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 2 

Abstract 27 

Despite the fact that in sodium-oxygen (Na-O2) batteries show promise as high-energy storage 28 

systems, this technology is still the subject of intense fundamental research, owing to the 29 

complex reaction by which it operates. To understand the formation mechanism of the 30 

discharge product, sodium superoxide (NaO2), advanced experimental tools must be 31 

developed. Here we present for the first time the use of a Na-O2 micro-battery using a liquid 32 

aprotic electrolyte coupled with fast imaging transmission electron microscopy to visualize, in 33 

real time, the mechanism of NaO2 nucleation/growth. We observe that the formation of NaO2 34 

cubes during reduction occurs by a solution-mediated nucleation process. Furthermore, we 35 

unambiguously demonstrate that the subsequent oxidation of NaO2, of which little is known, 36 

also proceeds via a solution mechanism. We also provide insight into the cell electrochemistry 37 

via the visualization of an outer shell of parasitic reaction product, formed through chemical 38 

reaction at the interface between the growing NaO2 cubes and the electrolyte, and suggest that 39 

this process is responsible for the poor cyclability of Na-O2 batteries. The assessment of the 40 

discharge- charge mechanistic in Na-O2 batteries through operando electrochemical TEM 41 

visualization should facilitate the development of this battery technology. 42 

 43 

Keywords: Na-O2 battery, solution-mediated mechanism, discharge and charge 44 

processes, Operando TEM, Parasitic product formation 45 
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 3 

Introduction 50 

Compared to Li/Na-ion batteries, in which reversible energy storage relies on the use of redox 51 

active transition metal oxides as positive electrodes, the metal-O2 battery systems would 52 

theoretically offer greater energy density owing to the use the redox of gaseous oxygen using 53 

conductive and light carbon electrodes.1, 2 The aprotic lithium-oxygen (Li-O2) system has 54 

been widely studied since the early demonstration of reversibility by K.M. Abraham.3 55 

Nevertheless, recent developments clearly pointed out towards drastic limitations in terms of 56 

round trip efficiency as well as coulombic efficiency due to copious parasitic reactions of the 57 

discharge product lithium peroxide (Li2O2) with both the conductive electrode and the 58 

electrolyte. 4-6Following this conclusion, the sodium-oxygen (Na-O2) system was then 59 

proposed as a viable alternative due to its theoretical energy density of 1100 Wh/kg combined 60 

with a better round trip efficiency and presumably limited parasitic reactions.7 The Na-O2 61 

system is still, however, in its infancy, owing to several unresolved challenges, such as 62 

limited capacities and low cyclability.8, 9 Hence, the initial excitement was quickly 63 

counterpoised by the recent discoveries highlighting the unstable nature of the superoxide 64 

discharge product sodium superoxide (NaO2) that reacts with glyme-ethers solvent commonly 65 

used in these systems. Despite these evident limitations, this system has been seen as an 66 

interesting case study to better understand the complex redox reaction of oxygen in aprotic 67 

solvent that involves a gas to solid phase transformation. Only mastering these complex 68 

transformations will eventually trigger the development of rechargeable metal-O2 batteries 69 

and deliver the initial promises offered by the large energy density for these systems.  70 

Further efforts are thus required to understand and master the formation and decomposition 71 

processes of the micron-sized cubic NaO2 product, which is at the core of the Na-O2 72 

electrochemistry and still under heavy debate. Contradictory results discussing either a 73 

solution-mediated discharge and charge reaction, the need for phase transfer catalysts (e.g.: 74 
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 4 

H2O) that increases the solubility of NaO2, or an electrode-surface directed mechanism, leave 75 

the question for the fundamental reaction path unanswered.5, 10-17 One reason for that is surely 76 

the high sensitivity of the NaO2 product and its reactivity towards moisture18, 19, CO2
20, 21 and 77 

other electrolyte impurities, which makes any analysis by ex situ methods extremely difficult. 78 

This also explains the absence of a common consensus regarding the parameters controlling 79 

the formation of NaO2 as well as the underpinning mechanism for NaO2 decomposition. 5, 10-17  80 

Another challenge of the Na-O2 system is associated to its unsatisfactory cyclability, where 81 

recent papers have demonstrated that the fast death of the battery, after only few cycles, is 82 

associated to the low stability of the NaO2 discharge product.8, 22 Others further identified the 83 

detrimental ability of NaO2 to trigger parasitic reactions, where the origin of the parasitic 84 

reactions includes the oxidation of the electrolyte and the carbon electrode, consequently 85 

forming side products such as carbonates, carboxylates, formates and acetates.8, 23-25 However, 86 

such results were obtained ex situ, hence leaving questions concerning the underpinning 87 

mechanism or the effect of post-mortem sample handling, open.  88 

Altogether, these studies clearly demonstrate the complexity of the Na-O2 system, which have 89 

slowed down its development. Thus, there is a need to move away from the conventional 90 

analytical ex situ characterization methods and develop operando techniques to pin-down 91 

fundamental mechanisms in real-time.26 The recent development of liquid cell for 92 

transmission electron microscopy27 enables an exciting opportunity to explore28, 29 and even 93 

quantify30-32 complex electrochemical reactions occurring inside batteries during operation. In 94 

the present study, we monitor for the first time the discharge and charge reactions occurring in 95 

a liquid aprotic Na-O2 battery by using an operando electrochemical (scanning) transmission 96 

electron microscopy (STEM and TEM) Na-O2 micro battery setup coupled with fast imaging. 97 

