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Abstract 

High pressure single-crystal X-ray structural analyses of isostructural MFM-133(M) (M = Zr, Hf) of flu 

topology and incorporating the tetracarboxylate ligand TCHB4– [H4TCHB = 3,3',5,5'-tetrakis(4-

carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-biphenyl] and {M6(µ-OH)8(OH)8(COO)8} clusters, confirm 

negative linear compressibility (NLC) behavior along the c axis. This occurs via a three-dimensional wine-

rack NLC mechanism leading to distortion of the octahedral cage towards a more elongated polyhedron 

under static compression. Despite the isomorphous nature of these two structures, MFM-133(Hf) shows a 

higher degree of NLC than the Zr(IV) analogue. Thus, for the first time, we demonstrate here that the NLC 

property can be effectively tuned in a framework material by simply varying the inorganic component of the 

frameworks without changing the network topology and structure. 
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Introduction 

Metal-organic frameworks (MOFs) are a class of porous materials constructed from inorganic 

ions/clusters bridged by organic linkers. Due to their high crystallinity the structures of these materials can 

often be accurately monitored by crystallographic methods1 as a function of various external stimuli such as 

temperature and pressure.2 Some MOFs undergo processes such as pressure-induced phase transitions2b,3 and 

amorphization4 when exposed to high pressures. The mechanisms for these pressure-induced structural 

behaviors need to be fully understood before such materials can be considered for practical applications. 

Although most materials contract in all dimensions under hydrostatic compression, others contract in one 

direction but expand in one or more directions, a rare phenomenon known as negative linear compressibility 

(NLC).5,6 Only a limited number of materials have been reported to exhibit NLC, the majority of which are 

inorganic species such as LaNbO4
7 and elemental Se.8 A few molecular frameworks such as methanol 

monohydrate9 and metallocyanides such as Ag3[Co(CN)6]
10 and KMn[Ag(CN)2]3

11 exhibit NLC properties, 

but this is extremely rare for MOFs.12 Materials with NLC properties can find widespread use in high-

pressure environments such as deep-sea optical telecommunications devices and piezo responsive devices 

(i.e., highly sensitive pressure sensors,13 smart body armor and shock-absorbing materials).14 

MOF-515 and ZIF-816 have been studied using in situ single-crystal diffraction techniques under 

hydrostatic pressure. Although these materials show structural changes associated with the penetration of 

guest molecules of the pressure-transmitting medium into the pores under high pressure, they do not show 

NLC behavior. Frameworks displaying NLC are generally associated with specific network topologies 

featuring “wine-rack” and honeycomb-like structural motifs.5,17 One well-known example is the MIL-53 

family, which exhibits an extremely high degree of NLC, with a compressibility KNLC = –28 TPa–1 over 0–3 

GPa.18 Recently, a β-quartz-like framework [InH(BDC)2] (H2BDC = benzene-1,4-dicarboxylic acid) has 

been reported to exhibit an extreme NLC (−62.4 TPa−1) involving a framework hinging mechanism.19 The 

NLC behaviour of both the above examples correlates with the structural flexibility originating from the 

system of rigid elements connected by hinges.20 The organic linkers provide another source of flexibility: 

frameworks employing large organic struts tend to show some degree of flexibility,21 but frameworks with 

both rigid linkers and rigid inorganic clusters should intuitively be rigid in the absence of framework hinging. 

Herein we show that two rigid frameworks MFM-133(M) (M = Zr, Hf) constructed from a rigid 

tetracarboxylate linker (Figure 1) and {M6(µ-OH)8(OH)8(COO)8} clusters exhibit unusual NLC behavior, 
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featuring the first examples of porous Zr(IV) and Hf(IV)-based MOFs displaying NLC. Despite the 

isomorphous nature of these two structures, MFM-133(Hf) shows a higher degree of NLC than the Zr(IV) 

analogue. By analyzing the high pressure crystallographic data, we reveal the mechanisms behind the 

different NLC behaviors of these two frameworks, and thus, for the first time, we have demonstrated an 

example of using crystal engineering methods to tune the NLC properties of frameworks materials without 

altering the underlying topology and structure. 

