

Compared to the unmodified sphere (-sk-st), the presence of a stone 

(-sk+st) does not increase any surface resistance.  Consequently the 

force to rupture the sphere with a stone is identical to that without. 

In this study we assume that the firmness of the gelatin (and by analogy 

that of the flesh of a fruit) is substantially less than that of the stone, and 

any applied stress results in deformation of the gelatin while no 

appreciable deformation of the stone occurs. The presence of the stone 

acts as an undeformable object, a barrier to the transmission of stress 

and the isoclines skirt round the stone. The inert, rigid stone is displaced 

and transfers the stress to the gel below, resulting isocline rings below 

the stone – as though the stone were an independent plunger.  Of course, 

because energy from the texture analyser is partially dissipated before 
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reaching the stone, the isoclines below the stone are less developed then 

those above. 

The firmness of the gelatin sphere with a 16 mm spherical stone is 

significantly higher than the unmodified sphere (178 to 118 kPa), but the 

explanation is perhaps an oversight in the calculation of strain. The 

gelatin spheres are all moulded to 50 mm diameter, yet the inclusion of a 

16 mm diameter stone reduces the deformable material proportionally.  

Perhaps we should revise the initial diameter of the sphere when 

calculating the strain, to compensate for the presence of the stone.  Yet, 

while with these gel spheres we know the dimensions, in the case of real 

stone containing fruit, those dimensions are unknown, and no 

compensation could be made. Thus, the presence of stones in soft fruit 

will inevitably raise the firmness of each individual item and to an extent 

proportional to the size of the stone. Consequently, unknowing shoppers 

perceive firmer fruit when larger stones are present. 

 

Skin & 16 mm spherical stone (+sk+st)  

The photo elastic images of the sphere with both skin and stone take on 

the characteristics of both the sphere with a skin and the sphere with a 

stone. The presence of the restraining skin reduces the number of 

isoclines suggesting a lower stress gradient than in either gelatin sphere 

without a skin.  As with the skinless sphere containing a stone (-sk+st), 

the isoclines form rings of constant stress above and below the stone as 

energy is transferred through the rigid stone. 

The same deduction as for the skinless gels containing a stone can be 

reached, that the presence of the stone reduces flesh in a sphere’s 

deformable width compared to their stoneless counterparts. Thus strains 

which are calculated on the sphere diameter are smaller than those which 

would be based on the deformable material alone. Predictably there is no 

statistical difference between the firmness of stone containing spheres 

with or without skins. 
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In terms of breaking force, there is no difference between the  sphere 

with skin and stone (+sk+st) and the sphere with a skin alone (+sk-st).  

However, while table 1 shows no difference in breaking force between the 

spread of the data of the spheres with skin and stone (+sk+st) and the 

unmodified sphere (-sk-st), a t-test reveals that the means are different 

(p<0.05, t-test) as is the mean of  the skinless sphere containing a stone 

(-sk+st) (p<0.05, t-test).  This implies that it is the presence  of a skin 

that raise the breaking force. 

Stone size, geometry and orientation 

The stress distribution in gelatin spheres in figure 2 reveals differences 

between spheres containing stones of different shape and size. In real 

fruit, stones sometimes approach spherical (e.g. cherry), but also exist 

with sharp points and edges (e.g. peach or apricot).  In an attempt to 

model varieties of stone we have included spherical and disc shaped 

stones, it is worth noting that none of the gelatin spheres discussed in 

this section had any skin.  

We did run into difficulties in positioning the stones centrally within the 

gelatin sphere and the photoelastic images of the vertical disc-stones 

(“end on” and “face on”) as well as the golf ball stone, do show the 

inclusion to be off centre.  However, the influence of these stones were 

consistent for each situation. 

The most obvious differences come in the breaking force.  The vertical 

disc-stones failed at significantly lower stresses (p<0.001) than any of the 

other sphere constructions – including the horizontal disc-stone.  The 

photoelastic images show isoclines packing densely just above the vertical 

disc-stones (figure 2 d and e), suggesting high stresses in the gel 

between the plunger and the top of the stone.  Having a narrow edge 

over which stress might concentrate is like having a blade inside the 

sphere, and perhaps the failure of fruit containing sharp edged stones is 

caused by the stone cutting the fruit from the inside. Interestingly the 
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amount of stress being conveyed through the vertical disc-stone toward 

the lower layers of the gelatin is relatively small.  

In comparison with the spherical-stone gelatin spheres, the vertical 

disc-stones have the majority of the isoclines at the top of the disc.  If we 

examine the gels from the widest part of the sphere, the vertical 

disc-stones have only about four isoclines visible whereas the spherical 

stone have more.  

While the ANOVA and Tukey show no difference between the spread of 

the breaking force data between the horizontal disc stone and the sphere 

with a skin and a 16 mm spherical stone (+sk+st), the t-tests does 

separate their means (p<0.05, t-test). 