This setup enables us to unambiguously prove that not only does the growth occur by a 98 

solution-mediated processes in glyme-ether electrolytes, but so does the oxidation of NaO2 99 
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 5 

cubes. Further, we visualize the formation of side products leading to the formation of 100 

parasitic shell at the interface between NaO2 crystals and the electrolyte, which remains as 101 

solid residues on the electrode after charge.  102 

Benchmarking the Na-O2 micro-battery setup 103 

Figure 1 shows a schematic of the micro-battery based on the electrochemical TEM cell 104 

configuration (a-d) used throughout this work for the operando imaging of sub-micrometric 105 

features during redox reactions at the positive carbon electrode (e). The operando cell was 106 

assembled using an oxygen-saturated electrolyte made of 0.5M NaPF6 dissolved into 107 

monoglyme (DME), which contains < 20 ppm of water as determined by Karl-Fischer 108 

titration. To establish its electrochemical performance, the operando cell was charged and 109 

discharged in a cyclic-voltammetry mode, using a sweep rate of 10 mV/s between and Pt as 110 

counter and pseudo-reference electrodes (Supplementary Figure S1). Such conditions were 111 

used due to the extremely small size of the cell setup, restricting the volume of the electrolyte 112 

as well as the available amount of dissolved O2. We first verified that these conditions provide 113 

similar results as classical Swagelok cells, with namely the formation of discharge products 114 

consisting of plentiful cubes (Figure 2a and 2b), which were identified as NaO2 by combining 115 

energy dispersive X-ray spectroscopy (EDX) and selected area electron diffraction (SAED) as 116 

discussed later in greater detail.  117 
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 6 

 118 

 119 

Figure 1: Schematic description of the Poseidon 510 TEM holder for operando 120 

electrochemical measurements: exploded view showing the holder tip with precision slot for 121 

loading liquid cell (a), where the top e-chip containing a printed reference (platinum), counter 122 

(platinum) and working electrode (glassy carbon) (b, c) is mounted on top of the bottom e-123 

chip containing an electron beam transparent Si3N4 membrane, O-rings gasket is used to get a 124 

good vacuum-sealing. Cross-sectional illustration of the operando electrochemical TEM cell 125 

with the pathway of the electron beam and thin conductive glassy carbon electrode (d). 126 

Schematic of the electrochemically induced discharge and charge processes, taking place at 127 

the positive electrode surface (e).  128 

 129 

Equally, the inhomogeneous dispersion in size and morphology for the cubes obtained on the 130 

glassy carbon electrode (GC) in the operando cell (loaded with liquid electrolyte) Figure 2d - 131 

f,  compares well with NaO2 cubes found in Swagelok-cells on carbon fibers (Figure  2a and 132 

2f).33, 34 Nevertheless, smaller NaO2 cubes are formed with the operando TEM cell (0.5 - 1 133 

µm) that is explained by the geometry of the cell, i.e. the reduced distance between the two 134 
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 7 

Si3N4 windows, which limits the amount of electrolyte and thus O2, as well as the short 135 

discharge period during CV.  136 

 137 

Figure 2: Comparison of Na-O2 morphology obtained in regular Na-O2 Swagelok cells on 138 

carbon fibers (Freudenberg gas diffusion layer electrodes) (a-b) and the GC electrodes used in 139 

the Na-O2 TEM micro-battery setup (c-f), (images a-d, taken after removal of the electrolyte). 140 

The SEM overview image of the carbon fibers shows the dense coverage by NaO2 discharge 141 

product (a) and the high magnification SEM image depicts the micrometer-sized cubic 142 

morphology found in Swagelok cells (b). Low magnification TEM image of the GC working 143 

electrode used in the in situ Na-O2 micro-battery cell (c). TEM and HAADF-STEM overview 144 

images in presence of liquid electrolyte showing, similar to Swagelok cells, NaO2 cubes 145 
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 8 

covering the GC electrode after discharge (anodic CV scan, 10 mV/s) (d, e). The enlarged 146 

HAADF-STEM images illustrate the inhomogeneous NaO2 cubes morphology (f and insert); 147 

where the thick layer of liquid electrolyte about 1 µm between the electrode surface and the 148 

bottom silicon nitride window impacts the image quality even in HAADF-STEM mode. 149 

 150 

Visualizing the growth process of NaO2 during discharge 151 

The growth of NaO2 cubes during discharge was followed by means of fast TEM imagining 152 

and high angle annular dark field STEM (HAADF-STEM) using the same cycling conditions 153 

as previously mentioned (Figure 3, sequence a and e, Supplementary Video S1). Comparing 154 

the electrochemical response in Figure 3 c with the image sequence in Figure 3 a shows that 155 

the cube growth follows a solution-precipitation mechanism. Indeed, after an initial step 156 

where the electrolyte is saturated by the electrochemically produced NaO2 soluble species 157 

(image at 5 s, cathodic current in CV of Figure S1), a point of super saturation is then reached 158 

as characterized by the formation of small NaO2 nuclei on the electrode surface (image at 10 159 

s). This initial incubation period, where cathodic current corresponding to the electrochemical 160 

formation of soluble NaO2 is measured but no product is formed on the electrode, is 161 

characteristic of a crystal growth following a solution-precipitation mechanism and therefore 162 

rules out a surface-directed growth of NaO2 cubes, for which NaO2 would grow as a solid 163 

following the cathodic current. Such nuclei subsequently grow in an isotropic manner (images 164 

at 15 - 60 s), by deposition of solvated NaO2 on the surface of cubes. This growth ultimately 165 

leads to the formation of NaO2 cubes with a size of approx. 500 nm (image at 60 s). Hence, 166 

three stages for the solution-mediated cube-growth precipitation process, similar to the first 167 