 

Results and Discussion 

Solvothermal reaction of H4TCHB [3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-

biphenyl] with ZrCl4 or HfCl4 in DEF (diethyl formamide) at 120 °C in the presence of benzoic acid as 

modulator afforded single crystals of MFM-133(Zr) and MFM-133(Hf), respectively. Single-crystal X-ray 

diffraction revealed that these two materials are isomorphous, crystallizing in the tetragonal space group 

P4/mnc. MFM-133(Zr) contains the 8-connected octahedral {Zr6(µ-OH)8(OH)8(COO)8} cluster (Figure 1), 

which is observed in other Zr-based frameworks.22 The methyl groups in the central part of TCHB4– enforce 

a twist of almost 90° between the two central mesitylene rings, resulting in a tetrahedral disposition of the 

carboxylate groups of the linker. Each linker is thereby connected to four {Zr6} clusters in a tetrahedral 

fashion and the whole framework forms a neutral (4,8)-connected network with fluorite (flu) topology.23 An 

axially-elongated octahedral cage, with a cavity of diameter 10.4×10.4×25.9 Å, is constructed from eight 

TCHB4– units residing on the faces of the polyhedron and six {Zr6} clusters on the vertices. The solvent-

accessible void volume for MFM-133(Zr) was calculated to be 71% using PLATON SOLV,24 indicating its 

significantly porous structure. Due to the similar sizes of {Hf6} and {Zr6} clusters, MFM-133(Hf) shows 

very similar structural features to MFM-133(Zr) including the same degree of porosity. 

High-pressure single crystal X-ray diffraction experiments were performed using a diamond anvil cell 

(DAC)25 (see Supporting Information). Before loading a crystal into the DAC, residual DEF solvent from the 

synthesis was fully exchanged with 4:1 MeOH/EtOH which was used as the pressure transmitting medium. 

For MFM-133(Zr), diffraction data were collected at 293 K on one single crystal at pressures ranging from 

ambient up to 4.41 GPa. The variation of lattice parameter values as a function of pressure is shown in 

Figure 2. It is immediately apparent that upon compression the equivalent a and b axes contract in length, but 

the c axis expands. Over the pressure range studied, lattice parameter a and the unit cell volume decrease by 
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0.628(5) Å (3.2 %) and 521(6) Å3 (4.2 %), respectively, whilst lattice parameter c increases by 0.732(8) Å 

(2.2 %). The data were fitted using an empirical equation � = �� + �(	 − 	�)
 ,26 giving the linear 

compressibilities along a (or b) and c as 5.9 and –5.1 TPa–1, respectively, over the pressure range 0–4.4 GPa. 

The value of NLC of –5.1 TPa–1 is higher than for other molecular frameworks such as [NH4][Zn(HCOO)3] 

(KNLC = –1.8 TPa–1)27 and ZAG-4 (KNLC = –2.6 TPa–1),3 but lower than metallocyanide frameworks 

Ag3[Co(CN)6]-I (KNLC = –76 TPa–1)10 and KMn[Ag(CN)2]3 (KNLC = –12 TPa–1),11 indicating moderately 

strong NLC behavior for MFM-133(Zr). The pressure dependence of the unit cell volume has been analyzed 

using a second-order Birch-Murnaghan equation of state (see Supporting Information)28 to give a value for 

the bulk moduli B of 88.7 GPa (0–2 GPa), which is higher than for most other framework materials.6 

However, this value is significantly lower than the bulk moduli for the Zr materials UiO-67 (174 GPa) and 

UiO-abdc (580 GPa)29 over the same pressure range 0–2 GPa, reflecting the relative softness of MFM-

133(Zr). 

The reversibility of the NLC shown by MFM-133(Zr) was also assessed by collecting diffraction data 

upon sequential release of pressure to 2.76, 2.09 and 1.03 GPa. Indeed, the decompression results reveal that 

the NLC is fully reversible, with the lattice parameter a increasing from 19.016(3) Å at 4.41 GPa to 19.642(6) 

Å at 1.03 GPa, and c decreasing from 33.102(8) Å at 4.41 GPa to 32.94(10) Å at 1.03 GPa. The unit cell 

volume also increases during decompression [11970(4) Å3 at 4.41 GPa to 12708(38) Å3 at 1.03 GPa]. This 

further confirms that flexibility and stability of this framework material, which is the important requirement 

for a material to find practical applications in high-pressure environments. 