In terms of firmness, the 16 mm spherical stones reduces the deformable 

gel within the gelatin sphere, yet the smaller volume of the disc-stone is 

not enough to limit the strain and no significant difference exists for the 

firmness of the disc-stones and any of the other sphere constructions. 

Initially we set out to examine skins and stones with shape effects. The 

inclusion of the large marble and golf were in many ways an afterthought 

and only one measurement of each was undertaken. In both cases the 

breaking forces were unchanged from the small marble spheres, but the 

firmness increased to 215 and 476 kPa for the large marble and the golf 

ball respectively.  Presumably this is due to the deformable gelatin being 

progressively limited as the stone enlarges relative to the gel.  It is not 

difficult to recalculate the firmness based on the gelatin mould and stone 

sizes, but these do not exactly provide identical values to the unmodified 

sphere and perhaps other factors such as the dimpled surface of the golf 

ball contribute to the firmness of the sphere. 

Clearly there is a stone size effect on firmness of fruit, but that effect 

seems to be related to stone volume as neither of the disc-stone 

orientations seem to change the firmness compared to the unmodified 

sphere (-sk-st).  In-line with the argument made of reduced strain 
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achieved by 16 mm spherical stones, the horizontal disc-stone only 

contributes a negligible height (1.7 mm, 3.4% of the sphere thickness).  

In contrast, the height of the vertical disc-stone is 18 mm, yet the 

projected area aligned with the stress is low.  Perhaps there is a minimum 

volume before appreciable changes to the firmness can be detected and 

while 16 mm spherical stones do affect the firmness, we postulate that 

small spherical pips will not – though this would need to be tested. 

 

Implications to real fruit 

Our choices of real fruit were intended to illustrate the situations 

mimicked in the model gelatin spheres, that is: virtually skinless 

(raspberries), fruits with skins but no appreciable stone (grapes) and fruit 

with skin and stone (cherries). 

The raspberries have relatively little skin and no appreciable stones. As 

with unmodified spheres, the  firmness and breaking force are both low 

relative to the other fruits tested.  Coincidentally, the absolute values are 

actually similar to the unmodified gelatin spheres. 

The grapes, as with the model gelatin spheres with skins but no stones 

had relatively high breaking forces which must dominate the fruit texture.  

The firmness while much higher than any of the gelatin spheres is 

relatively low compared to the cherries whose stone limits the deformable 

flesh during compression as occurs with the stone and skin model 

spheres. 

Conclusions 

In conclusion, the presence of stones increase the firmness progressively 

as the proportion of the stone to flesh within the fruit increases. However, 

skins in our model fruit do not influence the firmness. Breaking force is 

more complicated and depends on both the presence of skins which raise 

the breaking force of both real and model fruits. However, the shape of 
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stones is also influential: such that spherical stones have no effect but 

disk stones (i.e. stones with sharp edges) when orientated with the 

narrow edge normal to a force, significantly reduce the breaking force. 
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Figure 1: Photoelastic images of the various spheres under 4N compressive loads  
 

37x29mm (300 x 300 DPI)  

 
 

Page 18 of 21Journal of Texture Studies

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

  

 

 

Figure 2: Stone variants at 4N compression. (a) 16 mm spherical stone (as in Figure 1), (b) 24 mm 
spherical stone, (c) 42 mm spherical stone, (d) 18 mm vertical disc-stone (face view), (e) 18 mm vertical 

disc-stone (side view), (f) 18 mm horizontal disc-stone  
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Table 1 Average Poisson’s ratio, firmness and breaking force for spheres of different construction (curved brackets 

are one standard deviation, square brackets are the number of samples in the statistical analysis). Sphere 

construction with the same superscript are statistically similar (p>0.05) according to the Tukey test. 

  Poisson’s ratio Firmness (kPa) Breaking force (kPa) 

No skin - no stone 

(-sk-st) 
a0.221 (±0.089) [11] c118 (±24) [6] d50 (±6) [19] 

Skin - no stone 

(+sk-st) 
a0.229 (±0.062) [5] bc138 (±17) [10] e67 (±18) [19] 

Spherical stone (16mm) - no skin 

(-sk+st) 
a0.179 (±0.069) [8] b178 (±30) [6] d50 (±8) [16] 

Spherical stone (16mm) & skin 

(+sk+st) 
a0.204 (±0.026) [8] b172 (±33) [8] de57 (±10) [11] 

Vertical disc-stone – no skin a0.195 (±0.036) [4] bc136 (±29) [4] f38 (±5) [12] 

Horizontal disc-stone – no skin 
a0.204 (±0.049) [4] bc143 (±16) [3] df48 (±4) [12] 
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Table 2: Number of samples tested, average firmness and breaking force of selected fruits (values in brackets are 

one standard deviation). 

  n Firmness (kPa) Breaking force (kPa) 

Cherries 40 1,380 (±306) 694 (±101) 

Grapes 40 873 (±166) 1,246 (±222) 

Raspberries 20 139 (±82) 94 (±28) 
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