description given by Janek and coworkers,15 could be spotted. First, soluble NaO2 is 168 

electrochemically formed and quickly saturate the electrolyte (owing from the low solubility 169 
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 9 

of NaO2 in organic solvents)15, 34. Once supersaturation of the electrolyte is reached, small 170 

aggregates of solvated (NaO2)n species precipitate in the form of small NaO2 nuclei on the 171 

carbon electrode. Finally, upon discharge, soluble NaO2 species are consistently produced and 172 

deposit on the high surface energy nuclei, which ultimately grow into larger NaO2 cubes. We 173 

would like to emphasize here is that the electrode surface in Figure 3 sequence a and e, is hard 174 

to visualize owing to the thick layer of electrolyte between the electrode and the Si3N4 175 

window. Hence, to facilitate its identification, a thin white line is used, as a guide to the 176 

reader, to indicate the electrode border in TEM image in Figure 3 b.  177 

 178 

Further exploiting the capability of the TEM setup, we visualize the sequential size evolution 179 

of several cubes (Figure 3 b, supplementary Video S2). As NaO2 is an insulator15, 16 and 180 

cannot grow by electrodeposition, it is evident that the gradual growth occurs by deposition of 181 

NaO2 from the solution at the outer crystal surface. For better quantification, the particle size 182 

evolution during discharge as a function of the growth time was plotted, which revealed the 183 

non-linear intermittent growth rate (Figure 3 c). Initially, the electrolyte is being saturated 184 

with electrochemically generated NaO2 and no significant deposit can be observed. Once the 185 

saturation limit is reached, a rapid increase of the cube size is observed, which could be 186 

associated with the large concentration of NaO2(solv) in solution at the point of super 187 

saturation. This initial burst is then followed by step-wise regime associated with domains of 188 

low and high growth rates, dependent on the local concentration of NaO2 in solution. Lastly, a 189 

steady-state regime is reached towards the end of discharge where the growth rate diminishes 190 

due to depletion of O2 in the electrolyte, causing the limited current density as recorded by 191 

CV (Figure 3 c). By analyzing several cubes, we could demonstrate that the overall 192 

mechanism is similar for every cube, verifying the ubiquitous nature of this process with, 193 

however, different intermittent growth rates for each cube, thus further pointing out the 194 
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 10 

important role played by the mass transport, owing to the different local environment (i.e. the 195 

density of neighboring cubes) (Figure 3 c). To the best of our knowledge, this is the first 196 

acquisition of such insights regarding the solution-mediated growth of NaO2. These results, 197 

combined with the previously demonstrated solubility of NaO2
15, 34 unambiguously establish 198 

that the insulating NaO2 phase15, 16 formed during discharge of a Na-O2 battery is the 199 

consequence of a solution-mediated precipitation process.  200 

 201 

 202 

Figure 3: The time-resolved and animated operando TEM images illustrate the 203 

morphological evolution of the NaO2 product during discharge (a and e), featuring a 204 

nucleation event (10 s) and the subsequent growth of NaO2 cubes, following a solution-205 

mediated growth-process (11-60 s). TEM image extracted from the growth study of several 206 

cubes (pink, blue, green, red and black circles in b) forming during discharge. The size-207 

evolution analysis of these cubes reveals a non-linear growth with intermittent plateaus 208 

demonstrating the NaO2(solv) diffusion dependency of this process (c). The black line indicates 209 
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 11 

the anodic current response obtained during discharge. Enlarged TEM image of a cube 210 

obtained at the end of discharge, surrounded by parasitic shell. (d) High-resolution TEM 211 

image of NaO2 cube, obtained on the GC electrode at the end of discharge. 212 

 213 

Formation of parasitic shell  214 

Quite interestingly, the use of operando TEM also enables identification of a shell 215 

surrounding the NaO2 cubes, which becomes predominant towards the end of discharge (> 216 

60s) (Figure  4 a, image 65 s – 85s, green and orange pixels). We further exploited the 217 

capabilities of operando TEM by visualizing the evolution of this shell surrounding the cubic 218 

NaO2 crystal (Supplementary Video S3), shell which is initially appears as a thin film prior to 219 

develop into a thick spherical shell (approx. 200 nm) around the cube. Hence, several 220 

questions arise from this observation: what is the nature of this shell and what is its 221 

consequence for the performance of the Na-O2 battery?  222 

 223 

Figure 4: The fast and animated operando TEM images showing the evolution of the 224 

parasitic shell at the cube-electrolyte interface, illustrated by the orange/green pixels (a). Shell 225 

thickness evolution, extracted from the numerical treatment of image stack after contrast 226 

filtering, indicated in pink, insert (b). TEM image of finally obtained NaO2 cubes (strong 227 
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 12 

contrast), surrounded by the parasitic shell (light contrast) (c). Note that cubes are growing on 228 

the surface of the glassy carbon electrode, the extremity of which is represented by the white 229 

line.   230 

 231 

Analyzing the discharge products 232 

By moving to ex situ TEM, EDX and SAED analysis, we could provide further insights in 233 

both the chemical composition and the morphology of this shell (Figure 5). Note that this 234 

shell, which is separated from crystalline NaO2 cube by a darker line (in the HAADF-STEM 235 

mode), can be found on the surface of every cube (Figure 5 a). Furthermore, the use of TEM 236 

reveals the presence of three different morphologies and chemical compositions from the bulk 237 

to the surface of a cube (Figure 5 b). First, the bulk crystal (green/blue area) was identified to 238 

have the composition of Na:O2 by means of EDX and to crystallize in the fluorite structure of 239 