In order to understand the mechanism underlying the NLC in MFM-133(Zr) at a molecular level, we 

undertook an analysis of the structural changes under compression by constructing an octahedron with its 

vertices at the centroids of six {Zr6(µ-OH)8(OH)8(COO)8} clusters. The octahedron can also be visualized as 

two identical rhombi sharing two axial vertices in a perpendicular fashion (Figure 3a). Thus, two angles θ 

and δ can be used to define the shape of these rhombi (Figure 3b). When the pressure is increased, θ 

decreases from 80.4° at 0.95 GPa to 78.1° at 4.28 GPa, a decrease of 2.9%, while δ increases by 2.4% over 

the same pressure range, from 49.8° to 51.0°. The ratio of the two diagonal axes of the rhombus (L1/L2, 

Figure 3b) also increases from 1.18 at 0.95 GPa to 1.23 at 4.28 GPa. Examination of the relevant bond 

distances and angles indicates that the geometry of the {Zr6} inorganic cluster is unaffected by pressure. The 

decrease in θ and increase in δ and the ratios of diagonal axes of the rhombi under compression is 
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reminiscent of the mechanism of the “wine-rack” motif, where the organic linkers act as rigid struts, while 

the inorganic clusters act as framework hinges. However, the framework of MFM-133(Zr) is different from 

the two-dimensional wine-rack topology shown by molecular networks such as MIL-53,18 where contraction 

only affects one dimension of the crystal lattice. MFM-133(Zr) contracts in two dimensions, resulting in the 

octahedral cage being distorted into a more elongated polyhedron (with increased ratio of the diagonal axes 

of 1.23 at 4.28 GPa compared to 1.18 at 0.95 GPa) under static compression. 

A close examination of the conformation of the organic linker within the whole pressure range shows 

that the dihedral angle between the two central mesitylene rings in MFM-133(Zr) lies in the range 79–89°, 

but does not follow a significant trend with increasing pressure. The limited variation of this dihedral angle 

indicates that there is restricted freedom of rotation between the central mesitylene rings. However, the 

relatively large octahedral cage is comprised of eight TCHB4– units. Therefore, the effect of the limited 

flexibility shown by one linker can by amplified, resulting in more noticeable flexibility observed for the 

overall structure. 

The response of single crystals of MFM-133(Hf) to static pressures of up to 4.9 GPa at 293 K was 

analyzed using the same experimental methods as were applied for MFM-133(Zr). MFM-133(Hf) reveals the 

same NLC behavior as the Zr(IV) analogue, with contraction along the a and b axes, expansion along the c 

axis, and a continuous decrease in unit cell volume with increasing pressure (Figure 4). The lattice 

parameters at different pressures were fitted using the same empirical equation � = �� + �(	 − 	�)
26 as for 

MFM-133(Zr) (see Supporting Information). The lattice parameters a (or b) and c in MFM-133(Hf) show a 

gradual respective decrease and increase with increasing pressure up to 4.9 GPa. This change in lattice 

parameters is different from that in MFM-133(Zr), where the changes in a (or b) and c reach a plateau in the 

high pressure region 3.5–4.5 GPa, indicating that the framework of MFM-133(Zr) becomes significantly 

harder and cannot be further deformed with increasing pressure. Up to 3 GPa, the lattice parameters for both 

frameworks show similar decreases; however, above 3 GPa MFM-133(Hf) reveals slightly larger changes in 

lattice parameters: e.g., by 4 GPa, the shrinkage in a is 4.3% [cf. 3.2% for MFM-133(Zr)], and the expansion 

in c is 3.8% [cf. 2.4% for MFM-133(Zr)]. Empirical fitting of the pressure-dependent lattice parameters gives 

compressibility values of 10.7 TPa–1 for a/b and –7.9 TPa–1 for c over the pressure range of 0–4.9 GPa, 

indicating that MFM-133(Hf) shows higher degree of NLC than the Zr(IV) analogue. Significantly, by 4.9 
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GPa, the a (or b) axis in MFM-133(Hf) has contracted by 6.5% compared to its starting value at ambient 

pressure, while the c axis has increased by 5.5%. The bulk modulus of MFM-133(Hf) was estimated using a 

second-order Birch−Murnaghan equation of state (Fig. S11) to give a value for B0 of 44.8 GPa, lower than 

that of MFM-133(Zr). 