NaO2 (S.G. Fm-3m) as deduced by SAED (Figure 5 c, e). Moving towards the surface, TEM 240 

reveals a first shell growing on the bulk NaO2 crystal (pink area), which consists of an 241 

agglomeration of nano-cubes with crystallite size of about 20 nm. The SAED pattern of the 242 

nano-cubes (Figure 5 f) shows rings of modulated intensity confirming the visual observation 243 

of numerous randomly oriented crystallites, having a cubic unit cell parameter close to that 244 

measured for the SAED pattern of NaO2. Although the absolute values for the lattice 245 

parameters cannot be precisely measured from SAED patterns, their ratio can be estimated 246 

with much higher precision. This estimate gives the anano-cubes/aNaO2 ≈ 1.015 value. Both, the 247 

fluorite-type NaO2 and antifluorite-type Na2O both possess the face-centered cubic unit cell 248 

with the cell parameter ratio aNa2O/aNaO2 = 5.56Å/5.512Å = 1.009 that is reminiscent to the 249 

experimentally measured ratio. Thus, one can tentatively identify the nano-cubes as defective 250 

NaO2, with an increased Na:O atomic ratio (note that Na2O2 would adopt an hexagonal 251 
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 13 

symmetry while Na2O2.2H2O would adopt a monoclinic symmetry). These high surface area 252 

cubes may further favor the chemical reactivity towards electrolyte decomposition as seen by 253 

the formation of the third shell, an amorphous layer at the outer surface, i.e. at the interface 254 

between the cubes and the electrolyte, with reduced Na content as deduced by the small 255 

sodium peak observed by EDX analysis (Figure  5 d, blue line). To shine further light on this 256 

amorphous outer layer, GDL electrodes were discharged using classical Swagelok cells. The 257 

electrodes, which contain large amounts of discharge product, were then analyzed in greater 258 

details.  259 

 260 

Figure 5: Ex situ analysis (dry condition) of the discharge product. HAADF-STEM overview 261 

image of the widely distributed cubes on the GC electrode, surrounded by the parasitic shell 262 

b 

NaO
2
 

NaO
X
 

Parasitic shell 
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 14 

(a).  TEM image illustrating the interior of the shell around the NaO2 cubes; bulk crystalline 263 

NaO2 (green), NaOx nanocrystalites (pink) and the outer organic layer (blue) (b). EDX spectra 264 

of the NaO2 bulk (c) and the organic layer (d). SAED patterns showing the high crystallinity 265 

of inner NaO2 bulk (e) and poly-dispersed NaOx nanocrystallites for the second layer (f). 266 

 267 

First, HAADF-STEM analysis of discharged GDL electrodes revealed the presence of a shell 268 

for NaO2 cubes grown in classical Swagelok cells, similarly to what was observed using the in 269 

situ TEM setup (Supplementary Figure S6). This validates the observations made by the 270 

operando-cell and further exclude beam damage as the sole origin for the formation of this 271 

shell.  272 

To gain deeper understanding about this shell, XPS spectra of discharged GDL electrodes 273 

were collected at various stages of discharge (Supplementary Figure S2). The C1s spectra 274 

reveal the constant evolution of a parasitic carbonate-like species during discharge. To 275 

quantify the amount of these carbonates generated upon discharge, we relied on the method 276 

first described by Thotiyl et al.35 that consist in the use of acid (H3PO4) and Fentons`s reagent 277 

are used to decompose inorganic and organic carbonates, with the CO2 generated through 278 

their decomposition being subsequently sampled by a mass spectrometer.  279 

The released CO2 concentration at various stages of discharge (Figure 6) indirectly, 280 

demonstrates the significant amount of inorganic Na2CO3 and organic carboxylates formed on 281 

the surface of carbon electrodes. Upon discharge, the concentration of inorganic carbonates 282 

significantly increases (Figure 6 b), and this is in agreement with the growth of the shell 283 

observed in Figure 4a. Moreover, when comparing the concentration of Na2CO3 at the end of 284 

discharge with the results obtained at the end of charge, a limited increase is found for GDL 285 

electrodes, demonstrating that the parasitic products cannot be reoxidized and remain on the 286 
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 15 

electrode surface at the end of charge (Figure 6b). This result highlights the importance of 287 

mastering this interface for decreasing the rate of parasitic product formation.  288 

 289 

 290 

Figure 6: Discharge−charge profiles for GDL electrode at a rate of 25 µA/cm2 (a).  Amount 291 

of CO2 evolved from the GDL electrode when removed from the cells at different states of 292 

discharge and charge and treated with acid and Fenton’s reagent to decompose Na2CO3 and 293 

organic carboxylates (b). CO2 evolution originating from the instability of electrode and 294 

electrolyte as deduced from the discharge of 13C-carbon electrodes at various discharge rates 295 

between 25 – 250 uA/cm2 (c). 12CO2 evolution indicates the electrolyte degradation leading to 296 

inorganic carbonates (black) and organic carboxylates (red) whereas 13CO2 detection results 297 

from the direct decomposition of the carbon electrodes. 298 

 299 

Finally, to clarify the origin of the carbonate side product formation, which can result from 300 

the electrolyte and/or from the electrode decomposition, discharge experiments using 13C-301 

labeled electrodes with the released CO2 isotopes being detected by mass Spectrometry 302 

analysis. These isotopic experiments revealed the presence of both 13CO2 and 12CO2 at the end 303 

of discharge, which can only be explained by the decomposition of both the electrode surface 304 

and the electrolyte, respectively (Figure 6c). However, the observed 12C fraction was much 305 

larger than the 13C one, demonstrating that the majority of parasitic carbonates originates from 306 

a) b) c) 
 

Na2CO3 

Carboxylates 

12C Carboxylates 

12C Na2CO3  

13C Na2CO3
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the instability of the glyme-electrolyte in contact with the highly oxidizing NaO2 discharge 307 

product. Again, this result corroborates the shell formation we observed in Figure 4. 308 

Additionally, we observed that upon elevated discharge currents, the amount of products 309 

originating from the decomposition reactions increases, with a prominent contribution from 310 

the electrode decomposition (Figure 6c), hence implying that an electrochemically-driven-311 

electrode decomposition is also at play during discharge of Na-O2 batteries. 312 

Altogether, these experiments reveal the high reactivity of NaO2 and further disproves, 313 

together with previous literature reports, 8, 23-25 the initial claim of improved stability for Na-314 

O2 batteries when compared to Li-O2 ones.5  315 

 316 

Overall, the combination of the time-resolved TEM as well as ex situ observations reveal that 317 

parasitic reactions in glyme-ether based Na-O2 batteries constantly occur during discharge, 318 

demonstrating the strong reactivity of NaO2 towards the electrolyte and potentially residual 319 

impurities such as e.g.: H2O or CO2 
18, 20, 21 or even the generation of singlet O2 species, as 320 

recently reported for Li-O2 and Na-O2 batteries.36-38 At this stage, it is worth noting that the 321 

carbonates are certainly not the only one kind of parasitic products formed when cycling Na-322 

O2 batteries. Indeed, several very recent reports demonstrated the high reactivity of NaO2 323 

towards the electrode, as well as towards the solvent,8, 23, 24 where sodium carbonate and 324 

carboxylate were identified to be the main parasitic products, with a variety of other side 325 

products, such as formats and acetates also being found.  326 

 327 

Overall, we believe that preventing the formation of this complex organic/inorganic shell will 328 

be of prime importance to mitigate the drastic capacity loss observed upon cycling with 329 

todays’ Na-O2 cells, which will be discussed in greater details below.  330 
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Resolving the mechanism in charge – the dissolution of NaO2 331 

Encouraged by the mechanistic insight provided by operando TEM during the discharge of 332 

Na-O2 battery, we decided to explore the oxidation process following the same methodology. 333 

From a sequence of images collected by HAADF-STEM (Supplementary Video S4), the 334 

gradual dissolution of NaO2 cubes during oxidation can be observed (Figure 7). More 335 

importantly, this visualization shows that cubes dissolve concentrically from the outside 336 

inwards. In detail, the 3D visualization of the processes at play during charge illustrate that 337 

the dissolution of the cubes initially proceeds from the top surface, i.e. at the interface 338 

between the cube and the electrolyte, leading to a steady decrease in size of the cube (Figure 7 339 

a-d). This is in contrast to the previously reported electrode directed charge-transfer, i.e. the 340 

direct oxidation of the cubes at the interface with the electrode.12 To gain deeper insight into 341 

this dissolution process, the height-profile evolution was followed for one cube throughout 342 

the complete oxidation (Figure 7 e-h). From this profile, it can be observed that cubes, despite 343 

being covered by the parasitic shell, start to dissolve from the top, i.e. the face exposed to the 344 

electrolyte, hence demonstrating the porous nature of the organic shell. Upon further 345 

charging, the overall height profile continuously decreases from the top of the cube, further 346 

suggesting a collapse of the parasitic shell during charge. Ultimately, parts of the shell remain 347 

at the end of charge spread on the surface of the electrode, visualized in Figure 7 i as a 348 

patchwork and by the “walls” at 50 and 300 nm in the linear profile in Figure 7 h. This is in 349 

good agreement with our ex situ observations where parasitic residues (organic and inorganic) 350 

are found on the GDL carbon fibers after charge (Figure 6), as well as with previous reports.8 351 

Altogether, these new information shine light on a so-far poorly explained phenomenon, 352 

namely the constant columbic losses measured upon cycling. Subsequent cycling will indeed 353 

generate additional parasitic products that will accumulate at the electrode surface, ultimately 354 

causing a rapid capacity loss and a drastic self-discharge.  355 
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 356 

In light of the solvation-desolvation equilibrium discussed above, our operando electron 357 

microscopy measurements provide the definitive demonstration that the oxidation process in 358 

Na-O2 batteries follows a solution-mediated mechanism, as previously proposed15 based on 359 

the significant solubility of NaO2,
15, 34 its low dissolution energy10, 13 as well as its insulating 360 

nature that would prohibit direct oxidation at the electrode.15, 16 During charge, solvated 361 

NaO2(solv) is oxidized at the electrode surface into Na+ and O2(g), hence displacing the 362 

equilibrium NaO2(solid) = NaO2(solv) to the right and forcing the dissolution of the cubes. 363 

Through this process, the bottom edges of the non-conducting cubes, in direct contact with the 364 

electrode surface, remain throughout the charge as evidenced by TEM. This clearly contrasts 365 

with the previously proposed mechanism for which a direct charge transfer between the solid 366 

and the electrode/current collector was a requirement.12  367 

 368 

Finally, we explored the consequences of the formation of parasitic products at the electrode 369 

surface on subsequent cycles and NaO2 formation. This revealed that NaO2 nuclei were 370 

exclusively formed during the second discharge on the uncovered, pristine electrode surface 371 

(Supplementary Video S5). Hence, the parasitic products not only hamper the O2(g) redox 372 

reaction but also hinder NaO2 nucleation on the carbon surface. In short, this study shows that 373 

the formation of parasitic products has its origin in the high chemical reactivity of the NaO2 374 

cube surface, initially suspected to be less reactive than Li2O2.
5 This highlights the need for a 375 

new class of electrolytes that are stable against attack from NaO2.  376 
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 377 