The NLC in MFM-133(Hf) involves the same mechanism as in its Zr(IV) analogue, which is 

unsurprising given the isostructural nature of these two frameworks. Compared with the {Zr6} cluster, the 

{Hf6(µ-OH)8(OH)8(COO)8} unit is slightly smaller due to the shorter Hf–O (COO) bond lengths within the 

studied pressure range (Hf1–O_A: 2.11–2.19 Å; Zr1–O_A: 2.22–2.28 Å; Hf2–O_B: 2.1–2.16; Zr2–O_B: 

2.15–2.21, Fig. S7) and is also unaffected by compression. Therefore, the flexibility of the octahedral cage 

comprising six {Hf6} clusters and eight TCHB4– units is largely attributable to the flexibility of the organic 

linkers which in turn arises from the twisted geometry of the two connected mesitylene rings in the TCHB4– 

units. The dihedral angle between these two central mesitylene rings in MFM-133(Hf) lies in the range 70–

80° above 1.5 GPa, which is about 10° lower than that in MFM-133(Zr), indicating the two central 

mesitylene rings in the L4– in MFM-133(Hf) are less twisted than in the Zr(IV) structure in the higher 

pressure region (1.5–4 GPa). At the highest pressure studied for MFM-133(Hf) (4.9 GPa), this angle reaches 

71.2°, resulting in a very short C•••C distance of 2.79 Å between the adjacent methyl groups on the two 

central mesitylene rings. The less twisted geometry of the mesitylene rings in MFM-133(Hf) makes the 

linker unit lie flatter, bringing the equatorial {Hf6} clusters in the octahedral cage closer and pushing the two 

axial {Hf6} clusters further apart, thus resulting overall in a larger NLC effect (Fig. S7). 

 

Conclusions 

In summary, two isomorphous framework materials MFM-133(M) (M = Hf, Zr) have been synthesized 

by employing a tetracarboxylic acid containing two central mesitylene rings and a twisted geometry within 

the linker. The inorganic component of the framework consists of octahedral {M6(µ-OH)8(OH)8(COO)8} (M 

= Zr, Hf) clusters. The TCHB4– unit exhibits a tetrahedral disposition of its four carboxylate groups, resulting 

in a rare flu topology for these frameworks. Both frameworks reveal unusual negative linear compressibility, 

where under static pressure contraction of the a and b axes is accompanied by expansion of the c axis. This is 

the first observation of NLC behavior in molecular frameworks of flu topology and these two materials are 

among limited examples of porous molecular structures showing NLC. The NLC in MFM-133(M) (M = Zr, 
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Hf) follows a “wine-rack” mechanism where the octahedral clusters and eight TCHB4– linkers contract 

equatorially and expand axially. MFM-133(Hf) reveals larger linear compressibilities in all three directions 

than MFM-133(Zr) over the pressure range studied (0–4.9 GPa). Thus, we demonstrate that the NLC in 

materials can be effectively tuned by simply varying the inorganic component of the framework. It is 

anticipated that the high-pressure studies on MFM-133(M) (M = Zr, Hf) and the resulting knowledge of the 

mechanism by which NLC occurs, will lead to the exploitation of such NLC materials in various applications 

such as pressure sensitive sensors. 

 

Experimental Section 

Synthesis of [Zr3(µ3-OH)4(OH)4(C46H34O8)]•10DEF, MFM-133(Zr). The ligand H4TCHB was synthesised 

using the reported procedure.30 A mixture of H4TCHB (0.05 g, 0.07 mmol), ZrCl4 (0.049 g, 0.21 mmol) and 

benzoic acid (1.75 g, 14.3 mmol) was dissolved in DEF (10 mL) using a sonication bath. The resulting 

solution was heated at 120 °C for 48 h, after which colorless polyhedral crystals were collected by filtration 

and washed with fresh DEF (3 x 20 mL). Yield: 0.104 g (70%). Anal. Calcd (%) for C95H152N10O26Zr3: C, 

53.98; H, 7.17; N, 6.56. Found (%): C, 53.80; H, 7.01; N, 6.25. 