 378 

Figure 7: HAADF-STEM imaging of the charge process. Animated images at different depth 379 

of charge depict the dissolution of the cubes via solution, starting at cube-electrolyte interface 380 

and proceeding downwards to the electrode surface (a-d). High profile evolution of a single 381 

cube during charge (specified by white bar in a-d) (e-h) further supporting the solution-382 

mediated charge, where the two bumps at 50 and 300 nm in image h indicate the parasitic 383 

shell remaining on the electrode surface at the end of the charge. HAADF-STEM image of the 384 

GC electrode surface after discharge showing the patchwork of the residual parasitic shells, 385 

blocking subsequent O2 redox and NaO2 nucleation (i). 386 

 387 

Conclusion 388 

Herein we have reported that fast imagining TEM and HAADF-STEM are powerful 389 

analytical tools to understand the mechanistic pertaining to the charge/discharge processes in 390 

DME based Na-O2 batteries. We visualized the solution-mediated growth of NaO2 in real-391 

time and identified that the 3D growth process is governed by the equilibrium between 392 

NaO2(solv) <--> NaO2(solid) and the mass transport of soluble product. By imaging the charge 393 
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process, we provide conclusive evidence that the same solvation-desolvation equilibrium is 394 

responsible for the dissolution of the NaO2 discharge product, which consumes the NaO2 395 

cubes from the NaO2-electrolyte interface towards the electrode and not from the cube-396 

electrode interface. Therefore, we rule out the direct charge-transfer reaction as the major 397 

oxidation path for NaO2 cubes and clarify the mechanism of this widely discussed reaction. 398 

Finally, we provide fundamental insights into the parasitic reactions occurring during cycling 399 

of a Na-O2 battery where time-resolved visualization revealed the chemical reactivity of NaO2 400 

at the interface with the electrolyte. As a result, parasitic products continuously accumulate on 401 

the cube surface to form a thick shell surrounding the NaO2 cubes, which passivates the 402 

electrode surface as it cannot be reoxidized. This information is vital for optimization of the 403 

battery, since this parasitic shell is responsible for the low efficiency during charge, as well as 404 

for its poor cyclability by preventing crucial O2 redox and further nucleation of NaO2. It must 405 

therefore be recognized that the NaO2 growth is solvent dependent, providing the possibility 406 

of mediating the deposition process by controlling the solvation/desolvation event. Hence, 407 

caution must be exercised prior to generalizing this finding. Through this first visualization of 408 

the redox processes governing the Na-O2 system, we further confirm the importance of 409 

finding how the various components of the batteries locally interact with each other. We hope 410 

these results will help in the development of new strategies to optimize cell components, such 411 

as the electrolyte, in order to achieve high performing Na-O2 batteries, and also serve to 412 

motivate the development of operando electrochemical TEM cells.  413 

 414 

Methods 415 

Electrolyte preparation: 416 

1,2-Dimethoxyethane (DME, 99.9%) was purchased from Sigma Aldrich and (NaPF6 99.9 %) 417 

was bought from Stella Chemifa. Solvents were dried by means of molecular sieves for 5 days 418 
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to remove excess water and Sodium salts were dried under vacuum at 80°C for 24 hours. The 419 

0.5 M electrolyte solutions were prepared in an argon-filled glove box (0.1 ppm O2/0.1 ppm 420 

H2O). The water content of the electrolyte solutions was analyzed by Karl Fischer titration 421 

and was found to be below 20 ppm. The electrolyte was saturated with ultrapure O2, prior to 422 

use in the in situ TEM cell. 423 

 424 

Operando electrochemical (S)TEM experiments: 425 

Operando TEM experiments were performed using a FEI-TECNAI G2 (S)TEM equipped 426 

with a Schottky field-emission gun and an fast camera Oneview-Gatan (30 fps at 4k). For 427 

these experiments the microscope was operated at 200 kV in both conventional TEM and 428 

HAADF-STEM modes. In this study, we checked the effect of the electron beam used to 429 

make the observations in TEM and STEM modes to be sure that the beam does not have any 430 

effect on our results. During the observations, the dose was kept below 10 e-/nm2s in order to 431 

limit beam damage effects. By this way, typical beam effects (bubble and precipitate 432 

formations) due to the degradation of the electrolyte by radiolysis effect are avoided. As 433 

shown in Supplementary Figure S3, the insignificant impact of the electron beam on the 434 

liquid electrolyte was verified with the same dose of electron used during the fast imaging 435 

acquisition, which shows a high stability of NaPF6/DME/O2 electrolyte upon electron beam 436 

irradiation for a relatively long period of time: 360s. The TEM holder used is a Protochips 437 

Poseidon 510 owing both a microfluidic flow system and an electrochemical measurement 438 

system with 3 electrodes. The micro-battery cell itself is localized in the holder tip and 439 

consists of two silicon Echips sealed by Viton O-ring gasket: a top Echip (with 2 Pt electrodes 440 

(reference and counter) and 1 glassy carbon electrodes (working), a 500 nm SU-8 polymer 441 

spacer and a 50 nm thick Si3N4 window) and bottom Echip (with a 500 nm spacer and a 50 442 

nm thick Si3N4 window). Mounted Echips are then compressed onto O-rings using screwed 443 

lid of the holder inducing a good vacuum-sealing. The microfluidic system integrated in the 444 

TEM holder allows to introduce and flow the electrolyte with a rate range from 0.5 to 5 445 

µL/min. using a syringe pump system. The microfluidic system (cell and microtubes) is 446 

flushed by argon gas to discard oxygen presence prior to start operando experiment.  447 

 448 

Cyclic voltammetry  449 
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CV experiments were conducted using an ultra low current SP-200 Biologic potentiostat, 450 

where during battery cycling, the potential was scanned at a rate of 10 mV/s between -1.6V 451 

and -3 V using Pt as pseudo-reference electrode and Pt as counter electrode. For sake of 452 

clarity, all values were then rescaled versus Na+/Na to yield a potential window of 1.5 and 453 

2.9V (vs. Na+/Na).  454 

 455 

X-ray photoelectron spectroscopy (XPS) analysis: 456 

XPS analysis of the surface of aged sodium samples was performed by a means of SPECS 457 

Sage HR 100 spectrometer with a non-monochromatic X-ray source (Aluminum Kα line of 458 

1486.6 eV energy and 300 W). The samples were placed perpendicular to the analyzer axis 459 

and calibrated using the 3d5/2 line of Ag with a full width at half maximum (FWHM) of 460 

1.1 eV. All samples were transferred by means of a gastight transfer chamber to avoid air 461 

contact. All samples were further rinsed with dry DME solution to remove excess salt. In the 462 

case of sodium aged in TFSi electrolyte, the surface of the sample and not the precipitate was 463 

analyzed.    464 

The selected resolution for the spectra was 10 eV of Pass Energy and 0.15 eV/step. All 465 

Measurements were made in an ultra-high vacuum (UHV) chamber at a pressure around 466 

5·10-8 mbar. An electron flood gun was used to compensate for charging during XPS data 467 

acquisition. In the fittings asymmetric and Gaussian-Lorentzian functions were used (after a 468 

Shirley background correction) where the FWHM of all the peaks were constrained while the 469 

peak positions and areas were set free. For every anion, XPS was performed on the surface of 470 

the metallic sodium. For TFSI, the XPS spectrum was collected as well on the surface of the 471 

metallic sodium, while the pilled off part wasn’t analyzed. 472 

 473 

Mass Spectrometry analysis: 474 

The collected electrodes were first immersed in an aqueous solution containing 2M H3PO4, 475 

which decomposes Na2CO3 into CO2. Due to the very acidic pH-value, the 2H+ + CO3
2- 
↔ 476 

HCO- + H+ ↔ CO2 + H2O equilibrium is fully shifted to the right, where CO2 evolves as 477 

gaseous CO2, which is subsequently sampled by mass spectrometry. In a second step, after the 478 

CO2 evolution has ended and all inorganic Na2CO3 was quantify, a second injection with 0.5 479 

ml of a 2M H3PO4 solution containing 0.5M FeSO4 and 40µL of 30% H2O2 (Fenton’s 480 
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reagent) was added. The presence of the highly reactive OH radical (based on the Fenton`s 481 

reaction: Fe2+ + H2O2 → Fe3+ + OH + OH-) leads to the decomposition of organic species 482 

(e.g.: sodium carboxylates) into CO2, again released as gas due to the acidic environment.  483 

 484 

Author contributions 485 

A.G., A.D. and J.-M.T. designed the experiments. L.L., W.D., A.D. and A.G. performed the 486 

operando TEM measurements. W.D. and A.D. performed the TEM analysis. L.L., A.G., A.D. 487 

and J.-M.T. wrote the manuscript that all the authors edited.  488 

Supporting Information Available: 489 

Supplementary videos of in situ (S)TEM experiments, Cyclovoltammogram, XPS analysis, 490 

beam damage control experiments, EELS spectra, STEM-HAADF image, HAADF-STEM 491 

and EDX-STEM images of NaO2 cubes grown on GDL electrodes. 492 

Competing interests 493 

The authors declare no competing financial interest.  494 

Acknowledgements 495 

L.Lutz thanks the ALISTORE-ERI for his Ph.D. grant. We would like to thank Dr. Artem 496 

Abakumov for fruitful discussions and comments on the manuscript. 497 

 498 

References 499 

1. Gallagher, K. G.; Goebel, S.; Greszler, T.; Mathias, M.; Oelerich, W.; Eroglu, D.; 500 
Srinivasan, V. Energy & Environmental Science 2014, 7, 1555-1563. 501 
2. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nature Materials 502 
2012, 11, 19–29. 503 
3. Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1-5. 504 
4. Lepoivre, F.; Grimaud, A.; Larcher, D.; Tarascon, J.-M. J. Electrochem. Soc. 2016, 505 
163, A923-A929. 506 
5. McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. J. Phys. Chem. Lett. 2014, 5, 1230-507 
1235. 508 