Synthesis of [Hf3(µ3-OH)4(OH)4(C46H34O8)]•9DEF, MFM-133(Hf). A mixture of H4TCHB (0.05 g, 0.07 

mmol), HfCl4 (0.067 g, 0.21 mmol) and benzoic acid (1.75 g, 14.3 mmol) was dissolved in DEF (10 mL) 

using a sonication bath. The resulting solution was heated at 120 °C for 48 h, after which colorless 

polyhedral-shaped crystals were collected by filtration and washed with fresh DMF (3 x 20 mL). Yield: 0.12 

g (75%). Anal. Calcd (%) for C91H141N9O25Hf3: C, 47.59; H, 6.19; N, 5.49. Found (%): C, 47.22; H, 6.14; N, 

5.13. 

High Pressure Crystallography 

High pressure experiments were carried out using a locally-assembled Merrill-Basset diamond anvil cell 

(DAC) [opening angle 80° (4θ), Boehler-Almax anvil type 1A, WC backing plates and 200 µm tungsten 

gaskets]. A colorless crystal of MFM-133(Zr) or MFM-133(Hf) was loaded into the DAC with a ruby sphere 

as the pressure calibrant and 4:1 methanol/ethanol as the pressure-transmitting medium (PTM). Diffraction 

data were recorded using either Mo-Kα radiation (λ = 0.71073 Å with microfocus source and focussing 

mirrors) on an in-house Rigaku Oxford Diffraction SuperNova diffractometer equipped with an Eos CCD 

detector, or monochromatic synchrotron radiation (λ = 0.6889 Å) on a Rigaku Saturn 724+ CCD 
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diffractometer on Beamline I19 at Diamond Light Source. Diffraction data were processed using the program 

CrysAlisPRO (Version 1.171.37.31).31 Structures were solved by transferring the fractional coordinates of 

the atoms as determined at an adjacent pressure and refined using SHELXTL-2014.32 Satisfactory structural 

refinements were obtained from all datasets. Due to the inherent low completeness of the diffraction data 

caused by the presence of the diamond anvil cell, restraints were required. 

 

Supporting Information 

Supporting information is available free of charge on the ACS Publications website. Porosity 

characterisation for MFM-133(Zr) and MFM-133(Hf); Crystallographic details for high pressure studies. CIF 

files can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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Figure 1. The single crystal structure of MFM-133(Zr) at ambient pressure and 120 K. Views of (a) the 

octahedral {Zr6(µ-OH)8(OH)8(COO)8} cluster and H4TCHB; (b) the conformation of TCHB4– units in the 

framework showing the twisted geometry of the two central mesitylene rings; (c) the octahedral cage 

constructed from eight TCHB4– units and six {Zr6} clusters; (d) the (4, 8)-connected flu-type topology of 

MFM-133(Zr). Color scheme: Zr, green; O, red; C, black. 

 

 

 

 

 

 

 

Page 12 of 16

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 

 

 

 

Figure 2. High-pressure single-crystal X-ray diffraction experiments for MFM-133(Zr) reveal unusual NLC: 

(a) the evolution of unit cell lattice parameters as a function of pressure with empirical fitting applied to the 

experimental data; (b) compressibilities as a function of pressure; (c) variation of unit cell volume with 

pressure, with the data fitted using a second-order Birch-Murnaghan equation of state; (d) the compressibility 

indicatrix for MFM-133(Zr). All axes are in units of TPa–1. 
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Figure 3. Compressibility in MFM-133(Zr). (a) The octahedral cage in MFM-133(Zr) constructed by two 

identical rhombi (drawn in gold and green) sharing two axial vertices in a perpendicular fashion; (b) 

simplified representation of the crystal structure of MFM-133(Zr) viewed as the tessellation of the rhombi 

shown in (a) in two dimensions: {Zr6} clusters are represented as red circles and the organic linkers as dotted 

lines. The schematic diagram shows the effect of compression on the unit cell dimensions a and c, as well as 

the angles θ and δ. The two diagonal axes of the octahedron are defined as L1 and L2; (c) schematic 

representation of the change of shape of the octahedral cage under compression. 
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Figure 4. NLC in MFM-133(Hf) revealed by high-pressure single-crystal X-ray diffraction: (a) the evolution 

of unit cell lattice parameters for MFM-133(Hf) as a function of pressure with empirical fits applied to the 

experimental data; (b) lattice compressibilities as a function of pressure; (c) variation of unit cell volume 

with pressure with the data fitted using a second-order Birch-Murnaghan equation of state; (d) the 

compressibility indicatrix for MFM-133(Hf). All axes are in units of TPa–1. 
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