Page 23 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 24 

6. Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. 509 
Nat Mater 2013, 12, 1050-1056. 510 
7. Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. 511 
Beilstein J. Nanotechnol. 2015, 6, 1016-1055. 512 
8. Liu, T.; Kim, G.; Casford, M. T. L.; Grey, C. P. J. Phys. Chem. Lett. 2016, 7, 513 
4841−4846. 514 
9. Bender, C. L.; Hartmann, P.; Vracar, M.; Adelhelm, P.; Janek, J. Adv. Energy Mater. 515 
2014, 4, 1301863. 516 
10. Kim, J.; Park, H.; Lee, B.; Seong, W. M.; Lim, H. D.; Bae, Y.; Kim, H.; Kim, W. K.; 517 
Ryu, K. H.; Kang, K. Nat. Commun. 2016, 7, 10670-10679. 518 
11. Knudsen, K. B.; Nichols, J. E.; Vegge, T.; Luntz, A. C.; McCloskey, B. D.; Hjelm, J. 519 
J. Phys. Chem. C. 2016, 120, 10799–10805. 520 
12. Morasch, R.; Kwabi, D. G.; Tulodziecki, M.; Risch, M.; Zhang, S.; Shao-Horn, Y. 521 
ACS Appl. Mater. Interfaces 2017, 9, 4374-4381. 522 
13. Lee, B.; Kim, J.; Yoon, G.; Lim, H.-D.; Choi, I.-S.; Kang, K. Chem. Mater 2015, 27, 523 
8406-8413. 524 
14. Hartmann, P.; Bender, C. L.; Sann, J.; Duerr, A. K.; Jansen, M.; Janek, J.; Adelhelm, 525 
P. Phys. Chem. Chem. Phys. 2013, 15, 11661-11672. 526 
15. Hartmann, P.; Heinemann, M.; Bender, C. L.; Graf, K.; Baumann, R.-P.; Adelhelm, P.; 527 
Heiliger, C.; Janek, J. J. Phys. Chem. C. 2015, 119, 22778-22786. 528 
16. Yang, S.; Siegel, D. J. Chem. Mater 2015, 27, 3852-3860. 529 
17. Xia, C.; Black, R.; Fernandes, R.; Adams, B.; Nazar, L. F. Nat. Chem 2015, 7, 496-530 
501. 531 
18. Pinedo, R.; Weber, D. A.; Bergner, B.; Schröder, D.; Adelhelm, P.; Janek, J. J. Phys. 532 
Chem. C. 2016, 120, 8472-8481. 533 
19. Ortiz-Vitoriano, N.; Batcho, T. P.; Kwabi, D. G.; Han, B.; Pour, N.; Yao, K. P.; 534 
Thompson, C. V.; Shao-Horn, Y. J. Phys. Chem. Lett. 2015, 6, 2636-2643. 535 
20. Das, S. K.; Xu, S.; Archer, L. A. Electrochem. Commun. 2013, 27, 59-62. 536 
21. Roberts, J. L. J.; Calderwood, T. S.; Sawyer, D. T. J. Am. Chem. Soc. 1984, 106, 4667-537 
4670. 538 
22. Sayed, S. Y.; Yao, K. P.; Kwabi, D. G.; Batcho, T. P.; Amanchukwu, C. V.; Feng, S.; 539 
Thompson, C. V.; Shao-Horn, Y. Chem Commun (Camb) 2016, 52, 9691-9694. 540 
23. Black, R.; Shyamsunder, A.; Adeli, P.; Kundu, D.; Murphy, G. K.; F., N. L. 541 
ChemSusChem 2016, 9, 1795 - 1803. 542 
24. Landa-Medrano, I.; Pinedo, R.; Bi, X.; Ruiz de Larramendi, I.; Lezama, L.; Janek, J.; 543 
Amine, K.; Lu, J.; Rojo, T. ACS Appl Mater. Interfaces 2016, 8, 20120–20127. 544 
25. Reeve, Z. E.; Franko, C. J.; Harris, K. J.; Yadegari, H.; Sun, X.; Goward, G. R. J. Am. 545 
Chem. Soc. 2017, 139, 595-598. 546 
26. Liang, Z.; Zou, Q.; Wang, Y.; Lu, Y.-C. Small Methods 2017, 1, 1700150. 547 
27. Ross, F. M. Science 2015, 350, aaa9886–aaa9886. 548 
28. Dachraoui, W.; Kurkulina, O.; Hadermann, J.; Demortière, A. Microsc. Microanal. 549 
2016, 22, 24-25. 550 
29. Holtz, M. E.; Yu, Y.; Gunceler, D.; Gao, J.; Sundararaman, R.; Schwarz, K. A.; Arias, 551 
T. A.; Abruna, H. D.; Muller, D. A. Nano Lett. 2014, 14, 1453-1459. 552 
30. Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; 553 
Henderson, W. A.; Xu, W.; Wang, C. M.; Evans, J. E.; Liu, J.; Zhang, J. G.; Mueller, K. T.; 554 
Browning, N. D. Nano Lett. 2015, 15, 2168-2173. 555 
31. Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nano 556 
Lett. 2015, 15, 2011-2018. 557 

Page 24 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 25 

32. Luo, L.; Liu, B.; Song, S.; Xu, W.; Zhang, J. G.; Wang, C. Nat Nanotechnol. 2017, 12, 558 
535-540. 559 
33. Hartmann, P.; Bender, C. L.; Vracar, M.; Duerr, A. K.; Garsuch, A.; Janek, J.; 560 
Adelhelm, P. Nat. Mater 2013, 12, 228-232. 561 
34. Lutz, L.; Yin, W.; Grimaud, A.; Alves Dalla Corte, D.; Tang, M.; Johnson, L.; 562 
Azaceta, E.; Sarou-Kanian, V.; Naylor, A. J.; Hamad, S.; Anta, J. A.; Salager, E.; Tena-Zaera, 563 
R.; Bruce, P. G.; Tarascon, J. M. J. Phys. Chem. C. 2016, 120, 20068-20076. 564 
35. Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. J. Am. Chem. Soc. 565 
2013, 135, 494-500. 566 
36. Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. 2016, 567 
128, 7006-7009. 568 
37. Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; 569 
Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; 570 
Freunberger, S. A. Nat. Energy 2017, 2, 1-9. 571 
38. Schafzahl, L.; Mahne, N.; Schafzahl, B.; Wilkening, M.; Slugovc, C.; Borisov, S. M.; 572 
Freunberger, S. A. Angew Chem Int Ed Engl 2017, 56, 15728-15732. 573 

  574 

 575 

 576 

FOR TABLE OF CONTENTS ONLY 577 

 578 

Page 25 of 25

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


